Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.277
Filtrar
1.
Am J Primatol ; : e23659, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961812

RESUMO

The Cayo Santiago rhesus macaque colony represents one of the most important nonhuman primate resources since their introduction to the Caribbean area in 1938. The 85 years of continuing existence along with the comprehensive database of the rhesus colony and the derived skeletal collections have provided and will continue to provide a powerful tool to test hypotheses about adaptive and evolutionary mechanisms in both biology and medicine.

2.
Heliyon ; 10(12): e33172, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38984309

RESUMO

Roles of genes in heat acclimation (HA, repeated exercise-heat exposures) had not been explored. ACE I/D and ACTN3 R577X genetic polymorphisms are closely associated with outstanding exercise performances. This study investigated whether the two polymorphisms influenced the response to HA. Fifty young Han nationality male subjects were selected and conducted HA for 2 weeks. Exercise indicators (5-km run, push-up and 100-m run) were tested and rest aural thermometry (RTau) was measured before and after HA. ACE gene was grouped by I homozygote and D carrier, and ACTN3 gene was grouped by R homozygote and X carrier. Results showed that there were no differences between groups in age, body mass index, exercise indicators and RTau before HA. After HA, RTau of ACE I homozygote was lower than that of D carrier [F (1, 48) = 9.12, p = 0.004, η = 0.40]. Compared with RTau before HA, that of I homozygote decreased after HA (Δ = -0.26 °C, 95 % CI -0.34-0.18, p < 0.001), while that of D carrier did not change. There was a ACE gene × HA interaction in RTau [F (1, 48) = 14.26, p < 0.001, η = 0.48]. No effect of ACTN3 gene on RTau was observed. For exercise indicators, there were no differences between groups after HA, and no gene × HA interactions were observed. There may be a strong interaction of ACE gene and HA in the change of rest core temperature. I homozygote may have an advantage on improving heat tolerance.

3.
Zebrafish ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007173

RESUMO

Global warming and extreme weather events pose a significant threat to global biodiversity, with rising water temperatures exerting a profound influence on fish conservation and fishery development. In this study, we used zebrafish as a model organism to explore the impact of a heat acclimation period on their survival rates. The results demonstrated that a 2-month heat acclimation period almost completely mitigated heat stress-induced mortality in zebrafish. Subsequent analysis of the surviving zebrafish revealed a predominance of hepatic mitochondria in a fission state. Remarkably, a short-term fasting regimen, which induced hepatic mitochondrial fission, mirrored the outcomes of the protective effect of heat acclimation and augmented animal survival under heat stress. Conversely, treatment with a mitochondrial fission inhibitor within the fasting group attenuated the elevated survival rate. Furthermore, zebrafish embryos subjected to brief heat acclimation also exhibited increased heat resistance, a trait diminished by a chemical intervention inhibiting mitochondrial fission. This suggests a shared mechanism for heat resistance between embryos and adult zebrafish. These findings underscore the potential use of inducing mitochondrial fission to enhance heat resistance in zebrafish, offering promise for fish biodiversity conservation in the face of global warming.

4.
Plant Cell Environ ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011936

RESUMO

Understanding photosynthetic acclimation to elevated CO2 (eCO2) is important for predicting plant physiology and optimizing management decisions under global climate change, but is underexplored in important horticultural crops. We grew three crops differing in stomatal density-namely chrysanthemum, tomato, and cucumber-at near-ambient CO2 (450 µmol mol-1) and eCO2 (900 µmol mol-1) for 6 weeks. Steady-state and dynamic photosynthetic and stomatal conductance (gs) responses were quantified by gas exchange measurements. Opening and closure of individual stomata were imaged in situ, using a novel custom-made microscope. The three crop species acclimated to eCO2 with very different strategies: Cucumber (with the highest stomatal density) acclimated to eCO2 mostly via dynamic gs responses, whereas chrysanthemum (with the lowest stomatal density) acclimated to eCO2 mostly via photosynthetic biochemistry. Tomato exhibited acclimation in both photosynthesis and gs kinetics. eCO2 acclimation in individual stomatal pore movement increased rates of pore aperture changes in chrysanthemum, but such acclimation responses resulted in no changes in gs responses. Although eCO2 acclimation occurred in all three crops, photosynthesis under fluctuating irradiance was hardly affected. Our study stresses the importance of quantifying eCO2 acclimatory responses at different integration levels to understand photosynthetic performance under future eCO2 environments.

5.
Plant Cell Environ ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946377

RESUMO

The acclimation of the green algae Chlamydomoas reinhardtii to high light (HL) has been studied predominantly under continuous illumination of the cells. Here, we investigated the impact of fluctuating HL in alternation with either low light (LL) or darkness on photosynthetic performance and on photoprotective responses. Compared to intervening LL phases, dark phases led to (1) more pronounced reduction of the photosystem II quantum efficiency, (2) reduced degradation of the PsbS protein, (3) lower energy dissipation capacity and (4) an increased pool size of the xanthophyll cycle pigments. These characteristics indicate increased photo-oxidative stress when HL periods are interrupted by dark phases instead of LL phases. This overall trend was similar when comparing long (8 h) and short (30 min) HL phases being interrupted by long (16 h) and short (60 min) phases of dark or low light, respectively. Only the degradation of PsbS was clearly more efficient during long (16 h) LL phases when compared to short (60 min) LL phases.

6.
Front Microbiol ; 15: 1385333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962135

RESUMO

Heat stroke (HS) is a critical condition with extremely high mortality. Heat acclimation (HA) is widely recognized as the best measure to prevent and protect against HS. Preventive administration of oral rehydration salts III (ORSIII) and probiotics have been reported to sustain intestinal function in cases of HS. This study established a rat model of HA that was treated with probiotics-based ORS (ORSP) during consecutive 21-day HA training. The results showed that HA with ORSP could attenuate HS-induced hyperthermia by regulating thermoregulatory response. We also found that HA with ORSP could significantly alleviate HS-induced multiple organ injuries. The expression levels of a series of heat-shock proteins (HSPs), including HSP90, HSP70, HSP60, and HSP40, were significantly up-regulated from the HA training. The increases in intestinal fatty acid binding protein (I-FABP) and D-Lactate typically seen during HS were decreased through HA. The representative TJ proteins including ZO-1, E-cadherin, and JAM-1 were found to be significantly down-regulated by HS, but sustained following HA. The ultrastructure of TJ was examined by TEM, which confirmed its protective effect on the intestinal barrier protection following HA. We also demonstrated that HA raised the intestinal levels of beneficial bacteria Lactobacillus and lowered those of the harmful bacteria Streptococcus through 16S rRNA gene sequencing. These findings suggest that HA with ORSP was proven to improve intestinal thermotolerance and the levels of protective gut microbiota against HS.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38966932

RESUMO

Elevated water temperatures and low dissolved oxygen (hypoxia) are pervasive stressors in aquatic systems that can be exacerbated by climate change and anthropogenic activities, and there is growing interest in their interactive effects. To explore this interaction, we quantified the effects of acute and long-term hypoxia exposure on the critical thermal maximum (CTmax) of Redside Dace (Clinostomus elongatus), a small-bodied freshwater minnow with sparse populations in the Great Lakes Basin of Canada and designated as Endangered under Canada's Species at Risk Act. Fish were held at 18°C and acclimated to four levels of dissolved oxygen (>90%, 60%, 40%, and 20% air saturation). CTmax was measured after 2 and 10 weeks of acclimation and after 3.5 weeks of reoxygenation, and agitation behavior was quantified during CTmax trials. Aquatic surface respiration behavior was also quantified at 14 weeks of acclimation to oxygen treatments. Acute hypoxia exposure decreased CTmax in fish acclimated to normoxia (>90% air saturation), but acclimation to hypoxia reduced this effect. There was no effect of acclimation oxygen level on CTmax when measured in normoxia, and there was no effect of exposure time to hypoxia on CTmax. Residual effects of hypoxia acclimation on CTmax were not seen after reoxygenation. Agitation behavior varied greatly among individuals and was not affected by oxygen conditions. Fish performed aquatic surface respiration with low frequency, but performed it earlier when acclimated to higher levels of oxygen. Overall, this work sheds light on the vulnerability of fish experiencing acute hypoxia and heat waves concurrently.

8.
Evol Appl ; 17(7): e13757, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027686

RESUMO

Phenotypic plasticity can buffer organisms against short-term environmental fluctuations. For example, previous exposure to increased temperatures can increase thermal tolerance in many species. Prior studies have found that acclimation to higher temperature can influence the magnitude of transcriptional response to subsequent acute thermal stress (hereafter, "transcriptional response modulation"). However, mechanisms mediating this gene expression response and, ultimately, phenotypic plasticity remain largely unknown. Epigenetic modifications are good candidates for modulating transcriptional response, as they broadly correlate with gene expression. Here, we investigate changes in DNA methylation as a possible mechanism controlling shifts in gene expression plasticity and thermal acclimation in the reef-building coral Acropora nana. We find that gene expression response to acute stress is altered in corals acclimated to different temperatures, with many genes exhibiting a dampened response to heat stress in corals pre-conditioned to higher temperatures. At the same time, we observe shifts in methylation during both acclimation (11 days) and acute heat stress (24 h). We observed that the acute heat stress results in shifts in gene-level methylation and elicits an acute transcriptional response in distinct gene sets. Further, acclimation-induced shifts in gene expression plasticity and differential methylation also largely occur in separate sets of genes. Counter to our initial hypothesis no overall correlation between the magnitude of differential methylation and the change in gene expression plasticity. We do find a small but statistically significant overlap in genes exhibiting both dampened expression response and shifts in methylation (14 genes), which could be candidates for further inquiry. Overall, our results suggest transcriptional response modulation occurs independently from methylation changes induced by thermal acclimation.

9.
Mar Environ Res ; 200: 106642, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39024996

RESUMO

The Mediterranean Sea provides fertile ground for understanding the complex interplay between invasive species and native habitats, particularly within the context of climate change. This thermal tolerance study reveals the remarkable ability of Lophocladia trichoclados, a red algae species that has proven highly invasive, to adapt to varying temperatures, particularly thriving in colder Mediterranean waters, where it can withstand temperatures as low as 14 °C, a trait not observed in its native habitat. This rapid acclimation, occurring in less than a century, might entail a trade-off with high temperature resistance. Additionally, all sampled populations in the Mediterranean share the same haplotype, suggesting a common origin and the possibility that we might be facing an exceptionally acclimatable and invasive strain. This high degree of acclimatability could determine the future spread capacity in a changing scenario, highlighting the importance of considering both acclimation and adaptation in understanding the expansion of invasive species' ranges.

10.
Tree Physiol ; 44(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38905287

RESUMO

The temperature sensitivities of photosynthesis and respiration remain a key uncertainty in predicting how forests will respond to climate warming. We grew seedlings of four temperate tree species, including Betula platyphylla, Fraxinus mandshurica, Juglans mandshurica and Tilia amurensis, at three temperature regimes (ambient, +2 °C, and +4 °C in daytime air temperature). We investigated net photosynthesis (Anet25), maximum rate of RuBP-carboxylation (Vcmax25) and RuBP-regeneration (Jmax25), stomatal conductance (gs25), mesophyll conductance (gm25), and leaf respiration (Rleaf) in dark (Rdark25) and in light (Rlight25) at 25 °C in all species. Additionally, we examined the temperature sensitivities of Anet, Vcmax, Jmax, Rdark and Rlight in F. mandshurica. Our findings showed that the warming-induced decreases in Anet25, Vcmax25 and Jmax25 were more prevalent in the late-successional species T. amurensis. Warming had negative impacts on gs25 in all species. Overall, Anet25 was positively correlated with Vcmax25 and Jmax25 across all growth temperatures. However, a positive correlation between Anet25 and gs25 was observed only under warming conditions, and gs25 was negatively associated with vapor pressure deficit. This implies that the vapor pressure deficit-induced decrease in gs25 was responsible for the decline in Anet25 at higher temperatures. The optimum temperature of Anet in F. mandshurica increased by 0.59 °C per 1.0 °C rise in growth temperature. While +2 °C elevated the thermal optima of Jmax, it did not affect the other temperature sensitivity parameters of Vcmax and Jmax. Rdark25 was not affected by warming in any species, and Rlight25 was stimulated in T. amurensis. The temperature response curves of Rdark and Rlight in F. mandshurica were not altered by warming, implying a lack of thermal acclimation. The ratios of Rdark25 and Rlight25 to Anet25 and Vcmax25 in T. amurensis increased with warming. These results suggest that Anet and Rleaf did not acclimate to warming synchronously in these temperate tree species.


Assuntos
Betula , Fraxinus , Fotossíntese , Folhas de Planta , Tilia , Árvores , Fotossíntese/fisiologia , Árvores/fisiologia , Árvores/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Fraxinus/fisiologia , Fraxinus/metabolismo , Tilia/fisiologia , Tilia/metabolismo , Betula/fisiologia , Betula/crescimento & desenvolvimento , Betula/efeitos da radiação , Betula/metabolismo , Juglans/fisiologia , Juglans/crescimento & desenvolvimento , Carbono/metabolismo , Temperatura , Respiração Celular , Mudança Climática
11.
BMC Genomics ; 25(1): 547, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824590

RESUMO

BACKGROUND: Environmental temperature is critical in regulating biological functions in fish. S. prenanti is a kind of cold-water fish, but of which we have little knowledge about the metabolic adaptation and physiological responses to long-term cold acclimation. RESULTS: In this study, we determined the physiological responses of S. prenanti serum after 30 days of exposure to 6℃. Compared with the control group, the levels of TC, TG, and LDL-C in the serum were significantly (P < 0.05) increased, and the level of glucose was significantly (P < 0.05) decreased under cold acclimation. Cold acclimation had no effect on the gene expression of pro-inflammatory factors and anti-inflammatory factors of S. prenanti. Metabolomics analysis by LC-MS showed that a total of 60 differential expressed metabolites were identified after cold acclimation, which involved in biosynthesis of amino acids, biosynthesis of unsaturated fatty acids, steroid degradation, purine metabolism, and citrate cycle pathways. CONCLUSION: The results indicate that cold acclimation can alter serum metabolites and metabolic pathways to alter energy metabolism and provide insights for the physiological regulation of cold-water fish in response to cold acclimation.


Assuntos
Aclimatação , Temperatura Baixa , Cyprinidae , Metaboloma , Metabolômica , Animais , Cyprinidae/metabolismo , Cyprinidae/fisiologia , Cyprinidae/sangue , Cyprinidae/genética
12.
Ecol Evol ; 14(6): e11451, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826161

RESUMO

Rapid changes in thermal environments are threatening many species worldwide. Thermal acclimatisation may partially buffer species from the impacts of these changes, but currently, the knowledge about the temporal dynamics of acclimatisation remains limited. Moreover, acclimatisation phenotypes are typically determined in laboratory conditions that lack the variability and stochasticity that characterise the natural environment. Through a distributed lag non-linear model (DLNM), we use field data to assess how the timing and magnitude of past thermal exposures influence thermal tolerance. We apply the model to two Scottish freshwater Ephemeroptera species living in natural thermal conditions. Model results provide evidence that rapid heat hardening effects are dramatic and reflect high rates of change in temperatures experienced over recent hours to days. In contrast, temperature change magnitude impacted acclimatisation over the course of weeks but had no impact on short-term responses. Our results also indicate that individuals may de-acclimatise their heat tolerance in response to cooler environments. Based on the novel insights provided by this powerful modelling approach, we recommend its wider uptake among thermal physiologists to facilitate more nuanced insights in natural contexts, with the additional benefit of providing evidence needed to improve the design of laboratory experiments.

13.
Harmful Algae ; 135: 102648, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38830713

RESUMO

Reports of the benthic dinoflagellate Ostreopsis spp. have been increasing in the last decades, especially in temperate areas. In a context of global warming, evidences of the effects of increasing sea temperatures on its physiology and its distribution are still lacking and need to be investigated. In this study, the influence of temperature on growth, ecophysiology and toxicity was assessed for several strains of O. cf. siamensis from the Bay of Biscay (NE Atlantic) and O. cf. ovata from NW Mediterranean Sea. Cultures were acclimated to temperatures ranging from 14.5 °C to 32 °C in order to study the whole range of each strain-specific thermal niche. Acclimation was successful for temperatures ranging from 14.5 °C to 25 °C for O. cf. siamensis and from 19 °C to 32 °C for O. cf. ovata, with the highest growth rates measured at 22 °C (0.54-1.06 d-1) and 28 °C (0.52-0.75 d-1), respectively. The analysis of cellular content of pigments and lipids revealed some aspects of thermal acclimation processes in Ostreopsis cells. Specific capacities of O. cf. siamensis to cope with stress of cold temperatures were linked with the activation of a xanthophyll cycle based on diadinoxanthin. Lipids (neutral reserve lipids and polar ones) also revealed species-specific variations, with increases in cellular content noted under extreme temperature conditions. Variations in toxicity were assessed through the Artemia franciscana bioassay. For both species, a decrease in toxicity was observed when temperature dropped under the optimal temperature for growth. No PLTX-like compounds were detected in O. cf. siamensis strains. Thus, the main part of the lethal effect observed on A. franciscana was dependent on currently unknown compounds. From a multiclonal approach, this work allowed for defining specificities in the thermal niche and acclimation strategies of O. cf. siamensis and O. cf. ovata towards temperature. Potential impacts of climate change on the toxic risk associated with Ostreopsis blooms in both NW Mediterranean Sea and NE Atlantic coast is further discussed, taking into account variations in the geographic distribution, growth abilities and toxicity of each species.


Assuntos
Dinoflagellida , Aquecimento Global , Temperatura , Dinoflagellida/fisiologia , Dinoflagellida/crescimento & desenvolvimento , Mar Mediterrâneo , Proliferação Nociva de Algas , Animais , Aclimatação , Oceanos e Mares
14.
Plant Cell Environ ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847340

RESUMO

Accurate estimation of photosynthesis is crucial for ecosystem carbon cycle modelling. Previous studies have established an empirical relationship between photosynthetic capacity (maximum carboxylation rate, Vcmax; maximum electron transport rate, Jmax) and leaf chlorophyll (Chl) content to infer global photosynthetic capacity. However, the basis for the Chl-Vcmax relationship remains unclear, which is further evidenced by the temporal variations in the Chl-Vcmax relationship. Using multiple years of observations of four deciduous tree species, we found that Vcmax and Jmax acclimate to photosynthetically active radiation faster (4-8 weeks) than Chl (10-12 weeks). This mismatch in temporal scales causes seasonality in the Vcmax-Chl relationship. To account for the mismatch, we used a Chl fluorescence parameter (quantum yield of Photosystem II, Φ(II)) to tighten the relationship and found Φ(II) × Chl correlated with Vcmax and Jmax (r2 = 0.74 and 0.72 respectively) better than only Chl (r2 = 0.7 and 0.6 respectively). It indicates that Φ(II) accounts for the short-term adjustment of leaf photosynthetic capacity to light, which was not captured by Chl. Our study advances our understanding of the ecophysiological basis for the empirical Vcmax-Chl relationship and how to better infer Vcmax from Chl and fluorescence, which guides large-scale photosynthesis simulations using remote sensing.

15.
BMC Plant Biol ; 24(1): 591, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902617

RESUMO

BACKGROUND: Light deficit in shaded environment critically impacts the growth and development of turf plants. Despite this fact, past research has predominantly concentrated on shade avoidance rather than shade tolerance. To address this, our study examined the photosynthetic adjustments of Bermudagrass when exposed to varying intensities of shade to gain an integrative understanding of the shade response of C4 turfgrass. RESULTS: We observed alterations in photosynthetic pigment-proteins, electron transport and its associated carbon and nitrogen assimilation, along with ROS-scavenging enzyme activity in shaded conditions. Mild shade enriched Chl b and LHC transcripts, while severe shade promoted Chl a, carotenoids and photosynthetic electron transfer beyond QA- (ET0/RC, φE0, Ψ0). The study also highlighted differential effects of shade on leaf and root components. For example, Soluble sugar content varied between leaves and roots as shade diminished SPS, SUT1 but upregulated BAM. Furthermore, we observed that shading decreased the transcriptional level of genes involving in nitrogen assimilation (e.g. NR) and SOD, POD, CAT enzyme activities in leaves, even though it increased in roots. CONCLUSIONS: As shade intensity increased, considerable changes were noted in light energy conversion and photosynthetic metabolism processes along the electron transport chain axis. Our study thus provides valuable theoretical groundwork for understanding how C4 grass acclimates to shade tolerance.


Assuntos
Aclimatação , Cynodon , Fotossíntese , Folhas de Planta , Cynodon/fisiologia , Cynodon/genética , Cynodon/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/genética , Transporte de Elétrons , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Raízes de Plantas/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Clorofila/metabolismo
16.
J Exp Biol ; 227(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38841909

RESUMO

Increased average temperatures and extreme thermal events (such as heatwaves) brought forth by climate change impose important constraints on aerobic metabolism. Notably, mitochondrial metabolism, which is affected by both long- and short-term temperature changes, has been put forward as an important determinant for thermal tolerance of organisms. This study examined the influence of phenotypic plasticity on metabolic and physiological parameters in Drosophila melanogaster and the link between mitochondrial function and their upper thermal limits. We showed that D. melanogaster acclimated to 15°C have a 0.65°C lower critical thermal maximum (CTmax) compared with those acclimated to 24°C. Drosophila melanogaster acclimated to 15°C exhibited a higher proportion of shorter saturated and monounsaturated fatty acids, concomitant with lower proportions of polyunsaturated fatty acids. No mitochondrial quantitative changes (fractional area and number) were detected between acclimation groups, but changes of mitochondrial oxidation capacities were observed. Specifically, in both 15°C- and 24°C-acclimated flies, complex I-induced respiration was increased when measured between 15 and 24°C, but drastically declined when measured at 40°C. When succinate and glycerol-3-phosphate were added, this decrease was however compensated for in flies acclimated to 24°C, suggesting an important impact of acclimation on mitochondrial function related to thermal tolerance. Our study reveals that the use of oxidative substrates at high temperatures is influenced by acclimation temperature and strongly related to upper thermal tolerance as a difference of 0.65°C in CTmax translates into significant mitochondrial changes.


Assuntos
Aclimatação , Drosophila melanogaster , Mitocôndrias , Oxirredução , Animais , Drosophila melanogaster/fisiologia , Drosophila melanogaster/metabolismo , Aclimatação/fisiologia , Mitocôndrias/metabolismo , Temperatura Alta , Masculino , Feminino
17.
J Integr Neurosci ; 23(6): 116, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38940089

RESUMO

BACKGROUND: The effects of heat acclimation (HA) on the hypothalamus after exertional heatstroke (EHS) and the specific mechanism have not been fully elucidated, and this study aimed to address these questions. METHODS: In the present study, rats were randomly assigned to the control, EHS, HA, or HA + EHS groups (n = 9). Hematoxylin and eosin (H&E) staining was used to examine pathology. Tandem mass tag (TMT)-based proteomic analysis was utilized to explore the impact of HA on the protein expression profile of the hypothalamus after EHS. Bioinformatics analysis was used to predict the functions of the differentially expressed proteins. The differential proteins were validated by western blotting. An enzyme-linked immunosorbent assay was used to measure the expression levels of inflammatory cytokines in the serum. RESULTS: The H&E staining (n = 5) results revealed that there were less structural changes in hypothalamus in the HA + EHS group compared with the EHS group. Proteomic analysis (n = 4) revealed that proinflammatory proteins such as argininosuccinate synthetase (ASS1), high mobility group protein B2 (HMGB2) and vimentin were evidently downregulated in the HA + EHS group. The levels of interleukin (IL)-1ß, IL-1, and IL-8 were decreased in the serum samples (n = 3) from HA + EHS rats. CONCLUSIONS: HA may alleviate hypothalamic damage caused by heat attack by inhibiting inflammatory activities, and ASS1, HMGB2 and vimentin could be candidate factors involved in the exact mechanism.


Assuntos
Golpe de Calor , Hipotálamo , Proteômica , Ratos Sprague-Dawley , Animais , Hipotálamo/metabolismo , Golpe de Calor/metabolismo , Ratos , Masculino , Esforço Físico/fisiologia , Modelos Animais de Doenças
18.
Microorganisms ; 12(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38930542

RESUMO

Exposure to passive heat (acclimation) and exercise under hot conditions (acclimatization), known as heat acclimation (HA), are methods that athletes include in their routines to promote faster recovery and enhance physiological adaptations and performance under hot conditions. Despite the potential positive effects of HA on health and physical performance in the heat, these stimuli can negatively affect gut health, impairing its functionality and contributing to gut dysbiosis. Blood redistribution to active muscles and peripheral vascularization exist during exercise and HA stimulus, promoting intestinal ischemia. Gastrointestinal ischemia can impair intestinal permeability and aggravate systemic endotoxemia in athletes during exercise. Systemic endotoxemia elevates the immune system as an inflammatory responses in athletes, impairing their adaptive capacity to exercise and their HA tolerance. Better gut microbiota health could benefit exercise performance and heat tolerance in athletes. This article suggests that: (1) the intestinal modifications induced by heat stress (HS), leading to dysbiosis and altered intestinal permeability in athletes, can decrease health, and (2) a previously acquired microbial dysbiosis and/or leaky gut condition in the athlete can negatively exacerbate the systemic effects of HA. Maintaining or improving the healthy gut microbiota in athletes can positively regulate the intestinal permeability, reduce endotoxemic levels, and control the systemic inflammatory response. In conclusion, strategies based on positive daily habits (nutrition, probiotics, hydration, chronoregulation, etc.) and preventing microbial dysbiosis can minimize the potentially undesired effects of applying HA, favoring thermotolerance and performance enhancement in athletes.

19.
Plant Physiol Biochem ; 213: 108793, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38870681

RESUMO

Recently, cyanobacteria have gained attention in space exploration to support long-term crewed missions via Bioregenerative Life Support Systems. In this frame, cyanobacteria would provide biomass and profitable biomolecules through oxygenic photosynthesis, uptaking CO2, and releasing breathable O2. Their growth potential and organic matter production will depend on their ability to photoacclimate to different light intensities and spectra, maximizing incident light harvesting. Studying cyanobacteria responses to different light regimes will also benefit the broader field of astrobiology, providing data on the possibility of oxygenic photosynthetic life on planets orbiting stars with emission spectra different than the Sun. Here, we tested the acclimation and productivity of Synechococcus sp. PCC7335 (hereafter PCC7335), capable of Far-Red Light Photoacclimation (FaRLiP) and type III chromatic acclimation (CA3), in an anoxic, CO2-enriched atmosphere and under a spectrum simulating the low energetic light regime of an M-dwarf star, also comparable to a subsuperficial environment. When exposed to the light spectrum, with few photons in the visible (VIS) and rich in far-red (FR), PCC7335 did not activate FaRLiP but acclimated only via CA3, achieving a biomass productivity higher than expected, considering the low VIS light availability, and a higher production of phycocyanin, a valuable pigment, with respect to solar light. Its growth or physiological responses of PCC7335 were not affected by the anoxic atmosphere. In these conditions, PCC7335 efficiently produced O2 and scavenged CO2. Results highlight the photosynthetic plasticity of PCC7335, its suitability for astrobiotechnological applications, and the importance to investigate biodiversity of oxygenic photosynthesis for searching life beyond Earth.


Assuntos
Fotossíntese , Synechococcus , Synechococcus/metabolismo , Synechococcus/efeitos da radiação , Synechococcus/crescimento & desenvolvimento , Atmosfera/química , Exobiologia , Luz , Dióxido de Carbono/metabolismo , Aclimatação , Oxigênio/metabolismo
20.
Plant Physiol Biochem ; 213: 108839, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879986

RESUMO

Physio-biochemical regulations governing crop growth period are pivotal for drought adaptation. Yet, the extent to which functionality of arbuscular mycorrhizal fungi (AM fungi) varies across different stages of maize growth under drought conditions remains uncertain. Therefore, periodic functionality of two different AM fungi i.e., Rhizophagus irregularis SUN16 and Glomus monosporum WUM11 were assessed at jointing, silking, and pre-harvest stages of maize subjected to different soil moisture gradients i.e., well-watered (80% SMC (soil moisture contents)), moderate drought (60% SMC), and severe drought (40% SMC). The study found that AM fungi significantly (p < 0.05) affected various morpho-physiological and biochemical parameters at different growth stages of maize under drought. As the plants matured, AM fungi enhanced root colonization, glomalin contents, and microbial biomass, leading to increased nutrient uptake and antioxidant activity. This boosted AM fungal activity ultimately improved photosynthetic efficiency, evident in increased photosynthetic pigments and photosynthesis. Notably, R. irregularis and G. monosporum improved water use efficiency and mycorrhizal dependency at critical growth stages like silking and pre-harvest, indicating their potential for drought resilience to stabilize yield. The principal component analysis highlighted distinct plant responses to drought across growth stages and AM fungi, emphasizing the importance of early-stage sensitivity. These findings underscore the potential of incorporating AM fungi into agricultural management practices to enhance physiological and biochemical responses, ultimately improving drought tolerance and yield in dryland maize cultivation.


Assuntos
Secas , Micorrizas , Zea mays , Zea mays/microbiologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Micorrizas/fisiologia , Fotossíntese , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Glomeromycota/fisiologia , Glomeromycota/crescimento & desenvolvimento , Água/metabolismo , Biomassa , Fungos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA