Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol (Mosk) ; 58(2): 295-304, 2024.
Artigo em Russo | MEDLINE | ID: mdl-39355886

RESUMO

Multiple exogenous or endogenous factors alter gene expression patterns by different mechanisms that are poorly understood. We used RNA-Seq analysis in order to study changes in gene expression in melanoma cells that are capable of vasculogenic mimicry that is inhibited upon the action of an inhibitor of vasculogenic mimicry. Here, we show that the drug induces a strong upregulation of 50 genes that control the cell cycle and microtubule cytoskeleton coupled with a strong downregulation of 50 genes that control different cellular metabolic processes. We found that both groups of genes are simultaneously regulated by multiple sets of transcription factors. We conclude that one way for coordinated regulation of large groups of genes is regulation simultaneously by multiple transcription factors.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma , Humanos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Melanoma/tratamento farmacológico , Linhagem Celular Tumoral , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/biossíntese , Ciclo Celular/efeitos dos fármacos
2.
Transl Cancer Res ; 13(4): 1954-1968, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38737677

RESUMO

Background: Cancer has the highest mortality rate among gynecological cancers and poses a serious threat to women's lives. However, the treatment options for ovarian cancer are still limited, and exploring effective targeted biomarkers is particularly important for predicting and treating ovarian cancer. Therefore, it is necessary to explore the molecular mechanisms of the occurrence and development of ovarian cancer. Methods: This investigation encompassed the analysis of gene expression profiles, measurement of transcription levels of potential target genes in peripheral blood samples from ovarian cancer patients and characterization of the ovarian cancer-related secretory protein sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B). Through bioinformatics analysis, potential target genes were identified, and their association with overall survival (OS) and progression-free survival (PFS) in ovarian cancer patients was assessed utilizing relevant databases. Subsequently, differences in target gene expression in ovarian cancer tissue samples were validated through protein blotting and quantitative real-time PCR (qRT-qPCR). Cell proliferation assays using the cell count kit-8 (CCK-8) method, as well as transwell chamber assay and pre coated matrix gel chamber assay were employed to elucidate the role of SMPDL3B in ovarian cancer cell migration and invasion. Results: This study revealed a substantial upregulation of SMPDL3B in the serum of ovarian cancer patients, correlating with an unfavorable prognosis. High SMPDL3B expression was linked not only to increased proliferation of ovarian cancer cells, but also enhanced migration and invasion. Remarkably, the knockdown the human alkaline ceramidase 2 (ACER2) gene in cancer cells with heightened SMPDL3B expression significantly inhibited cell proliferation, migration, and invasion induced by SMPDL3B activation (P<0.05), highlighting the functional interplay between ACER2 and SMPDL3B in ovarian cancer. Conclusions: In summary, this study proposes SMPDL3B as a prognostic marker for ovarian cancer, with implications for potential therapeutic intervention targeting the ACER2-SMPDL3B axis.

3.
J Adv Res ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37865189

RESUMO

INTRODUCTION: Epigenetic alterations play crucial roles in diffuse large B-cell lymphoma (DLBCL). Disturbances in lipid metabolism contribute to tumor progression. However, studies in epigenetics, especially its critical regulator YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), on lipid metabolism regulation in DLBCL are unidentified. OBJECTIVES: Elucidate the prognostic value and biological functions of YTHDF2 in DLBCL and illuminate the underlying epigenetic regulation mechanism of lipid metabolism by YTHDF2 in DLBCL development. METHODS: The expression and clinical value of YTHDF2 in DLBCL were performed in public databases and clinical specimens. The biological functions of YTHDF2 in DLBCL were determined in vivo and in vitro through overexpression and CRISPR/Cas9-mediated knockout of YTHDF2. RNA sequencing, lipidomics, methylated RNA immunoprecipitation sequencing, RNA immunoprecipitation-qPCR, luciferase activity assay, and RNA stability experiments were used to explore the potential mechanism by which YTHDF2 contributed to DLBCL progression. RESULTS: YTHDF2 was highly expressed in DLBCL, and related to poor prognosis. YTHDF2 overexpression exerted a tumor-promoting effect in DLBCL, and knockdown of YTHDF2 restricted DLBCL cell proliferation, arrested cell cycle in the G2/M phase, facilitated apoptosis, and enhanced drug sensitivity to ibrutinib and venetoclax. In addition, YTHDF2 knockout drastically suppressed tumor growth in xenograft DLBCL models. Furthermore, a regulatory role of YTHDF2 in ceramide metabolism was identified in DLBCL cells. Exogenous ceramide effectively inhibited the malignant phenotype of DLBCL cells in vitro. The binding of YTHDF2 to m6A sites on alkaline ceramidase 2 (ACER2) mRNA promoted its stability and expression. Enhanced ACER2 expression hydrolyzed ceramides, disrupting the balance between ceramide and sphingosine-1-phosphate (S1P), activating the ERK and PI3K/AKT pathways, and leading to DLBCL tumorigenesis. CONCLUSION: This study demonstrated that YTHDF2 contributed to the progression of DLBCL by regulating ACER2-mediated ceramide metabolism in an m6A-dependent manner, providing novel insights into targeted therapies.

4.
Front Genet ; 14: 1148437, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936425

RESUMO

Background: ACER2 is a critical gene regulating cancer cell growth and migration, whereas the immunological role of ACER2 in the tumor microenvironment (TME) is scarcely reported. Thus, we lucubrate the potential performance of ACER2 in bladder cancer (BLCA). Methods: We initially compared ACER2 expressions in BLCA with normal urothelium tissues based on data gathered from the Cancer Genome Atlas (TCGA) and our Xiangya cohort. Subsequently, we systematically explored correlations between ACER2 with immunomodulators, anti-cancer immune cycles, tumor-infiltrating immune cells, immune checkpoints and the T-cell inflamed score (TIS) to further confirm its immunological role in BLCA TME. In addition, we performed ROC analysis to illustrate the accuracy of ACER2 in predicting BLCA molecular subtypes and explored the response to several cancer-related treatments. Finally, we validated results in an immunotherapy cohort and Xiangya cohort to ensure the stability of our study. Results: Compared with normal urinary epithelium, ACER2 was significantly overexpressed in several cell lines and the tumor tissue of BLCA. ACER2 can contribute to the formation of non-inflamed BLCA TME supported by its negative correlations with immunomodulators, anti-cancer immune cycles, tumor-infiltrating immune cells, immune checkpoints and the TIS. Moreover, BLCA patients with high ACER2 expression were inclined to the luminal subtype, which were characterized by insensitivity to neoadjuvant chemotherapy, chemotherapy and radiotherapy but not to immunotherapy. Results in the IMvigor210 and Xiangya cohort were consistent. Conclusion: ACER2 could accurately predict the TME and clinical outcomes for BLCA. It would be served as a promising target for precision treatment in the future.

5.
Mol Biotechnol ; 65(8): 1306-1317, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36513872

RESUMO

BACKGROUND: As the prognosis of early gastric cancer (EGC) is significantly better than that of advanced gastric cancer (AGC), the development of biomarkers to monitor the progression of chronic atrophic gastritis (CAG) to gastric cancer (GC) is essential. METHODS: Stomach tissue miRNA and mRNA sequences from patients with chronic non-atrophic gastritis (CNAG), CAG, precancerous lesions of gastric cancer (PLGC), and GC were analyzed. A publicly available GC-related miRNA microarray dataset was obtained from the Gene Expression Omnibus database. Spearman's correlation and differential gene analyses, and clinical validation were used to identify novel miRNAs correlating with CAG progression to GC. miRNA targets were predicted using weighted gene co-expression analysis and databases. A dual-luciferase reporter assay was performed to check for direct interaction between miR-196a-5p and ACER2. The CCK-8 and wound healing assays, and flow cytometry were performed to evaluate cell proliferation, migration, and apoptosis. RESULTS: miR-196a-5p was correlated with CAG progression to GC. Overexpression of miR-196a-5p promoted GC cell proliferation and migration and inhibited apoptosis, whereas suppression of miR-196a-5p exerted the opposite effect. Based on the prediction and luciferase assays, ACER2 was identified as the target of miR-196a-5p. ACER2 was downregulated in GC cell lines. Knockdown of ACER2 increased GC cell proliferation rates and migration ability and inhibited apoptosis, while ACER2 overexpression led to the opposite effect. CONCLUSIONS: miR-196a-5p correlated with CAG progression to GC and induced malignant biological behaviors of GC cells by targeting ACER2, providing a novel monitoring biomarker and target for GC prevention.


Assuntos
Gastrite , MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores , Proliferação de Células/genética , Linhagem Celular Tumoral , Gastrite/genética , Regulação Neoplásica da Expressão Gênica , Ceramidase Alcalina/genética , Ceramidase Alcalina/metabolismo
6.
Acta Pharm Sin B ; 12(4): 1899-1912, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847503

RESUMO

Atherosclerosis is a chronic multifactorial cardiovascular disease. Western diets have been reported to affect atherosclerosis through regulating adipose function. In high cholesterol diet-fed ApoE -/- mice, adipocyte HIF-1α deficiency or direct inhibition of HIF-1α by the selective pharmacological HIF-1α inhibitor PX-478 alleviates high cholesterol diet-induced atherosclerosis by reducing adipose ceramide generation, which lowers cholesterol levels and reduces inflammatory responses, resulting in improved dyslipidemia and atherogenesis. Smpd3, the gene encoding neutral sphingomyelinase, is identified as a new target gene directly regulated by HIF-1α that is involved in ceramide generation. Injection of lentivirus-SMPD3 in epididymal adipose tissue reverses the decrease in ceramides in adipocytes and eliminates the improvements on atherosclerosis in the adipocyte HIF-1α-deficient mice. Therefore, HIF-1α inhibition may constitute a novel approach to slow atherosclerotic progression.

7.
FASEB J ; 34(11): 15252-15268, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32959379

RESUMO

Sphingolipids have been implicated in mammalian placental development and function, but their regulation in the placenta remains unclear. Herein we report that alkaline ceramidase 2 (ACER2) plays a key role in sustaining the integrity of the placental vasculature by regulating the homeostasis of sphingolipids in mice. The mouse alkaline ceramidase 2 gene (Acer2) is highly expressed in the placenta between embryonic day (E) 9.5 and E12.5. Acer2 deficiency in both the mother and fetus decreases the placental levels of sphingolipids, including sphingoid bases (sphingosine and dihydrosphingosine) and sphingoid base-1-phosphates (sphingosine-1-phosphate and dihydrosphingosine-1-phosphate) and results in the in utero death of ≈50% of embryos at E12.5 whereas Acer2 deficiency in either the mother or fetus has no such effects. Acer2 deficiency causes hemorrhages from the maternal vasculature in the junctional and/or labyrinthine zones in E12.5 placentas. Moreover, hemorrhagic but not non-hemorrhagic Acer2-deficient placentas exhibit an expansion of parietal trophoblast giant cells with a concomitant decrease in the area of the fetal blood vessel network in the labyrinthine zone, suggesting that Acer2 deficiency results in embryonic lethality due to the atrophy of the fetal blood vessel network in the placenta. Taken together, these results suggest that ACER2 sustains the integrity of the placental vasculature by controlling the homeostasis of sphingolipids in mice.


Assuntos
Ceramidase Alcalina/fisiologia , Hemorragia/patologia , Lisofosfolipídeos/metabolismo , Placenta/patologia , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Doenças Vasculares/patologia , Animais , Feminino , Hemorragia/etiologia , Hemorragia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placenta/metabolismo , Gravidez , Esfingosina/metabolismo , Doenças Vasculares/etiologia , Doenças Vasculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA