Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(12): 10225-10247, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38132484

RESUMO

The non-structural protein 2 (NSP2) is an RNA-binding protein involved in coronavirus genome replication, and it often decreases human immune response to promote viral invasion and development. It is believed that the NSP2 associates itself with polyamines and heat shock proteins inside the host cell to proceed with viral development. This study aimed to investigate how the SARS-CoV-2 virus' key non-structural proteins (NSP2) utilize polyamines and heat shock proteins using a molecular docking approach and molecular dynamics (MD). ClusPro and HADDOCK servers were used for the docking and Discovery Studio, chimera, and PyMOL were used for analysis. Docking of the heat shock proteins 40 (HSP40), 70 (HSP70), and 90 (HSP90) with SARS-CoV-2 NSP2 resulted in 32, 28, and 19 interactions, respectively. Molecular dynamics revealed Arg458, Asn508, Met297, Arg301, and Trp417 as active residues, and pharmacophore modeling indicated ZINC395648, ZINC01150525, and ZINC85324008 from the zinc database as possible inhibitors for this NSP2.

2.
Curr Pharm Des ; 26(8): 838-866, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32039675

RESUMO

In this report, we extend the SAR analysis of a number of lipophilic guanylhydrazone analogues with respect to in vitro growth inhibition of Trypanosoma brucei and Trypanosoma cruzi. Sleeping sickness and Chagas disease, caused by the tropical parasites T. brucei and T. cruzi, constitute a significant socioeconomic burden in low-income countries of sub-Saharan Africa and Latin America, respectively. Drug development is underfunded. Moreover, current treatments are outdated and difficult to administer, while drug resistance is an emerging concern. The synthesis of adamantane-based compounds that have potential as antitrypanosomal agents is extensively reviewed. The critical role of the adamantane ring was further investigated by synthesizing and testing a number of novel lipophilic guanylhydrazones. The introduction of hydrophobic bulky substituents onto the adamantane ring generated the most active analogues, illustrating the synergistic effect of the lipophilic character of the C1 side chain and guanylhydrazone moiety on trypanocidal activity. The n-decyl C1-substituted compound G8 proved to be the most potent adamantane derivative against T. brucei with activity in the nanomolar range (EC50=90 nM). Molecular simulations were also performed to better understand the structure-activity relationships between the studied guanylhydrazone analogues and their potential enzyme target.


Assuntos
Mitoguazona/análogos & derivados , Tripanossomicidas , Trypanosoma brucei brucei , Trypanosoma cruzi , Mitoguazona/farmacologia , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos
3.
J Biol Chem ; 293(48): 18719-18729, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30323064

RESUMO

Polyamines are organic polycations that bind to a variety of cellular molecules, including nucleic acids. Within cells, polyamines contribute to both the efficiency and fidelity of protein synthesis. In addition to directly acting on the translation apparatus to stimulate protein synthesis, the polyamine spermidine serves as a precursor for the essential post-translational modification of the eukaryotic translation factor 5A (eIF5A), which is required for synthesis of proteins containing problematic amino acid sequence motifs, including polyproline tracts, and for termination of translation. The impact of polyamines on translation is highlighted by autoregulation of the translation of mRNAs encoding key metabolic and regulatory proteins in the polyamine biosynthesis pathway, including S-adenosylmethionine decarboxylase (AdoMetDC), antizyme (OAZ), and antizyme inhibitor 1 (AZIN1). Here, we highlight the roles of polyamines in general translation and also in the translational regulation of polyamine biosynthesis.


Assuntos
Poliaminas/metabolismo , Biossíntese de Proteínas , Proteínas/genética , Animais , Humanos , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
ACS Infect Dis ; 3(7): 512-526, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28350440

RESUMO

Human African trypanosomiasis (HAT) is a fatal infectious disease caused by the eukaryotic pathogen Trypanosoma brucei (Tb). Available treatments are difficult to administer and have significant safety issues. S-Adenosylmethionine decarboxylase (AdoMetDC) is an essential enzyme in the parasite polyamine biosynthetic pathway. Previous attempts to develop TbAdoMetDC inhibitors into anti-HAT therapies failed due to poor brain exposure. Here, we describe a large screening campaign of two small-molecule libraries (∼400,000 compounds) employing a new high-throughput (∼7 s per sample) mass spectrometry-based assay for AdoMetDC activity. As a result of primary screening, followed by hit confirmation and validation, we identified 13 new classes of reversible TbAdoMetDC inhibitors with low-micromolar potency (IC50) against both TbAdoMetDC and T. brucei parasite cells. The majority of these compounds were >10-fold selective against the human enzyme. Importantly, compounds from four classes demonstrated high propensity to cross the blood-brain barrier in a cell monolayer assay. Biochemical analysis demonstrated that compounds from eight classes inhibited intracellular TbAdoMetDC in the parasite, although evidence for a secondary off-target component was also present. The discovery of several new TbAdoMetDC inhibitor chemotypes provides new hits for lead optimization programs aimed to deliver a novel treatment for HAT.


Assuntos
Adenosilmetionina Descarboxilase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Proteínas de Protozoários/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Adenosilmetionina Descarboxilase/genética , Adenosilmetionina Descarboxilase/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Cães , Inibidores Enzimáticos/química , Expressão Gênica , Humanos , Cinética , Células Madin Darby de Rim Canino , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Modelos Biológicos , Testes de Sensibilidade Parasitária , Permeabilidade , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Tripanossomicidas/química , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento
5.
Int J Parasitol Drugs Drug Resist ; 4(1): 28-36, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24596666

RESUMO

S-adenosyl-l-methionine decarboxylase (AdoMetDC) in the polyamine biosynthesis pathway has been identified as a suitable drug target in Plasmodium falciparum parasites, which causes the most lethal form of malaria. Derivatives of an irreversible inhibitor of this enzyme, 5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine (MDL73811), have been developed with improved pharmacokinetic profiles and activity against related parasites, Trypanosoma brucei. Here, these derivatives were assayed for inhibition of AdoMetDC from P. falciparum parasites and the methylated derivative, 8-methyl-5'-{[(Z)-4-aminobut-2-enyl]methylamino}-5'-deoxyadenosine (Genz-644131) was shown to be the most active. The in vitro efficacy of Genz-644131 was markedly increased by nanoencapsulation in immunoliposomes, which specifically targeted intraerythrocytic P. falciparum parasites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA