Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Front Immunol ; 15: 1428551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086479

RESUMO

Background: Myocardial inflammation and apoptosis induced by cirrhosis are among the primary mechanisms of cirrhotic cardiomyopathy. CD73, a common extracellular nucleotidase also known as 5'-nucleotidase, is associated with the progression of inflammation and immunity in multiple organs. However, the mechanism by which CD73 contributes to myocardial inflammation and apoptosis in cirrhosis remains unclear. Methods: In this study, a cirrhotic cardiomyopathy model in mice was established by bile duct ligation. Myocardial-specific overexpression of CD73 was achieved by tail vein injection of AAV9 (adeno-associated virus)-cTNT-NT5E-mCherry, and cardiac function in mice was assessed using echocardiography. Myocardial inflammation infiltration and apoptosis were evaluated through pathological observation and ELISA assays. The expression of CD73, A2AR, apoptotic markers, and proteins related to the NF-κB pathway in myocardial tissue were measured. Results: In the myocardial tissue of the cirrhotic cardiomyopathy mouse model, the expression of CD73 and A2AR increased. Overexpression of CD73 in the myocardium via AAV9 injection and stimulation of A2AR with CGS 21680 inhibited myocardial inflammation and cardiomyocyte apoptosis induced by cirrhosis. Additionally, overexpression of CD73 suppressed the activation of the NF-κB pathway by upregulating the expression of the adenosine receptor A2A. Conclusion: Our study reveals that the CD73/A2AR signaling axis mitigates myocardial inflammation and apoptosis induced by cirrhosis through negative feedback regulation of the NF-κB pathway.


Assuntos
5'-Nucleotidase , Cardiomiopatias , Cirrose Hepática , Receptor A2A de Adenosina , Transdução de Sinais , Animais , Masculino , Camundongos , 5'-Nucleotidase/metabolismo , Apoptose , Cardiomiopatias/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/imunologia , Modelos Animais de Doenças , Retroalimentação Fisiológica , Proteínas Ligadas por GPI , Cirrose Hepática/imunologia , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Receptor A2A de Adenosina/metabolismo
2.
Prog Brain Res ; 289: 57-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39168582

RESUMO

Multiple Sclerosis (MS) is a long-term autoimmune disorder affecting the central nervous system, marked by inflammation, demyelination, and neurodegeneration. While the exact cause of MS remains unknown, recent research indicates that environmental factors, particularly diet, may influence the disease's risk and progression. As a result, the potential neuroprotective effects of coffee, one of the most popular beverages worldwide, have garnered significant attention due to its rich content of bioactive compounds. This chapter explores the impact of coffee consumption on patients with Multiple Sclerosis, highlighting how coffee compounds like caffeine, polyphenols, and diterpenes can reduce inflammation and oxidative stress while enhancing neural function. It highlights caffeine's effect in regulating adenosine receptors, specifically A1R and A2AR, which play important roles in neuroinflammation and neuroprotection in MS. The dual role of microglial cells, which promote inflammation while also aiding neuroprotection, is also highlighted concerning caffeine's effects. Furthermore, the potential of A2AR as a therapeutic target in MS and the non-A2AR-dependent neuroprotective benefits of coffee. In this chapter we suggest that the consumption of coffee has no harmful effect on an MS patient and to a larger extent on public health, and informs future research directions and clinical practice, ultimately improving outcomes for individuals living with MS.


Assuntos
Cafeína , Café , Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Cafeína/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais
3.
Bull Exp Biol Med ; 177(2): 185-189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39090469

RESUMO

Inflammation plays a crucial role in progression of fibrosis. Epoxyeicosatrienoic acids (EET) have multiple protective effects in different diseases, but their ability to inhibit the development of LPS-induced fibrosis remains unknown. The potential therapeutic effects of 11,12-EET were studied in in vitro model of LPS-induced fibrosis. Mouse embryonic fibroblast cells NIH/3T3 were pre-incubated with 1 µM 11,12-EET and/or a structural analogue and selective EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid before exposing to LPS. The effect of EET was evaluated by the protein and mRNA expression of NF-κB, collagens I and III, and α-smooth muscle actin by Western blotting and quantitative reverse transcription PCR, respectively. LPS provoked inflammation and fibrosis-like changes accompanied by elevated expression of NF-κB and collagens in NIH/3T3 cells. We also studied the effects of 11,12-EET on the A2AR and PI3K/Akt signaling pathways in intact and LPS-treated NIH/3T3 cells. 11,12-EET prevented inflammation and fibrosis-like changes through up-regulation of A2AR and PI3K/Akt signaling pathways. Our findings demonstrate the potential antifibrotic effects of 11,12-EET, which can be natural antagonists of tissue fibrosis.


Assuntos
Ácido 8,11,14-Eicosatrienoico , Fibrose , Lipopolissacarídeos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fibrose/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacologia , NF-kappa B/metabolismo , Actinas/metabolismo , Actinas/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia
4.
Mol Biol Rep ; 51(1): 894, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115571

RESUMO

Adenosine is a neuro- and immunomodulator that functions via G protein-coupled cell surface receptors. Several microbes, including viruses, use the adenosine signaling pathway to escape from host defense systems. Since the recent research developments in its role in health and disease, adenosine and its signaling pathway have attracted attention for targeting to treat many diseases. The therapeutic role of adenosine has been extensively studied for neurological, cardiovascular, and inflammatory disorders and bacterial pathophysiology, but published data on the role of adenosine in viral infections are lacking. Therefore, the purpose of this review article was to explain in detail the therapeutic role of adenosine signaling against viral infections, particularly COVID-19 and HIV. Several therapeutic approaches targeting A2AR-mediated pathways are in development and have shown encouraging results in decreasing the intensity of inflammatory reaction. The hypoxia-adenosinergic mechanism provides protection from inflammation-mediated tissue injury during COVID-19. A2AR expression increased remarkably in CD39 + and CD8 + T cells harvested from HIV patients in comparison to healthy subjects. A combined in vitro treatment performed by blocking PD-1 and CD39/adenosine signaling produced a synergistic outcome in restoring the CD8 + T cells funstion in HIV patients. We suggest that A2AR is an ideal target for pharmacological interventions against viral infections because it reduces inflammation, prevents disease progression, and ultimately improves patient survival.


Assuntos
Síndrome da Imunodeficiência Adquirida , Adenosina , COVID-19 , Evasão da Resposta Imune , Receptor A2A de Adenosina , SARS-CoV-2 , Transdução de Sinais , Humanos , COVID-19/imunologia , COVID-19/virologia , Receptor A2A de Adenosina/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , Adenosina/metabolismo , Síndrome da Imunodeficiência Adquirida/imunologia , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Tratamento Farmacológico da COVID-19 , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Apirase/metabolismo , Apirase/imunologia
5.
Clin Immunol ; 266: 110309, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002795

RESUMO

Psoriasis is a common inflammatory systemic disease characterized by pro-inflammatory macrophages activation (M1 macrophage) infiltrated in the dermal layer. How M1 macrophage contributes to psoriasis remains unknown. In this study, we found that adenosine A2A receptor (A2AR) agonist CGS 21680 HCl alleviated the imiquimod (IMQ) and mouse IL-23 Protein (rmIL-23)-induced psoriasis inflammation through reducing infiltration of M1. Conversely, Adora2a deletion in mice exacerbated psoriasis-like phenotype. Mechanistically, A2AR activation inhibited M1 macrophage activation via the NF-κB-KRT16 pathway to reduce the secretion of CXCL10/11 and inhibit Th1/17 differentiation. Notably, the KRT16 expression was first found in M1 macrophage in our study, not only in keratinocytes (KCs). CXCL10/11 are first identified as primarily derived from macrophages and dendritic cells (DCs) rather than KCs in psoriasis using single cell RNA sequencing (scRNA-Seq). In total, the study emphasizes the importance of M1 as an innate immune cell in pathogenesis of psoriasis.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Ativação de Macrófagos , Macrófagos , Psoríase , Receptor A2A de Adenosina , Animais , Humanos , Camundongos , Imunidade Adaptativa/efeitos dos fármacos , Adenosina/análogos & derivados , Agonistas do Receptor A2 de Adenosina/farmacologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/imunologia , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Modelos Animais de Doenças , Imiquimode/farmacologia , Imunidade Inata/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenetilaminas/farmacologia , Psoríase/imunologia , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/genética
6.
Br J Pharmacol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044481

RESUMO

BACKGROUND AND PURPOSE: Allosterism is a regulatory mechanism for GPCRs that can be attained by ligand-binding or protein-protein interactions with another GPCR. We have studied the influence of the dimer interface on the allosteric properties of the A2A receptor and CB2 receptor heteromer. EXPERIMENTAL APPROACH: We have evaluated cAMP production, phosphorylation of signal-regulated kinases (pERK1/2), label-free dynamic mass redistribution, ß-arrestin 2 recruitment and bimolecular fluorescence complementation assays in the absence and presence of synthetic peptides that disrupt the formation of the heteromer. Molecular dynamic simulations provided converging evidence that the heteromeric interface influences the allosteric properties of the A2AR-CB2R heteromer. KEY RESULTS: Apo A2AR blocks agonist-induced signalling of CB2R. The disruptive peptides, with the amino acid sequence of transmembrane (TM) 6 of A2AR or CB2R, facilitate CB2R activation, suggesting that A2AR allosterically prevents the outward movement of TM 6 of CB2R for G protein binding. Significantly, binding of the selective antagonist SCH 58261 to A2AR also facilitated agonist-induced activation of CB2R. CONCLUSIONS AND IMPLICATIONS: It is proposed that the A2AR-CB2R heteromer contains distinct dimerization interfaces that govern its functional properties. The molecular interface between protomers of the A2AR-CB2R heteromer interconverted from TM 6 for apo or agonist-bound A2AR, blocking CB2R activation, to mainly the TM 1/7 interface for antagonist-bound A2AR, facilitating the independent opening of intracellular cavities for G protein binding. These novel results shed light on a different type of allosteric mechanism and extend the repertoire of GPCR heteromer signalling.

7.
Fitoterapia ; 177: 106116, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38977254

RESUMO

Androgenetic alopecia (AGA) is the leading cause of hair loss in adults. Its pathogenesis remains unclear, but studies have shown that the androgen-mediated 5α-reductase-AR receptor pathway and the Wnt/ß-catenin signaling pathway play significant roles. Camellia oleifera is an oil plant, and its fruits have been documented in folklore as having a hair cleansing effect and preventing hair loss. In this study, we used UPLC-Q-TOF-MS/MS to identify the structure of the substances contained in the polyphenols of Camellia oleifera seed shell. These polyphenols are mainly used for shampooing and anti-hair loss purposes. Next, we used molecular docking technology to dock 41 polyphenols and steroidal 5 alpha reductase 2 (SRD5A2). We found that the docking scores and docking sites of 1,3,6-tri-O-galloylglucose (TGG) and finasteride were similar. We constructed a mouse model of DHT-induced AGA to evaluate the effects of Camellia oleifera seed shell polyphenols (CSSP) and TGG in vivo. Treatment with CSSP and TGG alleviated alopecia symptoms and reduced DHT levels. Additionally, CSSP and TGG were able to reduce androgen levels by inhibiting the SRD5A2-AR receptor signaling pathway. Furthermore, by regulating the secretion of growth factors and activating the Wnt/ß-catenin signaling pathway, CSSP and TGG were able to extend the duration of hair growth. In conclusion, our study showed that CSSP and TGG can improve AGA in C57BL/6 J mice and reduce the effect of androgen on hair follicle through the two signaling pathways mentioned above. This provides new insights into the material basis and mechanism of the treatment of AGA by CSSP.


Assuntos
Alopecia , Camellia , Simulação de Acoplamento Molecular , Polifenóis , Sementes , Via de Sinalização Wnt , Alopecia/tratamento farmacológico , Camellia/química , Animais , Camundongos , Polifenóis/farmacologia , Polifenóis/isolamento & purificação , Sementes/química , Via de Sinalização Wnt/efeitos dos fármacos , Masculino , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Estrutura Molecular , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/isolamento & purificação
8.
Int Immunopharmacol ; 137: 112447, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38909497

RESUMO

CD8+ tumor-infiltrating lymphocytes (TILs) exhaustion is a major barrier to effective tumor control in diffuse large B-cell lymphoma (DLBCL) and may consist of heterogeneous populations with different functional states. We profiled the CD8+TILs exhaustion heterogeneity and explored its clinical significance as well as the underlying mechanism through single-cell RNA sequencing (n = 7), bulk RNA sequencing (n = 3300), immunohistochemistry (n = 116), and reverse transcription-quantitative polymerase chain reaction (n = 95), and somatic mutation data (n = 48). Our results demonstrated that exhausted CD8+TILs in DLBCL were composed of progenitor and terminal states characterized by CCL5 and TUBA1B, respectively. High terminally exhausted CD8+TILs indicated an immunosuppressive tumor microenvironment, activated B-cell-like subtype, inferior prognosis, and poor response to immune checkpoint blockade therapy in DLBCL. Our study further demonstrated that the CD39/A2AR-related signaling may be the potential pathway that promoted the transition of progenitor toward terminally exhausted CD8+TILs in DLBCL. Furthermore, the CD39/A2AR-related pathway in DLBCL may be regulated by BATF and STAT3 in exhausted CD8+TILs, and MYD88 mutation in tumor cells. Our study highlights CD8+TILs exhaustion heterogeneity and its possible regulatory mechanism provides a novel prognostic indicator and can facilitate the optimization of individualized immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Linfócitos do Interstício Tumoral , Linfoma Difuso de Grandes Células B , Microambiente Tumoral , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos T CD8-Positivos/imunologia , Microambiente Tumoral/imunologia , Mutação , Prognóstico , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Feminino
9.
Front Immunol ; 15: 1362904, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855110

RESUMO

Introduction: Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment of hematological malignancies. However, its efficacy in solid tumors is limited by the immunosuppressive tumor microenvironment that compromises CAR T cell antitumor function in clinical settings. To overcome this challenge, researchers have investigated the potential of inhibiting specific immune checkpoint receptors, including A2aR (Adenosine A2 Receptor) and Tim3 (T cell immunoglobulin and mucin domain-containing protein 3), to enhance CAR T cell function. In this study, we evaluated the impact of genetic targeting of Tim3 and A2a receptors on the antitumor function of human mesothelin-specific CAR T cells (MSLN-CAR) in vitro and in vivo. Methods: Second-generation anti-mesothelin CAR T cells were produced using standard cellular and molecular techniques. A2aR-knockdown and/or Tim3- knockdown anti-mesothelin-CAR T cells were generated using shRNA-mediated gene silencing. The antitumor function of CAR T cells was evaluated by measuring cytokine production, proliferation, and cytotoxicity in vitro through coculture with cervical cancer cells (HeLa cell line). To evaluate in vivo antitumor efficacy of manufactured CAR T cells, tumor growth and mouse survival were monitored in a human cervical cancer xenograft model. Results: In vitro experiments demonstrated that knockdown of A2aR alone or in combination with Tim3 significantly improved CAR T cell proliferation, cytokine production, and cytotoxicity in presence of tumor cells in an antigen-specific manner. Furthermore, in the humanized xenograft model, both double knockdown CAR T cells and control CAR T cells could effectively control tumor growth. However, single knockdown CAR T cells were associated with reduced survival in mice. Conclusion: These findings highlight the potential of concomitant genetic targeting of Tim3 and A2a receptors to augment the efficacy of CAR T cell therapy in solid tumors. Nevertheless, caution should be exercised in light of our observation of decreased survival in mice treated with single knockdown MSLN-CAR T cells, emphasizing the need for careful efficacy considerations.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Imunoterapia Adotiva , Mesotelina , Receptores de Antígenos Quiméricos , Neoplasias do Colo do Útero , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Feminino , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/genética , Camundongos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/imunologia , Camundongos SCID
10.
Artigo em Inglês | MEDLINE | ID: mdl-38842700

RESUMO

RATIONALE: Evidence of the effects of chronic caffeine (CAFF)-containing beverages, alone or in combination with agomelatine (AGO) or quetiapine (QUET), on electroencephalography (EEG), which is relevant to cognition, epileptogenesis, and ovarian function, remains lacking. Estrogenic, adenosinergic, and melatonergic signaling is possibly linked to the dynamics of these substances. OBJECTIVES: The brain and ovarian effects of CAFF were compared with those of AGO + CAFF and QUET + CAFF. The implications of estrogenic, adenosinergic, and melatonergic signaling and the brain-ovarian crosstalk were investigated. METHODS: Adult female rats were administered AGO (10 mg/kg), QUET (10 mg/kg), CAFF, AGO + CAFF, or QUET + CAFF, once daily for 8 weeks. EEG, estrous cycle progression, and microstructure of the brain and ovaries were examined. Brain and ovarian 17ß-estradiol (E2), antimullerian hormone (AMH), estrogen receptor alpha (E2Rα), adenosine receptor 2A (A2AR), and melatonin receptor 2 (MT2R) were assessed. RESULTS: CAFF, alone or combined with AGO or QUET, reduced the maximum EEG peak, which was positively linked to ovarian E2Rα, negatively correlated to cortical neurodegeneration and ovarian MT2R, and associated with cystic ovaries. A large corpus luteum emerged with AGO + CAFF and QUET + CAFF, antagonizing the CAFF-mediated increased ovarian A2AR and reduced cortical E2Rα. AGO + CAFF provoked TTP delay and increased ovarian AMH, while QUET + CAFF slowed source EEG frequency to δ range and increased brain E2. CONCLUSIONS: CAFF treatment triggered brain and ovarian derangements partially antagonized with concurrent AGO or QUET administration but with no overt affection of estrus cycle progression. Estrogenic, adenosinergic, and melatonergic signaling and brain-ovarian crosstalk may explain these effects.

11.
Cancer Immunol Immunother ; 73(6): 108, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642131

RESUMO

Tumor-associated macrophages (TAMs) are abundant in tumors and interact with tumor cells, leading to the formation of an immunosuppressive microenvironment and tumor progression. Although many studies have explored the mechanisms underlying TAM polarization and its immunosuppressive functions, understanding of its progression remains limited. TAMs promote tumor progression by secreting cytokines, which subsequently recruit immunosuppressive cells to suppress the antitumor immunity. In this study, we established an in vitro model of macrophage and non-small cell lung cancer (NSCLC) cell co-culture to explore the mechanisms of cell-cell crosstalk. We observed that in NSCLC, the C-X-C motif chemokine ligand 5 (CXCL5) was upregulated in macrophages because of the stimulation of A2AR by adenosine. Adenosine was catalyzed by CD39 and CD73 in macrophages and tumor cells, respectively. Nuclear factor kappa B (NFκB) mediated the A2AR stimulation of CXCL5 upregulation in macrophages. Additionally, CXCL5 stimulated NETosis in neutrophils. Neutrophil extracellular traps (NETs)-treated CD8+ T cells exhibited upregulation of exhaustion-related and cytosolic DNA sensing pathways and downregulation of effector-related genes. However, A2AR inhibition significantly downregulated CXCL5 expression and reduced neutrophil infiltration, consequently alleviating CD8+ T cell dysfunction. Our findings suggest a complex interaction between tumor and immune cells and its potential as therapeutic target.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Quimiocina CXCL5 , Neoplasias Pulmonares , Macrófagos , Humanos , Adenosina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linfócitos T CD8-Positivos , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Microambiente Tumoral , Regulação para Cima , Receptor A2A de Adenosina/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo
12.
Mol Neurobiol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619745

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is widely used animal model of multiple sclerosis (MS). The disease is characterized by demyelination and neurodegeneration triggered by infiltrated autoimmune cells and their interaction with astrocytes and microglia. While neuroinflammation is most common in the spinal cord and brainstem, it is less prevalent in the cerebellum, where it predisposes to rapid disease progression. Because the induction and progression of EAE are tightly regulated by adenosinergic signaling, in the present study we compared the adenosine-producing and -degrading enzymes, ecto-5'-nucleotidase (eN/CD73) and adenosine deaminase (ADA), as well as the expression levels of adenosine receptors A1R and A2AR subtypes in nearby areas around the fourth cerebral ventricle-the pontine tegmentum, the choroid plexus (CP), and the cerebellum. Significant differences in histopathological findings were observed between pontine tegmentum and cerebellum on the same horizontal section level. Reactive astrogliosis and massive infiltration of CD4 + cells and macrophages in CP and pontine tegmentum resulted in local demyelination. In cerebellum, there was no evidence of infiltrates, microgliosis and neuroinflammation at the same sectional level. In addition, Bergman glia showed no signs of reactive gliosis. As for adenosinergic signaling, significant upregulation of eN/CD73 was observed in all areas studied, but in association with different adenosine receptor subtypes. In CP and pons, overexpression of eN/CD73 was coupled with induction of A2AR, whereas in cerebellum, a modest increase in eN/CD73 in resident Bergman glia was accompanied by a strong induction of A1R in the same type of astrocytes. Thus, the presence of specialized astroglia and intrinsic differences in adenosinergic signaling may play a critical role in the differential regional susceptibility to EAE inflammation.

13.
Cancer Immunol Immunother ; 73(4): 72, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430405

RESUMO

BACKGROUND: Inhibition of the adenosine 2A receptor (A2AR) diminishes the immunosuppressive effects of adenosine and may complement immune-targeting drugs. This phase 2 study evaluated the A2AR antagonist AZD4635 in combination with durvalumab or oleclumab in patients with metastatic castration-resistant prostate cancer. METHODS: Patients with histologically/cytologically confirmed disease progressing within 6 months on ≥ 2 therapy lines were randomly assigned to either Module 1 (AZD4635 + durvalumab) or Module 2 (AZD4635 + oleclumab). Primary endpoints were objective response rate per RECIST v1.1 and prostate-specific antigen (PSA) response rate. Secondary endpoints included radiological progression-free survival (rPFS), overall survival, safety, and pharmacokinetics. RESULTS: Fifty-nine patients were treated (Module 1, n = 29; Module 2, n = 30). Median number of prior therapies was 4. One confirmed complete response by RECIST (Module 1) and 2 confirmed PSA responses (1 per module) were observed. The most frequent adverse events (AEs) possibly related to AZD4635 were nausea (37.9%), fatigue (20.7%), and decreased appetite (17.2%) in Module 1; nausea (50%), fatigue (30%), and vomiting (23.3%) in Module 2. No dose-limiting toxicities or treatment-related serious AEs were observed. In Module 1, AZD4635 geometric mean trough concentration was 124.9 ng/mL (geometric CV% 69.84; n = 22); exposures were similar in Module 2. In Modules 1 and 2, median (95% CI) rPFS was 2.3 (1.6 -3.8) and 1.5 (1.3- 4.0) months, respectively. Median PFS was 1.7 versus 2.3 months for patients with high versus low blood-based adenosine signature. CONCLUSION: In this heavily pretreated population, AZD4635 with durvalumab or oleclumab demonstrated minimal antitumor activity with a manageable safety profile. CLINICAL TRIAL: gov identifier: NCT04089553.


Assuntos
Anticorpos Monoclonais , Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Antígeno Prostático Específico , Antineoplásicos/uso terapêutico , Fadiga , Adenosina , Náusea/tratamento farmacológico
14.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38543183

RESUMO

The present study provides evidence showing that adenosine (Ado) increases the expression of programmed death ligand 1 (PD-L1) in cervical cancer (CeCa) cells by interacting with A2AR/A2BR and that TGF-ß1 acts in an autocrine manner to induce PD-L1 expression, enhancing the immunosuppressive effects of CeCa cells on activated T lymphocytes (ATLs) and CD8+ cytotoxic T lymphocytes (CTLs) specific for antigenic peptides derived from E6 and E7 proteins of HPV-16. Interestingly, the addition of the antagonists ZM241385 and MRS1754, which are specific for A2AR and A2BR, respectively, or SB-505124, which is a selective TGF-ß1 receptor inhibitor, to CeCa cell cultures significantly inhibited PD-L1 expression. In addition, supernatants from CeCa cells that were treated with Ado (CeCa-Ado Sup) increased the expression of PD-1, TGF-ß1, and IL-10 and decreased the expression of IFN-γ in ATLs. Interestingly, the addition of an anti-TGF-ß neutralizing antibody strongly reversed the effect of CeCa-Ado Sup on PD-1 expression in ATLs. These results strongly suggest the presence of a feedback mechanism that involves the adenosinergic pathway, the production of TGF-ß1, and the upregulation of PD-L1 expression in CeCa cells that suppresses the antitumor response of CTLs. The findings of this study suggest that this pathway may be clinically important and may be a therapeutic target.

15.
Sci China Life Sci ; 67(5): 986-995, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38319473

RESUMO

The adenosine subfamily G protein-coupled receptors A2AR and A2BR have been identified as promising cancer immunotherapy candidates. One of the A2AR/A2BR dual antagonists, AB928, has progressed to a phase II clinical trial to treat rectal cancer. However, the precise mechanism underlying its dual-antagonistic properties remains elusive. Herein, we report crystal structures of the A2AR complexed with AB928 and a selective A2AR antagonist 2-118. The structures revealed a common binding mode on A2AR, wherein the ligands established extensive interactions with residues from the orthosteric and secondary pockets. In contrast, the cAMP assay and A2AR and A2BR molecular dynamics simulations indicated that the ligands adopted distinct binding modes on A2BR. Detailed analysis of their chemical structures suggested that AB928 readily adapted to the A2BR pocket, while 2-118 did not due to intrinsic differences. This disparity potentially accounted for the difference in inhibitory efficacy between A2BR and A2AR. This study serves as a valuable structural template for the future development of selective or dual inhibitors targeting A2AR/A2BR for cancer therapy.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Simulação de Dinâmica Molecular , Receptor A2A de Adenosina , Humanos , Antagonistas do Receptor A2 de Adenosina/química , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , Sítios de Ligação , Ligantes , Cristalografia por Raios X , Ligação Proteica , Receptor A2B de Adenosina/metabolismo , Receptor A2B de Adenosina/química
16.
Sci Rep ; 14(1): 4896, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418830

RESUMO

This work prepared and investigated the impact of carboxymethyl chitosan nanoparticles (MC-NPs) on the proliferative capability of keloid fibroblasts (KFBs) while analyzing the mechanistic roles of miR-214 and adenosine A2A receptor (A2AR) in fibroblasts within hypertrophic scars. MC-NPs were synthesized through ion cross-linking, were characterized using transmission electron microscopy (TEM) and laser particle size scattering. The influence of MC-NPs on the proliferation capacity of KFBs was assessed using the MTT method. Changes in the expression levels of miR-214 and A2AR in KFBs, normal skin fibroblasts (NFBs), hypertrophic scar tissue, and normal skin tissue were analyzed. KFBs were categorized into anti-miR-214, anti-miR-NC, miR-214 mimics, miR-NC, si-A2AR, si-con, anti-miR-214+ si-con, and anti-miR-214+ si-A2AR groups. Bioinformatics target prediction was conducted to explore the interaction between miR-214 and A2AR. Real-time quantitative PCR and immunoblotting (WB) were employed to detect the expression levels of miR-214, A2AR, apoptotic protein Bax, and TGF-ß in different cells. Cell counting kit-8 (CCK8) and flow cytometry were employed to assess cell proliferation activity and apoptosis. The results indicated that MC-NPs exhibited spherical particles with an average diameter of 236.47 ± 4.98 nm. The cell OD value in the MC-NPs group was lower than that in KFBs (P < 0.05). The mRNA levels of miR-214 in KFBs and hypertrophic scar tissue were lower than those in NFBs and normal tissue (P < 0.001), while the mRNA and protein levels of A2AR were significantly elevated (P < 0.05). Compared to the control group and anti-miR-NC, the anti-miR-214 group showed significantly increased cell OD values and Bcl-2 protein expression (P < 0.001), decreased levels of apoptotic gene Bax protein, TGF-ß gene mRNA, and protein expression (P < 0.001). Continuous complementary binding sites were identified between miR-214 and A2AR. Compared to the control group, the si-A2AR group exhibited a significant decrease in A2AR gene mRNA and protein expression levels (P < 0.001), reduced cell viability (P < 0.001), increased apoptosis rate (P < 0.001), and a significant elevation in TGF-ß protein expression (P < 0.001). miR-214 targetedly regulated the expression of A2AR, inducing changes in TGF-ß content, promoting the proliferation of keloid fibroblasts, and inhibiting cell apoptosis.


Assuntos
Quitosana , Cicatriz Hipertrófica , Queloide , MicroRNAs , Humanos , Queloide/patologia , Cicatriz Hipertrófica/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Antagomirs/metabolismo , Quitosana/farmacologia , Quitosana/metabolismo , Proliferação de Células , Fator de Crescimento Transformador beta/metabolismo , Apoptose , MicroRNAs/metabolismo , Fibroblastos/metabolismo , RNA Mensageiro/metabolismo
17.
Am J Physiol Gastrointest Liver Physiol ; 326(4): G385-G397, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252682

RESUMO

A2AR-disrupted mice is characterized by severe systemic and visceral adipose tissue (VAT) inflammation. Increasing adenosine cyclase (AC), cAMP, and protein kinase A (PKA) formation through A2AR activation suppress systemic/VAT inflammation in obese mice. This study explores the effects of 4 wk A2AR agonist PSB0777 treatment on the VAT-driven pathogenic signals in hepatic and cardiac dysfunction of nonalcoholic steatohepatitis (NASH) obese mice. Among NASH mice with cardiac dysfunction, simultaneous decrease in the A2AR, AC, cAMP, and PKA levels were observed in VAT, liver, and heart. PSB0777 treatment significantly restores AC, cAMP, PKA, and hormone-sensitive lipase (HSL) levels, decreased SREBP-1/FASN, MCP-1, and CD68 levels, reduces infiltrated CD11b+ F4/80+ cells and adipogenesis in VAT of NASH + PSB0777 mice. The changes in VAT were accompanied by the suppression of hepatic and cardiac lipogenic/inflammatory/injury/apoptotic/fibrotic markers, the normalization of cardiac contractile [sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2)] marker, and cardiac dysfunction. The in vitro approach revealed that conditioned media (CM) of VAT of NASH mice (CMnash) trigger palmitic acid (PA)-like lipotoxic (lipogenic/inflammatory/apoptotic/fibrotic) effects in AML-12 and H9c2 cell systems. Significantly, A2AR agonist pretreatment-related normalization of A2AR-AC-cAMP-PKA levels was associated with the attenuation of CMnash-related upregulation of lipotoxic markers and the normalization of lipolytic (AML-12 cells) or contractile (H9C2 cells) marker/contraction. The in vivo and in vitro experiments revealed that A2AR agonists are potential agent to inhibit the effects of VAT inflammation-driven pathogenic signals on the hepatic and cardiac lipogenesis, inflammation, injury, apoptosis, fibrosis, hypocontractility, and subsequently improve hepatic and cardiac dysfunction in NASH mice.NEW & NOTEWORTHY Protective role of adenosine A2AR receptor (A2AR) and AC-cAMP-PKA signaling against nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) possibly via its actions on adipocytes is well known in the past decade. Thus, this study evaluates pharmacological activities of A2AR agonist PSB0777, which has already demonstrated to treat NASH. In this study, the inhibition of visceral adipose tissue-derived pathogenic signals by activation of adenosine A2AR with A2AR agonist PSB0777 improves the hepatic and cardiac dysfunction of high-fat diet (HFD)-induced NASH mice.


Assuntos
Cardiopatias , Leucemia Mieloide Aguda , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Gordura Intra-Abdominal/patologia , Adenosina/metabolismo , Camundongos Obesos , Fígado/metabolismo , Inflamação/metabolismo , Fibrose , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos Endogâmicos C57BL
18.
Physiol Behav ; 273: 114386, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884109

RESUMO

Repetitive motor behaviors are associated with several neurodevelopmental disorders including autism spectrum disorder. Non-invasive environmental interventions that can ameliorate repetitive behavior and be introduced in early development could benefit many. In Experiment 1, we characterized the development of repetitive circling in mice reared in standard and enriched environments. Environmental enrichment was associated with reduced repetitive behavior. In Experiment 2, two weekly injections of an A2A adenosine receptor agonist reduced repetitive behavior in mice fed a ketogenic diet. Together, these two approaches modified the environment and reduced repetitive behavior with potential implications for increased functioning of the indirect basal ganglia pathway.


Assuntos
Transtorno do Espectro Autista , Dieta Cetogênica , Camundongos , Animais , Transtorno do Espectro Autista/metabolismo , Comportamento Estereotipado/fisiologia , Modelos Animais de Doenças
19.
mBio ; 15(1): e0257123, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38108639

RESUMO

IMPORTANCE: Staphylococcus aureus is one of the leading causes of antimicrobial-resistant infections whose success as a pathogen is facilitated by its massive array of immune evasion tactics, including intracellular survival within critical immune cells such as neutrophils, the immune system's first line of defense. In this study, we describe a novel pathway by which intracellular S. aureus can suppress the antimicrobial capabilities of human neutrophils by using the anti-inflammatory adenosine receptor, adora2a (A2aR). We show that signaling through A2aR suppresses the pentose phosphate pathway, a metabolic pathway used to fuel the antimicrobial NADPH oxidase complex that generates reactive oxygen species (ROS). As such, neutrophils show enhanced ROS production and reduced intracellular S. aureus when treated with an A2aR inhibitor. Taken together, we identify A2aR as a potential therapeutic target for combatting intracellular S. aureus infection.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Humanos , Neutrófilos , Staphylococcus aureus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Via de Pentose Fosfato , Interações Hospedeiro-Patógeno , Anti-Infecciosos/metabolismo , Receptores Purinérgicos P1/metabolismo
20.
Immunology ; 171(4): 566-582, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38158796

RESUMO

The spleen is essential for lymphocyte proliferation, which is associated to sepsis prognosis. Adenosine 2A receptor (A2AR) blocking promotes lymphocyte proliferation in sepsis, however the mechanism is uncertain. Our sepsis cecum ligation perforation model showed that blocking A2AR increased survival and CD4+ cell numbers in a spleen-dependent mechanism. The sequencing of the transcriptome of the spleen indicated alterations in the expression of genes involved in the control of lymphocyte proliferation by inhibiting A2AR, including a reduction in the expression of PD-L1. Flow cytometry analysis of PD-L1 expression intensity in splenic cell subpopulations revealed that the Treg cell subpopulation was the strongest PD-L1-expressing cell population, and Treg PD-L1 expression decreased after blocking A2AR. In vitro activation of A2AR was able to upregulate PD-L1 expression of Treg and boost Treg capacity to limit lymphocyte proliferation, while blockage of PD-L1 partly reduced A2AR-activated Treg's ability to inhibit lymphocyte proliferation. In addition, blocking CREB phosphorylation significantly inhibited A2AR-induced PD-L1 expression. According to the findings of our research, inhibiting A2AR improves the prognosis of sepsis by lowering the level of PD-L1 expression by Treg in the spleen and reducing the inhibition of lymphocyte proliferation.


Assuntos
Sepse , Baço , Humanos , Baço/metabolismo , Linfócitos T Reguladores/metabolismo , Antagonistas de Receptores Purinérgicos P1 , Antígeno B7-H1/metabolismo , Adenosina , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA