Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39064740

RESUMO

Anisomeles indica (L.) Kuntze is a traditional herb with multiple medicinal properties and with potential for preventing or treating various diseases. Acteoside, one of the active ingredients in A. indica, is prepared into commercially available products of A. indica HP813 powder. In this study, the gastroprotective effects of A. indica HP813 powder were evaluated. Wistar rats were treated with A. indica HP813 powder at doses of 0, 207.5, 415, and 830 mg/kg body weight for 28 days. Then, gastric ulcers were induced by the oral administration of 70% ethanol (10 mL/kg body weight) on day 28. The rats were sacrificed at the end of the trial, and stomach tissues were collected. These stomach tissues were then used for macroscopic, microscopic, and immunohistochemical analyses. The results indicated that the area of gastric ulcer was 48.61%, 35.30%, and 27.16% in the ethanol-induced group, 415 mg/kg A. indica HP813 powder group, and 830 mg/kg A. indica HP813 powder group, respectively. In addition, the lesion scores were 2.9, 2.4, and 2.3 in the ethanol-induced group, 415 mg/kg A. indica HP813 powder group, and 830 mg/kg A. indica HP813 powder group, respectively. The immunochemical staining of the gastric tissue revealed that A. indica HP813 powder reduced the expressions of TNF-α and NF-κB proteins in the gastric tissue, which had been induced by ethanol. Finally, A. indica HP813 powder protected the gastric ulcer from ethanol damage through IκB-α induction. The present results demonstrated that A. indica HP813 powder has protective effects against ethanol-induced gastric ulcer.


Assuntos
Antiulcerosos , Etanol , Inibidor de NF-kappaB alfa , NF-kappa B , Úlcera Gástrica , Animais , Masculino , Ratos , Antiulcerosos/farmacologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Extratos Vegetais/farmacologia , Pós , Ratos Wistar , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/prevenção & controle , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/metabolismo
2.
J Biomol Struct Dyn ; : 1-18, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922151

RESUMO

Leishmaniasis is one of the most neglected parasitic diseases worldwide. The toxicity of current drugs used for its treatment is a major obstacle to their effectiveness, necessitating the discovery and development of new therapeutic agents for better disease control. In Leishmania parasites, N-Myristoyltransferase (NMT) has been identified as a promising target for drug development. Thus, exploring well-known medicinal plants such as Azadirachta indica and their phytochemicals can offer a diverse range of treatment options, potentially leading to disease prevention and control. To assess the therapeutic potential of these compounds, their ADMET prediction and drug-likeness properties were analyzed. The top 4 compounds were selected which had better and significantly low binding energy than the reference molecule QMI. Based on the binding energy score of the top compounds, the results show that Isonimocinolide has the highest binding affinity (-9.8 kcal/mol). In addition, a 100 ns MD simulation of the four best compounds showed that Isonimocinolide and Nimbolide have good stability with LmNMT. These compounds were then subjected to MMPBSA (last 30 ns) calculation to analyze protein-ligand stability and dynamic behavior. Nimbolide and Meldenin showed lowest binding free energy i.e. -84.301 kJ/mol and -91.937 kJ/mol respectively. DFT was employed to calculate the HOMO-LUMO energy gap, global reactivity parameters, and molecular electrostatic potential of all hit molecules. The promising results obtained from MD simulations and MMPBSA analyses provide compelling evidence for the potential use of these compounds in future drug development efforts for the treatment of leishmaniasis.Communicated by Ramaswamy H. Sarma.

3.
Environ Res ; 231(Pt 1): 115941, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100366

RESUMO

Endocrine-disrupting chemicals (EDCs) are of interest in human physiopathology and have been extensively studied for their effects on the endocrine system. Research also focuses on the environmental impact of EDCs, including pesticides and engineered nanoparticles, and their toxicity to organisms. Green nanofabrication has surfaced as an environmentally conscious and sustainable approach to manufacture antimicrobial agents that can effectively manage phytopathogens. In this study, we examined the current understanding of the pathogenic activities of Azadirachta indica aqueous formulated green synthesized copper oxide nanoparticles (CuONPs) against phytopathogens. The CuONPs were analyzed and studied using a range of analytical and microscopic techniques, such as UV-visible spectrophotometer, Transmission electron microscope (TEM), Scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transformed infrared spectroscopy (FTIR). The XRD spectral results revealed that the particles had a high crystal size, with an average size ranging from 40 to 100 nm. TEM and SEM images were utilized to verify the size and shape of the CuONPs, revealing that they varied between 20 and 80 nm. The existence of potential functional molecules involved in the reduction of the nanoparticles was confirmed by FTIR spectra and UV analysis. Biogenically synthesized CuONPs revealed significantly enhanced antimicrobial activities at 100 mg/L concentration in vitro by the biological method. The synthesized CuONPs at 500 µg/ml had a strong antioxidant activity which was examined through the free radicle scavenging method. Overall results of the green synthesized CuONPs have demonstrated significant synergetic effects in biological activities which can play a crucial impact in plant pathology against numerous phytopathogens.


Assuntos
Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Cobre/toxicidade , Cobre/química , Extratos Vegetais/química , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/química
4.
Chem Biodivers ; 20(3): e202201049, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36810960

RESUMO

The present study involves investigation of Azadiracta Indica flowers with respect to its pharmacognostic properties, phytochemical screening, and its application as anti-oxidant, anti-biofilm, and anti-microbial agent. The Pharmacognostic characteristics were evaluated with respect to moisture content, total ash content, acid, and water-soluble ash content, swelling index, foaming index, and metal content. The macro and micronutrient content of the crude drug was estimated by AAS and Flame photometric methods and it gives the quantitative estimation of minerals, where calcium is present in abundance (88.64 mg/L). Soxhlet extraction was carried out in the increasing order of polarity of the solvent viz Petroleum Ether (PE), Acetone (AC), and Hydroalcohol (20 %) (HA) to extract the bioactive compounds. The characterization of the bioactive compounds of all the three extract have been carried out using gcms and lcms. The presence of 13 major compounds have been identified in PE extract and 8 compounds in AC extract using gcms studies. The HA extract is found to contain polyphenols, flavanoids, and glycosides. The antioxidant activity of the extracts was evaluated by DPPH, FRAP, and Phosphomolybdenum assay. This reveals that HA extract shows good scavenging activity than PE and AC extracts which is well correlated with the bioactive compounds, especially phenols which are present as a major component in the extract. The anti-microbial activity was investigated via Agar well diffusion method for all the extracts. Among all the extracts HA extract shows good antibacterial activity with MIC of 25 µg/mL and AC extract shows good anti-fungal activity with MIC of 25 µg/mL. The antibiofilm assay confirms that the HA extract shows good biofilm inhibition about 94 % among other extracts when tested on human pathogens. The results confirm that the HA extract of A. Indica flowers will be an excellent source of natural anti-oxidant and also antimicrobial agents. This paves the way for its potential uses in herbal product formulation.


Assuntos
Anti-Infecciosos , Antioxidantes , Humanos , Antioxidantes/química , Antifúngicos/farmacologia , Antifúngicos/análise , Extratos Vegetais/química , Antibacterianos/química , Anti-Infecciosos/farmacologia , Compostos Fitoquímicos/química , Flores/química , Biofilmes
5.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364070

RESUMO

Rice is the most important staple food crop feeding more than 50% of the world's population. Rice blast is the most devastating fungal disease, caused by Magnaporthe oryzae (M. oryzae) which is widespread in rice growing fields causing a significant reduction in the yield. The present study was initiated to evaluate the effect of green synthesized silver nanoparticles (AgNPs) on the biochemical constituents of rice plants infected with blast. AgNPs were synthesized by using Azadirachta indica leaf extract and their characterization was performed using UV-visible spectroscopy, particle size analyser (PSA), scanning electron microscope (SEM), and X-ray diffraction (XRD) which confirmed the presence of crystalline, spherical shaped silver nanoparticles with an average size of 58.9 nm. After 45 days of sowing, artificial inoculation of rice blast disease was performed. After the onset of disease symptoms, the plants were treated with AgNPs with different concentrations. Application of nanoparticles elevated the activity of antioxidative enzymes such as superoxide dismutase, catalase, peroxidase, glutathione reductase, and phenylalanine ammonia-lyase compared to control plants, and total phenol and reducing sugars were also elevated. The outcome of this study showed that an increase in all biochemical constituents was recorded for A. indica silver nanoparticles-treated plants. The highest values were recorded in 30 ppm and 50 ppm AgNPs-treated plants, which showed the highest resistance towards the pathogen. Green synthesized AgNPs can be used in future for disease control in susceptible varieties of rice. The synthesized AgNPs using A. indica leaf extract have shown promising antibacterial activity when tested against 14 multidrug-resistant (MDR) bacteria comprising Gram-negative bacteria Escherichia coli (n = 6) and Klebsiella pneumoniae (n = 7) with a good zone of inhibition diameter, tested with the disc diffusion method. Based on these findings, it appears that A. indica AgNPs have promise as an antibacterial agent effective against MDR pathogens.


Assuntos
Azadirachta , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli , Água/farmacologia
6.
Nanomaterials (Basel) ; 12(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36234639

RESUMO

Nanoparticles provide a promising and alternative platform of eco-friendly technologies that encompasses better cost-resilient remedies against one of the most economically harnessing insect pests of cotton. The main goal of this research was to provide a better management strategy through biologically synthesizing (sunlight exposure method) green nanoparticles from leaf extracts of Azadirachta indica and Pongamia pinnata and proving their bioefficacy on H. armigera (2nd instar). Characterization of bio-synthesized silver nanoparticles was carried out using UV-Visible spectroscopy for confirming the formation of nanoparticles, a Particle Size Analyzer (PSA) for determining the size/distribution of particles, and a Scanning Electron Microscope (SEM) for analyzing the surface topology of nanoparticles. The results obtained from PSA analysis showed that A. indica and P. pinnata-based silver nanoparticles had an average diameter of 61.70 nm and 68.80, respectively. Topographical images obtained from SEM proved that most of the green synthesized silver nanoparticles were spherical in shape. A. indica-based silver nanoparticles were found to be comparatively more efficient and have higher insecticidal activity compared to P. pinnata-based nanoparticles. A. indica-based AgNPs recorded larval mortality of 60.00 to 93.33 percent at the concentrations of 500 to 2000 ppm, followed by P. pinnata-based nanoparticles, with 60.00 to 90.00 percent larval mortality. Shelf-life studies revealed that A. indica-based AgNPs had the maximum negative zeta potential of -58.96 mV and could be stored for three months without losing bioefficacy and up to six months with negligible reduction in bioefficacy. Symptoms caused by silver nanoparticles were leakage of body fluids, sluggishness, inactiveness, brittleness, etc.

7.
Antioxidants (Basel) ; 11(9)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36139752

RESUMO

Liver damage severity depends on both the dose and the exposure duration. Oxidative stress may increase the Ochratoxine-A (OTA) hepatotoxicity and many antioxidants may counteract toxic liver function. The present study aims to investigate the hepatoprotective potential of Azadirachta indicaA (A. indica; neem oil) seed oil to reduce acute oxidative disorders and residual OTA toxicity in a 28-day experimental model. The activity of antioxidant and hepatic enzymes, cytokines and the levels of oxidative stress biomarkers -MDA, GSPx, Hydroxiproline, GST, PCC, AGEs, PGC-1, and STIR-1 were analyzed by ELISA. The free radicals ROS and RNS levels were measured by EPR. The protective effects were studied in BALB/C mice treated with A. indica seed oil (170 mg/kg), alone and in combination with OTA (1.25 mg/kg), by gavage daily for 28 days. At the end of the experiment, mice treated with OTA showed changes in liver and antioxidant enzymes, and oxidative stress parameters in the liver and blood. A. indica oil significantly reduced oxidative stress and lipid peroxidation compared to the OTA group. In addition, the hepatic histological evaluation showed significant adipose tissue accumulation in OTA-treated tissues, while treatment with 170 mg/kg A. indica oil showed moderate adipose tissue accumulation.

8.
BMC Complement Med Ther ; 21(1): 114, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836748

RESUMO

BACKGROUND: In Sub-Saharan Africa, herbal therapy continues to be utilized for HIV-1 disease management. However, the therapeutic benefits of these substances remain ambiguous. To date, little is known about the effects of these plant extracts on chronic CD4 + T-cell activation and exhaustion which is partly driven by HIV-1 associated microbial translocation. METHODS: Effects of Azadirachta indica, Momordica foetida and Moringa oleifera ethanol: water mixtures on cell viability were evaluated using the Guava PCA system. Then, an in-vitro cell culture model was developed to mimic CD4+ T cell exposures to antigens following HIV-1 microbial translocation. In this, peripheral blood mononuclear cells (PBMCs) isolated from HIV negative (n = 13), viral load < 1000 copies per mL (n = 10) and viral load > 1000 copies per mL (n = 6) study participants from rural Uganda were treated with Staphylococcus enterotoxin B (SEB). Then, the candidate plant extract (A. indica) was added to test the potential to inhibit corresponding CD4+ T cell activation. Following BD Facs Canto II event acquisition, variations in %CD38, %CD69, Human Leukocyte Antigen -DR (HLA-DR), Programmed cell death protein 1 (PD-1), T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3), interferon gamma (IFN γ) and interleukin 2 (IL-2) CD4 + T cell expression were evaluated. RESULTS: Following exposure to SEB, only A. indica demonstrated a concentration-dependent ability to downregulate the levels of CD4 + T cell activation. At the final concentration of 0.500 µg/mL of A. indica, a significant downregulation of CD4 + CD38 + HLA-DR+ expression was observed in HIV negative (p < 0.0001) and both HIV infected groups (P = 0.0313). This plant extract also significantly lowered SEB induced % CD4+ T cell HLADR, PD-1 and Tim-3 levels. PD-1 and CD69 markers were only significantly downmodulated in only the HIV negative ((p = 0.0001 and p = 0.0078 respectively) and viral load< 1000 copies per ml (p = 0.0078) groups. CONCLUSION: A. indica exhibited the in-vitro immunomodulatory potential to inhibit the continuum of SEB induced CD4+ T-cell activation/ exhaustion without impacting general T-cell specific functions such as cytokine secretion. Additional studies are needed to confirm A. indica as a source of natural products for targeting persistent immune activation and inflammation during ART.


Assuntos
Azadirachta , Linfócitos T CD4-Positivos/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Ativação Linfocitária/efeitos dos fármacos , Extratos Vegetais/farmacologia , Adolescente , Adulto , Técnicas de Cultura de Células , Etanol/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fitoterapia , Uganda , Água/química , Adulto Jovem
9.
Indian J Microbiol ; 59(3): 273-287, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31388204

RESUMO

ABSTRACT: This study was aimed at producing the eco-friendly, safe, and inexpensive silver (Ag) nanoparticles (NPs) and assessing its antimicrobial activity. Fungal pathogens isolated from diseased leaves and fruits of brinjal and bacterial pathogen obtained from a culture collection were used in this study. Green synthesis of AgNPs was performed and optimized using Azadirachta indica leaf extract. The newly synthesized AgNPs (λmax = 437 nm) showed isotropism in size (crystal size/diameter: 21/29 ± 5 nm) and morphology under transmission and scanning electron microscopy and energy dispersive X-ray analysis. The fourier transform infrared spectroscopy data suggested the role of various aliphatic/aromatic moieties and proteins in AgNPs stabilization. The AgNPs reduced the growth of Penicillium sp. maximally by 92% after 6 days. The sensitivity of test fungi towards AgNPs followed the order: Penicillium sp. (92%) > Fusarium sp. (89%) > Aspergillus sp. (69%). Exposure of Ralstonia solanacearum to AgNPs (MIC/MBC 200/400 µg ml-1) displayed damaged cellular envelopes, bulging of cells, and pit formation. The nucleic acid discharge showed a progressive increase from 8 to 34% (r2 = 0.97). The cellular metabolic activity and surface adhering ability of R. solanacearum were completely lost at 400 µgAgNPs ml-1. Results suggested that the AgNPs synthesized in this study had enough anti-pathogenic potential and could inexpensively and safely be used as a promising alternative to agrochemicals. Moreover, the findings observed in this study is likely to serve as an important indicator for the development of effective nano-control agents which in effect would help to manage some deadly phyto-pathogens capable of causing heavy losses to agricultural production systems. GRAPHICAL ABSTRACT: Effective inhibition of phytopathogenic microbes by eco-friendly neem leaf extract mediated silver nanoparticles (AgNPs).

10.
Res Pharm Sci ; 14(3): 190-200, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31160896

RESUMO

Siamese neem (Azadirachta indica A. Juss var. siamensis Valeton) (A. indica) leaf extract, a traditional ayurvedic medicine, has been reported to exhibit antipyretic, antibacterial, antidyslipidemic, and antihyperglycemia effects. This study investigated the mechanism of hypocholesterolemic effect of methanolic extract of Siamese neem flowers in in vitro studies and in Caco-2 cells. Pancreatic cholesterol esterase and 3-hydroxy 3-methylglutaryl-CoA (HMG-CoA) reductase activities were assessed. Cholesterol micelle formation was prepared for in vitro cholesterol physicochemical property analyses, micelle size and solubility, and transport of cholesterol into the Caco-2 cells. The expression of niemann-pick C1 like 1 (NPC1L1), and its major regulator, peroxisome proliferator-activated receptor δ (PPARδ), were determined by western blot and real time polymerase chain reaction, respectively. A. indica flower extract inhibited pancreatic cholesterol esterase activity and increased cholesterol micelles size. Uptake of cholesterol into Caco-2 cells was inhibited by A. indica flower extract in a dose-dependent manner. In addition, A. indica extract inhibited HMG-CoA reductase activity, resulting in low level of intracellular cholesterol accumulation, together with increased cytosolic NPC1L1 protein expression and decreased PPARδ gene expression. In conclusion, A. indica flower extract has cholesterol-lowering effects by inhibiting intestinal cholesterol absorption, interfering micellar cholesterol formation, and attenuating cholesterol synthesis. As such, A. indica flower extract has potential for developing into nutraceutical product for prevention of hypocholesterolemia.

11.
Ecotoxicol Environ Saf ; 129: 320-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27077968

RESUMO

The foliar and biochemical traits of Azadirachta indica A. Juss from fly ash (FA) dumping site in Badarpur thermal power plant (BTPP) New Delhi, India was studied. Three different experimental sites were selected at different distances from the thermal power plant. Ambient suspended particulate matter (SPM) and plant responses such as leaf pigments (chlorophyll a, chlorophyll b, and carotenoids), total chlorophyll, net photosynthetic rate, stomatal index (SI), stomatal conductance (SC), intercellular carbon dioxide concentration [CO2]i, net photosynthetic rate (NPR), nitrogen, nitrate, nitrate reductase activity, proline, protein, reducing sugar and sulphur content were measured. Considerable reduction in pigments (chlorophyll a, chlorophyll b and carotenoids), and total chlorophyll was observed at fly ash dumping site. Fly ash stress revealed the inhibitory effect on Nitrate reductase activity (NRA), Nitrate, soluble protein, and reducing sugar content, whereas stimulatory effect was found for the stomatal index, nitrogen, proline, antioxidants and sulphur content in the leaves. Under fly ash stress, stomatal conductance was low, leading to declining in photosynthetic rate and increase in the internal CO2 concentration of leaf. Single leaf area (SLA), leaf length and leaf width also showed a declining trend from control to the polluted site. Antioxidant enzymes increased in leaves reflecting stress and extenuation of reactive oxygen species (ROS).


Assuntos
Poluentes Atmosféricos/toxicidade , Azadirachta/efeitos dos fármacos , Cinza de Carvão/toxicidade , Carvão Mineral/toxicidade , Centrais Elétricas , Antioxidantes/análise , Azadirachta/fisiologia , Dióxido de Carbono/análise , Carotenoides/análise , Clorofila/análogos & derivados , Clorofila/análise , Clorofila A , Carvão Mineral/análise , Cinza de Carvão/análise , Índia , Nitrogênio/análise , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Prolina/análise , Enxofre/análise
12.
PeerJ ; 3: e1066, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26290780

RESUMO

Neem (Azadirachta indica A. Juss) is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC-600 BC). Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb) of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb) of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM) method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA) of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways.

13.
Adv Pharm Bull ; 4(Suppl 2): 613-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25671197

RESUMO

PURPOSE: Exploration of plant combinations could be an alternative approach for diabetes treatment. The aim of this study is to evaluate the hypoglycemic effect of combination of A. indica and G. procumbens ethanolic extracts in alloxan-induced diabetic rats. METHODS: Powder of A. indica and G. procumbens leaves were macerated with ethanol 70%. Determination of rutin in A. indica and quercetin in G. procumbens were performed by TLC-densitometry. Hyperglycemia in rats was induced by an intraperitoneal injection of alloxan monohydrate at a single dose of 150 mg/kgBW. The rats were treated with 3 dosage variation of combinations for 15 days. Hypoglycemic effect was evaluated by estimating the blood glucose levels and the rats pancreas histological study. RESULTS: A. indica contained 2.90±0.15% of rutin and G. procumbens contained 18.86±0.86% of quercetin. Combination at the ratio of 50mg/kgBW A. indica:112.5mg/kgBW G. procumbens showed the highest hypoglycemic effect: 68.74±4.83% (preprandial) and 73.91±3.18% (postprandial). Histological studies indicated that this combination improved the morphology of the islets of Langerhans and ß cells. It also increased insulin expression and decreased the elevated-glucose concentrations. CONCLUSION: This study showed that combination of both extracts has better hypoglycemic effect than the single treatment of A. indica or G. procumbens. Combination of both extracts was potential to develop as a blood glucose-lowering agent for diabetic patients.

14.
J Basic Clin Pharm ; 2(3): 125-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24826011

RESUMO

Atherothrombotic diseases such as myocardial or cerebral infarction are serious consequences of the thrombus formed xin blood vessels. Thrombolytic agents are used to dissolve the already formed clots in the blood vessels; however, these drugs have certain limitations which cause serious and sometimes fatal consequences. Herbal preparations have been used since ancient times for the treatment of several diseases. The aim of this study was to investigate whether herbal preparations possess thrombolytic activity or not. An in vitro thrombolytic model was used to check the clot lysis effect of four aqueous herbal extracts viz., O. sanctum, C. longa, A. indica, A. occidentale along with Streptokinase as a positive control and water as a negative control. The percentage (%) clot lysis was statistically significant (p<0.0001) when compared with vehicle control. Using an in vitro thrombolytic model, O. sanctum, C. longa, A. indica & A. occidentale showed moderate clot lysis activity (30.01 ± 6.168%, 32.94 ± 3.663%, 27.47 ± 6.943%, 33.79 ± 2.926% respectively) whereas standard streptokinase showed 86.2 ± 10.7 % clot lysis effect. From our study we found that all the herbs showed reasonable % of clot lysis. These herbal extracts possess thrombolytic properties that could lyse blood clots in vitro; however, in vivo clot dissolving properties and active component(s) of these extracts for clot lysis are yet to be discovered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA