Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37947751

RESUMO

Electron-induced fragmentation of the HFeCo3(CO)12 precursor allows direct-write fabrication of 3D nanostructures with metallic contents of up to >95 at %. While microstructure and composition determine the physical and functional properties of focused electron beam-induced deposits, they also provide fundamental insights into the decomposition process of precursors, as elaborated in this study based on EDX and TEM. The results provide solid information suggesting that different dominant fragmentation channels are active in single-spot growth processes for pillar formation. The use of the single source precursor provides a unique insight into high- and low-energy fragmentation channels being active in the same deposit formation process.

2.
Nanomaterials (Basel) ; 13(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049311

RESUMO

Magnetic force microscopy (MFM) is a powerful extension of atomic force microscopy (AFM), which mostly uses nano-probes with functional coatings for studying magnetic surface features. Although well established, additional layers inherently increase apex radii, which reduce lateral resolution and also contain the risk of delamination, rendering such nano-probes doubtful or even useless. To overcome these limitations, we now introduce the additive direct-write fabrication of magnetic nano-cones via focused electron beam-induced deposition (FEBID) using an HCo3Fe(CO)12 precursor. The study first identifies a proper 3D design, confines the most relevant process parameters by means of primary electron energy and beam currents, and evaluates post-growth procedures as well. That way, highly crystalline nano-tips with minimal surface contamination and apex radii in the sub-15 nm regime are fabricated and benchmarked against commercial products. The results not only reveal a very high performance during MFM operation but in particular demonstrate virtually loss-free behavior after almost 8 h of continuous operation, thanks to the all-metal character. Even after more than 12 months of storage in ambient conditions, no performance loss is observed, which underlines the high overall performance of the here-introduced FEBID-based Co3Fe MFM nano-probes.

3.
Micromachines (Basel) ; 11(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455865

RESUMO

The next generation optical, electronic, biological, and sensing devices as well as platforms will inevitably extend their architecture into the 3rd dimension to enhance functionality. In focused ion beam induced deposition (FIBID), a helium gas field ion source can be used with an organometallic precursor gas to fabricate nanoscale structures in 3D with high-precision and smaller critical dimensions than focused electron beam induced deposition (FEBID), traditional liquid metal source FIBID, or other additive manufacturing technology. In this work, we report the effect of beam current, dwell time, and pixel pitch on the resultant segment and angle growth for nanoscale 3D mesh objects. We note subtle beam heating effects, which impact the segment angle and the feature size. Additionally, we investigate the competition of material deposition and sputtering during the 3D FIBID process, with helium ion microscopy experiments and Monte Carlo simulations. Our results show complex 3D mesh structures measuring ~300 nm in the largest dimension, with individual features as small as 16 nm at full width half maximum (FWHM). These assemblies can be completed in minutes, with the underlying fabrication technology compatible with existing lithographic techniques, suggesting a higher-throughput pathway to integrating FIBID with established nanofabrication techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA