Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.666
Filtrar
1.
Ophthalmol Sci ; 5(1): 100593, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39318709

RESUMO

Purpose: Spectral-domain OCT angiography (SD-OCTA) scans were tested in an algorithm developed for use with swept-source OCT angiography (SS-OCTA) scans to determine if SD-OCTA scans yielded similar results for the detection and measurement of persistent choroidal hypertransmission defects (hyperTDs). Design: Retrospective study. Participants: Forty pairs of scans from 32 patients with late-stage nonexudative age-related macular degeneration (AMD). Methods: Patients underwent both SD-OCTA and SS-OCTA imaging at the same visit using the 6 × 6 mm OCTA scan patterns. Using a semiautomatic algorithm that helped with outlining the hyperTDs, 2 graders independently validated persistent hyperTDs, which are defined as having a greatest linear dimension ≥250 µm on the en face images generated using a slab extending from 64 to 400 µm beneath Bruch's membrane. The number of lesions and square root (sqrt) total area of the hyperTDs were obtained from the algorithm using each imaging method. Main Outcome Measures: The mean sqrt area measurements and the number of hyperTDs were compared. Results: The number of lesions and sqrt total area of the hyperTDs were highly concordant between the 2 instruments (rc = 0.969 and rc = 0.999, respectively). The mean number of hyperTDs was 4.3 ± 3.1 for SD-OCTA scans and 4.5 ± 3.3 for SS-OCTA scans (P = 0.06). The mean sqrt total area measurements were 1.16 ± 0.64 mm for the SD-OCTA scans and 1.17 ± 0.65 mm for the SS-OCTA scans (P < 0.001). Because of the small standard error of the differences, the mean difference between the scans was statistically significant but not clinically significant. Conclusions: Spectral-domain OCTA scans provide similar results to SS-OCTA scans when used to obtain the number and area measurements of persistent hyperTDs through a semiautomated algorithm previously developed for SS-OCTA. This facilitates the detection of atrophy with a more widely available scan pattern and the longitudinal study of early to late-stage AMD. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39243285

RESUMO

OBJECTIVE: To evaluate changes in choroidal thickness in presbyopes, when reading with regular glasses versus choroidal control glasses, in patients with or without Age-Related Macular Degeneration (AMD). METHODS: This was a pilot study on short-term axial length (AL) in 33 eyes of 24 presbyopic patients aged 60 to 80 years, assigned to two age-matched groups, with or without AMD. About them, changes in choroidal thickness were evaluated with ocular biometry through indirect measurements of axial length at baseline, after 20' of reading with conventional lenses, and after another 20' of reading with peripheral hyperopic defocus glasses. The differences in axial length between the three different times were analyzed. RESULTS: In presbyopes without AMD there was a significant axial length shortening of -13.44 microns in the first conventional reading period, which was reversed by 90% with hyperopic defocus lenses, recovering + 12.11 microns by axial lengthening (choroidal thinning, p = 0.03). In patients with AMD, axial shortening was significantly greater than controls, -23.86 microns with conventional lenses (p < 0.001) and they, also increased their axial length with defocus, although this response was smaller in proportion (+ 15.52 microns). CONCLUSION: Reading with positive lenses produces myopic defocus and choroidal thickening in presbyopes with and without AMD but was significantly greater in the latter. Glasses with Choroidal Control Technology reduced thickening during reading. KEY MESSAGES: What is known • Presbyopia spectacles for near produce myopic defocus and choroidal thickening. What is new • There are differences in choroidal thickening during reading between normal subjects and those with age related macular degeneration. • Spectacles with Defocus Choroidal Control Technology reduce choroidal thickening during reading in presbyopes.

3.
Environ Sci Pollut Res Int ; 31(43): 55490-55506, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39231842

RESUMO

Stockpiles containing sulfide minerals are subject to oxidation reactions when exposed to atmospheric conditions, which can result in the formation of acid mine drainage (AMD). Reactive waste rock has limited re-use potential due to the contamination risk associated with the generated drainage water. The re-use of reactive waste rock could lead to a significant reduction in the volume of waste rock as it mitigates the environmental impact of mine waste deposition. Acid mine drainage generation rate depends on sulfide weathering kinetics which are controlled by many parameters such as the mineralogy and the particle size. Fine fractions of waste rock have higher specific surface areas and degree of liberation of sulfides, resulting in greater reactivity than the coarse fractions. The objective of this research was therefore to evaluate the potential of re-use by controlling particle size using the sieving method. Two different potentially acid-generating waste rocks were divided into six fractions and subjected to both static and kinetic tests. Prediction of the geochemical behavior using static test did not consider the liberation of the minerals, and the long-term prediction was therefore overestimated. Results of the kinetic columns showed there was less oxidation of the sulfide minerals in the coarse fractions than in the fine fractions. Additionally, the distribution of sulfidic minerals and neutralizing minerals with particle size is influencing the potential of the re-use of the reactive waste rock.


Assuntos
Mineração , Tamanho da Partícula , Minerais/química , Cinética
4.
Cells ; 13(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39273005

RESUMO

Mitochondrial malfunction, excessive production of reactive oxygen species (ROS), deficient autophagy/mitophagy, and chronic inflammation are hallmarks of age-related macular degeneration (AMD). Metformin has been shown to activate mitophagy, alleviate inflammation, and lower the odds of developing AMD. Here, we explored the ability of metformin to activate mitophagy and alleviate inflammation in retinal pigment epithelium (RPE) cells. Human ARPE-19 cells were pre-treated with metformin for 1 h prior to exposure to antimycin A (10 µM), which induced mitochondrial damage. Cell viability, ROS production, and inflammatory cytokine production were measured, while autophagy/mitophagy proteins were studied using Western blotting and immunocytochemistry. Metformin pre-treatment reduced the levels of proinflammatory cytokines IL-6 and IL-8 to 42% and 65% compared to ARPE-19 cells exposed to antimycin A alone. Metformin reduced the accumulation of the autophagy substrate SQSTM1/p62 (43.9%) and the levels of LC3 I and II (51.6% and 48.6%, respectively) after antimycin A exposure. Metformin also increased the colocalization of LC3 with TOM20 1.5-fold, suggesting active mitophagy. Antimycin A exposure increased the production of mitochondrial ROS (226%), which was reduced by the metformin pre-treatment (84.5%). Collectively, metformin showed anti-inflammatory and antioxidative potential with mitophagy induction in human RPE cells suffering from mitochondrial damage.


Assuntos
Inflamação , Metformina , Mitocôndrias , Mitofagia , Espécies Reativas de Oxigênio , Epitélio Pigmentado da Retina , Metformina/farmacologia , Humanos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Mitofagia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Inflamação/patologia , Inflamação/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Antimicina A/farmacologia , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Degeneração Macular/patologia , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo
5.
J Clin Med ; 13(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39274255

RESUMO

The aim of this review is to present and discuss the use of optical coherence tomography angiography (OCTA) in age-related macular degeneration (AMD). OCTA is a non-invasive imaging procedure that gives a detailed indirect view of physiological and pathological vessels in the retina and choroid membrane. Compared with dye-based imaging, OCTA provides a segmented presentation of the individual vascular layers and plexuses, thus enabling previously unattainable differentiation and classification of pathological vascular changes within or underneath the retina. In particular, OCTA facilitates early detection of exudative macular neovascularizations (MNV) so that treatment with anti-VEGF medication can be initiated. Moreover, in the context of both screening and therapy monitoring, it is hoped that OCTA can provide more detailed data to enable greater personalization of treatment and follow-up. The image quality of OCTA is, however, susceptible to artifacts, and validation of the results by studies is required. Recent developments have shown constant improvement both in the algorithms for image calculation and avoidance of artifacts and in image quality, so the scope of OCTA will certainly expand with time.

6.
Clin Ophthalmol ; 18: 2583-2591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39281979

RESUMO

Purpose: Age-related macular degeneration (AMD) presents a multifaceted etiopathogenesis involving ischemic, inflammatory, and genetic components. This study investigates the correlation between ocular hemodynamics, scleral rigidity (SR), and plasma endothelin-1 (ET1) levels in treatment-naive patients with asymmetrical AMD. Patients and Methods: This study included 20 treatment-naive patients (12 females and 8 males) with an average age of 76.4 ± 3.7 years, who presented with AMD with neovascular membrane formation (nAMD) in one eye, and intermediate grade 2 AMD (iAMD) in the other eye. The control group consisted of 20 healthy subjects (13 females and 7 males) with a mean age of 74.7 ± 3.9 years. All patients and healthy controls underwent color Doppler imaging (i) of the ophthalmic artery (OA), short posterior ciliary arteries (SPCAs), and central retinal artery (CRA); Plasma ET-1 levels were measured for all patients and healthy subjects. Corneal biomechanics were assessed using an Ocular Response Analyzer and two indices were obtained: corneal hysteresis (CH) and corneal resistance factor (CRF). Results: Results showed reduced blood flow velocities and increased resistance indices in AMD eyes, particularly affecting the short posterior ciliary arteries. According to mechanical theory, ARMD eyes exhibited elevated scleral rigidity and corneal resistance factor compared to controls, with a notable rise in SR in neovascular AMD (nAMD) eyes. As per the chronic subacute inflammation theory, plasma ET-1 levels were significantly higher in AMD patients, correlating with abnormal SPCAs blood flow and increased resistance indices. Conclusion: Findings suggest a multifactorial etiology of AMD involving an increase of ET-1 plasma levels with biomechanic damages of corneal and scleral tissue in nAMD.

7.
Front Cell Neurosci ; 18: 1442079, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39285939

RESUMO

Age-related macular degeneration (AMD) is a major cause of blindness that affects people over 60. While aging is the prominent factor in AMD, studies have reported a higher prevalence of AMD in women compared to age-matched men. Higher levels of the innate immune response's effector proteins complement factor B and factor I were also found in females compared to males in intermediate AMD. However, the mechanisms underlying these differences remain elusive. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a key regulator of mitochondrial biogenesis and metabolic pathways. Previously, we showed that Pgc-1α repression and high-fat diet induce drastic AMD-like phenotypes in mice. Our recent data revealed that Pgc-1α repression alone can also induce retinal pigment epithelium (RPE) and retinal dysfunction in mice, and its inhibition in vitro results in lipid droplet accumulation in human RPE. Whether sex is a contributing factor in these phenotypes remains to be elucidated. Using electroretinography, we demonstrate that sex could influence RPE function during aging independent of Pgc-1α in wild-type (WT) mice. We further show that Pgc-1α repression exacerbates RPE and retinal dysfunction in females compared to aged-match male mice. Gene expression analyses revealed that Pgc-1α differentially regulates genes related to antioxidant enzymes and mitochondrial dynamics in males and females. RPE flat mounts immunolabeled with TOMM20 and DRP1 indicated a sex-dependent role for Pgc-1α in regulating mitochondrial fission. Analyses of mitochondrial network morphology suggested sex-dependent effects of Pgc-1α repression on mitochondrial dynamics. Together, our study demonstrates that inhibition of Pgc-1α induces a sex-dependent decline in RPE and retinal function in mice. These observations on the sex-dependent regulation of RPE and retinal function could offer novel insights into targeted therapeutic approaches for age-related RPE and retinal degeneration.

8.
Environ Toxicol ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39268877

RESUMO

Age-related macular degeneration (AMD), a leading cause of blindness, is characterized by mitochondrial dysfunction of retinal pigment epithelium (RPE) cells. EUK-134 is a mimetic of SOD2 and catalase, widely used for its antioxidant properties in models of light-induced damage or oxidative stress. However, its effects on the retina are not yet clear. Here, we investigated the capability of EUK-134 in averting AMD using sodium iodate (NaIO3)-induced Balb/c mouse and ARPE-19 cells (adult RPE cell line). In vivo, EUK-134 effectively antagonized NaIO3-induced retinal deformation and prevented outer and inner nuclear layer thinning. In addition, it was found that the EUK-134-treated group significantly down-regulated the expression of cleaved caspase-3 compared with the group treated with NaIO3 alone. Our results found that EUK-134 notably improved cell viability by preventing mitochondrial ROS accumulation-induced membrane potential depolarization-mediated apoptosis in NaIO3-inducted ARPE-19 cells. Furthermore, we found that EUK-134 could inhibit p-ERK, p-p38, p-JNK, p-p53, Bax, cleaved caspase-9, cleaved caspase-3, and cleaved PARP by increasing Bcl-2 protein expression. Additionally, we employed MAPK pathway inhibitors by SB203580 (a p38 inhibitor), U0126 (an ERK inhibitor), and SP600125 (a JNK inhibitor) to corroborate the aforementioned observation. The results support that EUK-134 may effectively prevent mitochondrial oxidative stress-mediated retinal apoptosis in NaIO3-induced retinopathy.

9.
Ophthalmol Ther ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271642

RESUMO

INTRODUCTION: Photobiomodulation (PBM) has become a promising approach for slowing the progression of early and intermediate dry age-related macular degeneration (dAMD) to advanced AMD. This technique uses light to penetrate tissues and activate molecules that influence biochemical reactions and cellular metabolism. This preliminary analysis is aimed at assessing the safety, tolerability, and short-term effectiveness of the EYE-LIGHT®PBM treatment device in patients with dAMD. METHODS: The EYE-LIGHT® device employs two wavelengths, 590 nm (yellow) and 630 nm (red), in both continuous and pulsed modes. Patients over 50 years of age with a diagnosis of dAMD in any AREDS (Age-Related Eye Disease Study) category were randomly assigned to either the treatment group or the sham group. The treatment plan consisted of an initial cycle of two sessions per week for 4 weeks. Safety, tolerability, and compliance outcomes, along with functional and anatomical outcomes, were assessed at the end of the fourth month. RESULTS: This preliminary analysis included data from 76 patients (152 eyes). All patients were fully compliant with treatment sessions, and only one fifth of patients treated with PBM reported mild ocular adverse events, highlighting exceptional results in terms of tolerability and adherence. Changes in best-corrected visual acuity (BCVA) from baseline to month 4 differed significantly between the sham and PBM-treated groups, favoring the latter, with a higher proportion achieving a gain of five or more letters post-treatment (8.9% vs. 20.3%, respectively; p = 0.043). No significant differences in central subfield thickness (CST) were observed between the two groups over the 4-month period. The study also found a statistically significant disparity in mean drusen volume changes from baseline to month 4 between the groups in favor of patients treated with PBM (p = 0.013). CONCLUSION: These preliminary results indicate that PBM treatment using the EYE-LIGHT® system is safe and well tolerated among patients with dAMD. Furthermore, both functional and anatomical data support the treatment's short-term efficacy. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT06046118.

10.
Adv Exp Med Biol ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39259423

RESUMO

Age-related macular degeneration (AMD) is one of the leading causes of visual loss in older patients. No effective drug is available for this pathology, but studies about therapy with stem cells replacing the damaged retinal cells with retinal pigment epithelium (RPE) were described. The documentation of AMD progression and the response to stem cell therapy have been performed by optical coherence tomography, microperimetry, and other diagnostic technologies.This chapter reports a clinical review of the most important clinical trials and protocols regarding the use of stem cells in AMD.

11.
J Hazard Mater ; 478: 135478, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39137550

RESUMO

The microbially-mediated reduction processes have potential for the bioremediation of acid mine drainage (AMD), which represents a worldwide environment problem. However, we know little about the microbial interactions in anaerobic AMD sediments. Here we utilized genome-resolved metagenomics to uncover the nature of cooperative and competitive metabolic interactions in 90 AMD sediments across Southern China. Our analyses recovered well-represented prokaryotic communities through the reconstruction of 2625 population genomes. Functional analyses of these genomes revealed extensive metabolic handoffs which occurred more frequently in nitrogen metabolism than in sulfur metabolism, as well as stable functional redundancy across sediments resulting from populations with low genomic relatedness. Genome-scale metabolic modeling showed that metabolic competition promoted microbial co-occurrence relationships, suggesting that community assembly was dominated by habitat filtering in sediments. Notably, communities colonizing more extreme conditions tended to be highly competitive, which was typically accompanied with increased network complexity but decreased stability of the microbiome. Finally, our results demonstrated that heterotrophic Thermoplasmatota associated with ferric iron and sulfate reduction contributed most to the elevated levels of competition. Our study shed light on the cooperative and competitive metabolisms of microbiome in the hazardous AMD sediments, which may provide preliminary clues for the AMD bioremediation in the future.


Assuntos
Biodegradação Ambiental , Sedimentos Geológicos , Microbiota , Mineração , Sedimentos Geológicos/microbiologia , Bactérias/metabolismo , Bactérias/genética , China , Metagenômica , Ácidos/metabolismo , Interações Microbianas
12.
Am J Clin Nutr ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39181206

RESUMO

BACKGROUND: Transitions between different stages of age-related macular degeneration (AMD) are not completely captured by traditional survival models with an end point of advanced AMD. OBJECTIVES: This study aimed to explore the transitions from early and intermediate AMD to higher nonadvanced and advanced stages and determine the contributions of nutritional factors to these outcomes. METHODS: Eyes with early or intermediate AMD at baseline, classified according to the Age-Related Eye Disease Study severity score, were included in this prospective longitudinal analysis. Foods and the biologically active nutrients associated with AMD [green leafy vegetables, fish, lutein/zeaxanthin (LZ), and ω-3 (n-3) fatty acids] were determined by a baseline food frequency questionnaire. Progression was defined as eyes transitioning to higher severity groups including nonadvanced and advanced stages over 5 y, confirmed at 2 consecutive visits. Cox proportional hazards models for foods and nutrients were analyzed adjusting for demographics, lifestyle, baseline macular status, a family history of AMD, caloric intake, and genetic risk. RESULTS: Among 2697 eyes, 616 (23%) progressed to higher severity groups. In the food group model, higher intake of green leafy vegetables reduced incidence of transitions {hazard ratio [HR] (≥2.7 servings/wk compared with none): 0.75; 95% confidence interval [CI]: 0.59, 0.96; P = 0.02}. Higher fish intake was also protective [HR (greater than two 4-ounce servings/wk compared with <2): 0.79; 95% CI: 0.65, 0.95; P = 0.01]. In the nutrient model, LZ intake was protective [HR (≥2 mg/d compared with <2): 0.76; 95% CI: 0.60, 0.96; P = 0.02]. Higher intake of ω-3 fatty acids also tended to be beneficial [HR (≥0.7 g/wk compared with <0.7): 0.85; 95% CI: 0.71, 1.01; P = 0.06]. CONCLUSIONS: Increased consumption of green leafy vegetables, LZ, and fish nutritionally rich in ω-3 fatty acids during the initial stages of AMD may reduce rates of progression to higher severity of this debilitating disease. This trial was registered at clinicaltrials.gov as NCT00594672.

13.
Surv Ophthalmol ; 69(6): 851-869, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39097172

RESUMO

We provide an overview of the expanding literature on the role of cytokines and immune mediators in pathophysiology of age-related macular degeneration (AMD). Although many immunological mediators have been linked to AMD pathophysiology, the broader mechanistic picture remains unclear with substantial variations in the levels of evidence supporting these mediators. Therefore, we reviewed the literature considering the varying levels of supporting evidence. A Medical Subject Headings (MeSH) term-based literature research was conducted in September, 2023, consisting of the MeSH terms "cytokine" and "Age-related macular degeneration" connected by the operator "AND". After screening the publications by title, abstract, and full text, a total of 146 publications were included. The proinflammatory cytokines IL-1ß (especially in basic research studies), IL-6, IL-8, IL-18, TNF-α, and MCP-1 are the most extensively characterised cytokines/chemokines, highlighting the role of local inflammasome activation and altered macrophage function in the AMD pathophysiology. Among the antiinflammatory mediators IL-4, IL-10, and TGF-ß were found to be the most extensively characterised, with IL-4 driving and IL-10 and TGF-ß suppressing disease progression. Despite the extensive literature on this topic, a profound understanding of AMD pathophysiology has not yet been achieved. Therefore, further studies are needed to identify potential therapeutic targets, followed by clinical studies.


Assuntos
Citocinas , Degeneração Macular , Humanos , Degeneração Macular/imunologia , Degeneração Macular/fisiopatologia , Citocinas/metabolismo
14.
Pharmacol Res ; 208: 107380, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39216841

RESUMO

Age-related macular degeneration (AMD) is a common retinal pathology characterized by degeneration of macula's retinal pigment epithelium (RPE) and photoreceptors, visual impairment, or loss. Compared to wet AMD, dry AMD is more common, but lacks cures; therefore, identification of new potential therapeutic targets and treatments is urgent. Increased oxidative stress and declining antioxidant, detoxifying systems contribute to the pathophysiologic mechanisms underlying AMD. The present work shows that the Embryonic Lethal Abnormal Vision-Like 1/Human antigen R (ELAVL1/HuR) and the Vascular Endothelial Growth Factor (VEGF) protein levels are higher in the RPE of both dry and wet AMD patients compared to healthy subjects. Moreover, increased HuR protein levels are detected in the retina, and especially in the RPE layer, of a dry AMD model, the nuclear factor erythroid 2-related factor 2 (Nrf2) / peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) double knock-out mouse. The crosstalk among Nrf2, HuR and VEGF has been also studied in ARPE-19 cells in basal and stressful conditions related to the AMD context (i.e., oxidative stress, autophagy impairment, Nrf2 deficit), offering new evidence of the mutual influence between Nrf2 and HuR, of the dependence of VEGF expression and secretion by these two factors, and of the increased susceptibility of cells to stressful conditions in Nrf2- or HuR-impaired contexts. Overall, this study shows evidence of the interplay among Nrf2, HuR and VEGF, essential factors for RPE homeostasis, and represents an additional piece in the understanding of the complex pathophysiologic mechanisms underlying AMD.


Assuntos
Proteína Semelhante a ELAV 1 , Fator 2 Relacionado a NF-E2 , Epitélio Pigmentado da Retina , Fator A de Crescimento do Endotélio Vascular , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Atrofia Geográfica/metabolismo , Degeneração Macular/metabolismo , Degeneração Macular/fisiopatologia , Degeneração Macular/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Degeneração Macular Exsudativa/metabolismo , Degeneração Macular Exsudativa/genética
15.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125877

RESUMO

Philadelphia-chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is characterized by reciprocal chromosomal translocation between chromosome 9 and 22, leading to the expression of constitutively active oncogenic BCR-ABL1 fusion protein. CXC chemokine receptor 4 (CXCR4) is essential for the survival of BCR-ABL1-transformed mouse pre-B cells, as the deletion of CXCR4 induces death in these cells. To investigate whether CXCR4 inhibition also effectively blocks BCR-ABL1-transformed cell growth in vitro, in this study, we explored an array of peptide-based inhibitors of CXCR4. The inhibitors were optimized derivatives of EPI-X4, an endogenous peptide antagonist of CXCR4. We observed that among all the candidates, EPI-X4 JM#170 (referred to as JM#170) effectively induced cell death in BCR-ABL1-transformed mouse B cells but had little effect on untransformed wild-type B cells. Importantly, AMD3100, a small molecule inhibitor of CXCR4, did not show this effect. Treatment with JM#170 induced transient JNK phosphorylation in BCR-ABL1-transformed cells, which in turn activated the intrinsic apoptotic pathway by inducing cJun, Bim, and Bax gene expressions. Combinatorial treatment of JM#170 with ABL1 kinase inhibitor Imatinib exerted a stronger killing effect on BCR-ABL1-transformed cells even at a lower dose of Imatinib. Surprisingly, JM#170 actively killed Sup-B15 cells, a BCR-ABL1+ human ALL cell line, but had no effect on the BCR-ABL1- 697 cell line. This suggests that the inhibitory effect of JM#170 is specific for BCR-ABL1+ ALL. Taken together, JM#170 emerges as a potent novel drug against Ph+ ALL.


Assuntos
Proteínas de Fusão bcr-abl , Receptores CXCR4 , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/metabolismo , Animais , Camundongos , Humanos , Peptídeos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Linhagem Celular Tumoral , Cromossomo Filadélfia/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia
16.
Front Mol Biosci ; 11: 1341727, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39193219

RESUMO

Cardiovascular diseases are a major global health concern, responsible for a significant number of deaths each year, often linked to cardiac arrhythmias resulting from dysfunction in ion channels. Hereditary Long QT Syndrome (LQTS) is a condition characterized by a prolonged QT interval on ECG, increasing the risk of sudden cardiac death. The most common type of LQTS, LQT2, is caused by mutations in the hERG gene, affecting a potassium ion channel. The majority of these mutations disrupt the channel's trafficking to the cell membrane, leading to intracellular retention. Specific high-affinity hERG blockers (e.g., E-4031) can rescue this mutant phenotype, but the exact mechanism is unknown. This study used accelerated molecular dynamics simulations to investigate how these mutations affect the hERG channel's structure, folding, endoplasmic reticulum (ER) retention, and trafficking. We reveal that these mutations induce structural changes in the channel, narrowing its central pore and altering the conformation of the intracellular domains. These changes expose internalization signals that contribute to ER retention and degradation of the mutant hERG channels. Moreover, the study found that the trafficking rescue drug E-4031 can inhibit these structural changes, potentially rescuing the mutant channels. This research offers valuable insights into the structural issues responsible for the degradation of rescuable transmembrane trafficking mutants. Understanding the defective trafficking structure of the hERG channel could help identify binding sites for small molecules capable of restoring proper folding and facilitating channel trafficking. This knowledge has the potential to lead to mechanism-based therapies that address the condition at the cellular level, which may prove more effective than treating clinical symptoms, ultimately offering hope for individuals with hereditary Long QT Syndrome.

17.
Front Mol Biosci ; 11: 1403844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39193222

RESUMO

Introduction: Multifactorial Eye disorders are a significant public health concern and have a huge impact on quality of life. The pathophysiological mechanisms underlying these eye disorders were not completely understood since functional and low-throughput biological tests were used. By identifying biomarkers linked to eye disorders, metabolomics enables early identification, tracking of the course of the disease, and personalized treatment. Methods: The electronic databases of PubMed, Scopus, PsycINFO, and Web of Science were searched for research related to Age-Related macular degeneration (AMD), glaucoma, myopia, and diabetic retinopathy (DR). The search was conducted in August 2023. The number of cases and controls, the study's design, the analytical methods used, and the results of the metabolomics analysis were all extracted. Using the QUADOMICS tool, the quality of the studies included was evaluated, and metabolic pathways were examined for distinct metabolic profiles. We used MetaboAnalyst 5.0 to undertake pathway analysis of differential metabolites. Results: Metabolomics studies included in this review consisted of 36 human studies (5 Age-related macular degeneration, 10 Glaucoma, 13 Diabetic retinopathy, and 8 Myopia). The most networked metabolites in AMD include glycine and adenosine monophosphate, while methionine, lysine, alanine, glyoxylic acid, and cysteine were identified in glaucoma. Furthermore, in myopia, glycerol, glutamic acid, pyruvic acid, glycine, cysteine, and oxoglutaric acid constituted significant metabolites, while glycerol, glutamic acid, lysine, citric acid, alanine, and serotonin are highly networked metabolites in cases of diabetic retinopathy. The common top metabolic pathways significantly enriched and associated with AMD, glaucoma, DR, and myopia were arginine and proline metabolism, methionine metabolism, glycine and serine metabolism, urea cycle metabolism, and purine metabolism. Conclusion: This review recapitulates potential metabolic biomarkers, networks and pathways in AMD, glaucoma, DR, and myopia, providing new clues to elucidate disease mechanisms and therapeutic targets. The emergence of advanced metabolomics techniques has significantly enhanced the capability of metabolic profiling and provides novel perspectives on the metabolism and underlying pathogenesis of these multifactorial eye conditions. The advancement of metabolomics is anticipated to foster a deeper comprehension of disease etiology, facilitate the identification of novel therapeutic targets, and usher in an era of personalized medicine in eye research.

18.
Ophthalmol Sci ; 4(6): 100543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139544

RESUMO

Purpose: We introduce a deep learning-based biomarker proposal system for the purpose of accelerating biomarker discovery in age-related macular degeneration (AMD). Design: Retrospective analysis of a large data set of retinal OCT images. Participants: A total of 3456 adults aged between 51 and 102 years whose OCT images were collected under the PINNACLE project. Methods: Our system proposes candidates for novel AMD imaging biomarkers in OCT. It works by first training a neural network using self-supervised contrastive learning to discover, without any clinical annotations, features relating to both known and unknown AMD biomarkers present in 46 496 retinal OCT images. To interpret the learned biomarkers, we partition the images into 30 subsets, termed clusters, that contain similar features. We conduct 2 parallel 1.5-hour semistructured interviews with 2 independent teams of retinal specialists to assign descriptions in clinical language to each cluster. Descriptions of clusters achieving consensus can potentially inform new biomarker candidates. Main Outcome Measures: We checked if each cluster showed clear features comprehensible to retinal specialists, if they related to AMD, and how many described established biomarkers used in grading systems as opposed to recently proposed or potentially new biomarkers. We also compared their prognostic value for late-stage wet and dry AMD against an established clinical grading system and a demographic baseline model. Results: Overall, both teams independently identified clearly distinct characteristics in 27 of 30 clusters, of which 23 were related to AMD. Seven were recognized as known biomarkers used in established grading systems, and 16 depicted biomarker combinations or subtypes that are either not yet used in grading systems, were only recently proposed, or were unknown. Clusters separated incomplete from complete retinal atrophy, intraretinal from subretinal fluid, and thick from thin choroids, and, in simulation, outperformed clinically used grading systems in prognostic value. Conclusions: Using self-supervised deep learning, we were able to automatically propose AMD biomarkers going beyond the set used in clinically established grading systems. Without any clinical annotations, contrastive learning discovered subtle differences between fine-grained biomarkers. Ultimately, we envision that equipping clinicians with discovery-oriented deep learning tools can accelerate the discovery of novel prognostic biomarkers. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

19.
Sci Rep ; 14(1): 18862, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143171

RESUMO

Cell adhesion to the extracellular matrix and its natural outcome of cell spreading, along with the maintenance of barrier activity, are essential behaviors of epithelial cells, including retinal pigment epithelium (RPE). Disruptions in these characteristics can result in severe vision-threatening diseases such as diabetic macular edema and age-related macular degeneration. However, the precise mechanisms underlying how RPE cells regulate their barrier integrity and cell spreading are not fully understood. This study aims to elucidate the relative importance of upper glycolytic components in governing these cellular behaviors of RPE cells. Electric Cell-Substrate Impedance Sensing (ECIS) technology was utilized to assess in real-time the effects of targeting various upper glycolytic enzymes on RPE barrier function and cell spreading by measuring cell resistance and capacitance, respectively. Specific inhibitors used included WZB117 for Glut1 inhibition, Lonidamine for Hexokinase inhibition, PFK158 for PFKFB3/PFK axis inhibition, and TDZD-8 for Aldolase inhibition. Additionally, the viability of RPE cells was evaluated using a lactate dehydrogenase (LDH) cytotoxicity assay. The most significant decrease in electrical resistance and increase in capacitance of RPE cells were observed due to dose-dependent inhibition of Glut1 using WZB117, as well as Aldolase inhibition with TDZD-8. LDH level analysis at 24-72 h post-treatment with WZB117 (1 and 10 µM) or TDZD-8 (1 µM) showed no significant difference compared to the control, indicating that the disruption of RPE functionality was not attributed to cell death. Lastly, inhibition of other upper glycolytic components, including PFKFB3/PFK with PFK158 or Hexokinase with Lonidamine, did not significantly affect RPE cell behavior. This study provides insights into the varied roles of upper glycolytic components in regulating the functionality of RPE cells. Specifically, it highlights the critical roles of Glut1 and Aldolase in preserving barrier integrity and promoting RPE cell adhesion and spreading. Such understanding will guide the development of safe interventions to treat RPE cell dysfunction in various retinal disorders.


Assuntos
Glicólise , Epitélio Pigmentado da Retina , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Glicólise/efeitos dos fármacos , Humanos , Transportador de Glucose Tipo 1/metabolismo , Hexoquinase/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Impedância Elétrica , Fosfofrutoquinase-2/metabolismo , Fosfofrutoquinase-2/antagonistas & inibidores
20.
Sci Rep ; 14(1): 19285, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164445

RESUMO

Age-related macular degeneration (AMD) and diabetic macular edema (DME) are significant causes of blindness worldwide. The prevalence of these diseases is steadily increasing due to population aging. Therefore, early diagnosis and prevention are crucial for effective treatment. Classification of Macular Degeneration OCT Images is a widely used method for assessing retinal lesions. However, there are two main challenges in OCT image classification: incomplete image feature extraction and lack of prominence in important positional features. To address these challenges, we proposed a deep learning neural network model called MSA-Net, which incorporates our proposed multi-scale architecture and spatial attention mechanism. Our multi-scale architecture is based on depthwise separable convolution, which ensures comprehensive feature extraction from multiple scales while minimizing the growth of model parameters. The spatial attention mechanism is aim to highlight the important positional features in the images, which emphasizes the representation of macular region features in OCT images. We test MSA-NET on the NEH dataset and the UCSD dataset, performing three-class (CNV, DURSEN, and NORMAL) and four-class (CNV, DURSEN, DME, and NORMAL) classification tasks. On the NEH dataset, the accuracy, sensitivity, and specificity are 98.1%, 97.9%, and 98.0%, respectively. After fine-tuning on the UCSD dataset, the accuracy, sensitivity, and specificity are 96.7%, 96.7%, and 98.9%, respectively. Experimental results demonstrate the excellent classification performance and generalization ability of our model compared to previous models and recent well-known OCT classification models, establishing it as a highly competitive intelligence classification approach in the field of macular degeneration.


Assuntos
Aprendizado Profundo , Degeneração Macular , Redes Neurais de Computação , Tomografia de Coerência Óptica , Humanos , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/classificação , Degeneração Macular/patologia , Tomografia de Coerência Óptica/métodos , Edema Macular/diagnóstico por imagem , Edema Macular/classificação , Edema Macular/patologia , Retinopatia Diabética/diagnóstico por imagem , Retinopatia Diabética/classificação , Retinopatia Diabética/patologia , Retinopatia Diabética/diagnóstico , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA