Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(34): 45119-45130, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39143893

RESUMO

Excitation of multiple acoustic wave modes on a single chip is beneficial to implement diversified acoustofluidic functions. Conventional acoustic wave devices made of bulk LiNbO3 substrates generally generate few acoustic wave modes once the crystal-cut and electrode pattern are defined, limiting the realization of acoustofluidic diversity. In this paper, we demonstrated diversity of acoustofluidic behaviors using multiple modes of acoustic waves generated on piezoelectric-thin-film-coated aluminum sheets. Multiple acoustic wave modes were excited by varying the ratios between IDT pitch/wavelength and substrate thickness. Through systematic investigation of fluidic actuation behaviors and performances using these acoustic wave modes, we demonstrated fluidic actuation diversities using various acoustic wave modes and showed that the Rayleigh mode, pseudo-Rayleigh mode, and A0 mode of Lamb wave generally have better fluidic actuation performance than those of Sezawa mode and higher-order modes of Lamb wave, providing guidance for high-performance acoustofluidic actuation platform design. Additionally, we demonstrated diversified particle patterning functions, either on two sides of acoustic wave device or on a glass sheet by coupling acoustic waves into the glass using the gel. The pattern formation mechanisms were investigated through finite element simulations of acoustic pressure fields under different experimental configurations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA