Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 951: 175682, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39173768

RESUMO

The addition of active ingredients such as antibacterial agent and non-active ingredients such as plastic microspheres (MPs) in personal care products (PCPs) are the common pollutants in the aquatic environment, and their coexistence poses potential threat to the aquatic ecosystem. As a substitute for the traditional antibacterial ingredients triclosan and triclocarban, the usage of parachlormetaxylenol (PCMX) is on the rise and is widely used in PCPs. In this study, the adsorption and desorption behaviors of PCMX were investigated with two typical MPs, polyvinyl chloride (PVC) and polyethylene (PE), and the effects of different aging modes and molecular mechanisms were explored through batch experiments and density functional theory calculation. Both laboratory aging and field aging resulted in surface wrinkles of MPs, along with an increased proportion of oxygen-containing functional groups (CO, -OH). At the same aging time, the degree of laboratory aging was stronger than that of field aging, and the aging degree of PVC was greater that of PE. The aging process enhanced the adsorption capacity of MPs for PCMX. The equilibrium adsorption capacity of PVC increased from 3.713 mg/g (virgin) to 3.823 mg/g (field aging) and 3.969 mg/g (laboratory aging), while that of PE increased from 3.509 mg/g to 3.879 mg/g and 4.109 mg/g, respectively. Meanwhile, aging also resulted in an increase in the desorption capacity of PCMX from PVC and PE. Oxygen-containing functional groups in aged MPs could serve as adsorption sites for PCMX and improved the electrostatic adsorption capacity. Oxygen-containing groups generated on the surface of aged MPs formed hydrogen bonding with the phenolic hydroxyl groups of PCMX, which became the main driving force for adsorption. Our results reveal the potential impact and mechanism of aging on the adsorption of PCMX by MPs, which provides new insights for the interaction mechanism between environmental MPs and associated contaminants.

2.
J Hazard Mater ; 476: 135158, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39002475

RESUMO

Recent research has highlighted the ecological risk posed by microplastics (MPs) from mulching film and heavy metals to soil organisms. However, most studies overlooked real environmental levels of MPs and heavy metals. To address this gap, pristine and aged polyethylene (PE) mulching film-derived MPs (PMPs, 500 mg/kg; AMPs, 500 mg/kg) were combined with cadmium (Cd, 0.5 mg/kg) to assess the acute toxicity to earthworms and investigate associated molecular mechanisms (oxidative stress, osmoregulation pressure, gut microbiota, and metabolic responses) at environmentally relevant concentrations. Compared to Cd alone and Cd + PMPs treatments (11.15 ± 4.19 items/g), Cd + AMPs treatment resulted in higher MPs bioaccumulation (23.73 ± 13.14 items/g), more severe tissue lesions, and increased cell membrane osmotic pressure in earthworms' intestines. Cd + AMPs induced neurotoxicity through elevated levels of glutamate and acetylcholinesterase. Earthworm intestines (0.98 ± 0.49 to 3.33 ± 0.37 mg/kg) exhibited significantly higher Cd content than soils (0.19 ± 0.01 to 0.51 ± 0.06 mg/kg) and casts (0.15 ± 0.01 to 0.25 ± 0.05 mg/kg), indicating PE-MPs facilitated Cd transport in earthworms' bodies. Metabolomic analysis showed Cd + AMPs exposure depleted energy and nucleotide metabolites, disrupted cell homeostasis more profoundly than Cd and Cd + PMPs treatments. Overall, co-exposure to AMPs + Cd induced more severe neurotoxicity and disruption of homeostasis in earthworm than Cd and PMPs + Cd treatments. Our study, using Cd and MPs with environmental relevance, underscores MPs' role in amplifying Cd accumulation and toxicity in earthworms.


Assuntos
Cádmio , Homeostase , Microplásticos , Oligoquetos , Poluentes do Solo , Animais , Oligoquetos/efeitos dos fármacos , Oligoquetos/metabolismo , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Microplásticos/toxicidade , Homeostase/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Agricultura , Polietileno/toxicidade
3.
Sci Rep ; 14(1): 15213, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956158

RESUMO

Microplastic pollution, especially secondary microplastics (MPs), poses a significant threat to marine ecosystems. Despite its prevalence, the impact of natural-aged MPs on marine organisms, hindered by collection challenges, remains poorly understood. This study focused on 1-3 µm natural-aged MPs collected from Japan's coastal sea, investigating their effects on the rotifer Brachionus plicatilis sensu stricto and its reproductive mechanisms. Rotifers exposed to varying MP concentrations (0, 20, and 200 particles/mL) over 14-day batch cultures exhibited reduced population growth and fertilization rates. Down-regulation of reproductive genes and up-regulation of oxidative stress-related genes were observed, indicating MP-induced disruptions. Enhanced activities of superoxide dismutase and acetylcholinesterase and elevated malondialdehyde levels further emphasized oxidative stress. These findings underscore the detrimental impact of MPs on rotifer reproductivity, shedding light on the underlying mechanisms.


Assuntos
Microplásticos , Estresse Oxidativo , Reprodução , Rotíferos , Poluentes Químicos da Água , Animais , Rotíferos/efeitos dos fármacos , Microplásticos/toxicidade , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Malondialdeído/metabolismo
4.
Sci Total Environ ; 946: 173964, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38876355

RESUMO

Field determination of the metal adsorption capacity of microplastics (MPs) by using a passive sampler had been done in typical subtropical mariculture area in China. The adsorption of eight metals (Fe, Mn, Cu, Zn, As, Pb, Cr and Cd) by five types of MPs (low-density polyethylene, polypropylene, polystyrene, poly(ethylene terephthalate) and poly(vinyl chloride) (PVC) was compared, including metal types, mariculture types (cage and longline culture), metal residue content in ambient environment, polymer types and particle sizes of MPs. The results showed that Cu, Zn, As, Cd, Pb and Cr in the mariculture environment were contaminated compared with the quality criteria. The concentrations of these six metals adsorbed on five MPs increased linearly with those in seawater. More enriched Cu and As in MPs in marine cage culture than in longline culture, due to the obvious endogenous pollution emissions for the artificial diets, fish medicine and disinfectants. Aged PVC with more cracks and pores showed higher metal adsorption capacity than any other polymers. MPs with a smaller size range of 50-74 µm tended to accumulate higher amounts of metals than those with a larger size range of 74-178 µm, consisting with the surface characteristics of MPs. The significant positive relationship between the concentrations of nutrients in seawater and the adsorption amounts of Cu, Zn and As on MPs implies that the eutrophication would promote their pollution. Based on the ecological risk assessment, the occurrence of MPs could aggravate the potential risk of metals to marine organisms in intensive mariculture areas. This is the first time to reveal the impacts of the adsorption of metals on aged MPs on the potential ecological risks of metals to organisms under the realistic environmental condition.


Assuntos
Aquicultura , Organismos Aquáticos , Monitoramento Ambiental , Metais , Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Poluentes Químicos da Água/análise , China , Adsorção , Metais/análise , Metais/química , Água do Mar/química , Medição de Risco
5.
Sci Total Environ ; 935: 173457, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38782285

RESUMO

Microplastics and chlorine-containing triclosan (TCS) are widespread in aquatic environments and may pose health risks to organisms. However, studies on the combined toxicity of aged microplastics and TCS are limited. To investigate the toxic effects and potential mechanisms associated with co-exposure to TCS adsorbed on aged polyethylene microplastics (aPE-MPs) at environmentally relevant concentrations, a 7-day chronic exposure experiment was conducted using Xenopus tropicalis tadpoles. The results showed that the overall particle size of aPE-MPs decreased after 30 days of UV aging, whereas the increase in specific surface area improved the adsorption capacity of aPE-MPs for TCS, resulting in the bioaccumulation of TCS under dual-exposure conditions in the order of aPE-TCS > PE-TCS > TCS. Co-exposure to aPE-MPs and TCS exacerbated oxidative stress and neurotoxicity to a greater extent than a single exposure. Significant upregulation of pro-symptomatic factors (IL-ß and IL-6) and antioxidant enzyme activities (SOD and CAT) indicated that the aPE-TCS combination caused more severe oxidative stress and inflammation. Molecular docking revealed the molecular mechanism of the direct interaction between TCS and SOD, CAT, and AChE proteins, which explains why aPE-MPs promote the bioaccumulation of TCS, causing increased toxicity upon combined exposure. These results emphasize the need to be aware of the combined toxicity caused by the increased ability of aged microplastics to carry contaminants.


Assuntos
Larva , Microplásticos , Estresse Oxidativo , Triclosan , Poluentes Químicos da Água , Xenopus , Animais , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Triclosan/toxicidade , Larva/efeitos dos fármacos , Bioacumulação , Síndromes Neurotóxicas
6.
Environ Geochem Health ; 46(6): 185, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695908

RESUMO

Microplastics (MPs), as emerging contaminants, usually experience aging processes in natural environments and further affect their interactions with coexisted contaminants, resulting in unpredictable ecological risks. Herein, the effect of MPs aging on their adsorption for coexisting antibiotics and their joint biotoxicity have been investigated. Results showed that the adsorption capacity of aged polystyrene (PS, 100 d and 50 d) for ciprofloxacin (CIP) was 1.10-4.09 times higher than virgin PS due to the larger BET surface area and increased oxygen-containing functional groups of aged PS. Following the increased adsorption capacity of aged PS, the joint toxicity of aged PS and CIP to Shewanella Oneidensis MR-1 (MR-1) was 1.03-1.34 times higher than virgin PS and CIP. Combined with the adsorption process, CIP posed higher toxicity to MR-1 compared to aged PS due to the rapid adsorption of aged PS for CIP in the first 12 h. After that, the adsorption process tended to be gentle and hence the joint toxicity to MR-1 was gradually dominated by aged PS. A similar transformation between the adsorption rate and the joint toxicity of PS and CIP was observed under different conditions. This study supplied a novel perception of the synergistic effects of PS aging and CIP on ecological health.


Assuntos
Ciprofloxacina , Poliestirenos , Shewanella , Ciprofloxacina/química , Ciprofloxacina/toxicidade , Poliestirenos/toxicidade , Poliestirenos/química , Adsorção , Shewanella/efeitos dos fármacos , Microplásticos/toxicidade , Microplásticos/química , Antibacterianos/química , Antibacterianos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química
7.
Sci Total Environ ; 927: 172243, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582118

RESUMO

Globally, over 287 million tons of plastic are disposed in landfills, rivers, and oceans or are burned every year. The results are devastating to our ecosystems, wildlife and human health. One promising remedy is the yellow mealworm (Tenebrio molitor larvae), which has proved capable of degrading microplastics (MPs). This paper presents a new investigation into the biodegradation of aged polyethylene (PE) film and polystyrene (PS) foam by the Tenebrio molitor larvae. After a 35 - day feeding period, both pristine and aged MPs can be consumed by larvae. Even with some inhibitions in larvae growth due to the limited nutrient supply of aged MPs, when compared with pristine MPs, the aged MPs were depolymerized more efficiently in gut microbiota based on gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) analysis. With the change in surface chemical properties, the metabolic intermediates of aged MPs contained more oxygen-containing functional groups and shortened long-chain alkane, which was confirmed by gas chromatography and mass spectrometry (GC-MS). High-throughput sequencing revealed that the richness and diversity of gut microbes were restricted in the MPs-fed group. Although MPs had a negative effect on the relative abundance of the two dominant bacteria Enterococcaceae and Lactobacillaceae, the aged MPs may promote the relative abundance of Enterobacteriaceae and Streptococcaceae. Redundancy analysis (RDA) further verified that the aged MPs are effectively biodegraded by yellow mealworm. This work provides new insights into insect-mediated mechanisms of aged MP degradation and promising strategies for MP sustainable and efficient solutions.


Assuntos
Biodegradação Ambiental , Larva , Microplásticos , Polietileno , Poliestirenos , Tenebrio , Animais , Microplásticos/metabolismo , Tenebrio/metabolismo , Polietileno/metabolismo , Microbioma Gastrointestinal , Poluentes Químicos da Água/metabolismo
8.
Water Res ; 256: 121628, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677035

RESUMO

Microplastics (MPs) and antibiotics co-occur widely in the environment and pose combined risk to microbial communities. The present study investigated the effects of erythromycin on biofilm formation and resistance mutation of a model bacterium, E. coli, on the surface of pristine and UV-aged polystyrene (PS) MPs sized 1-2 mm. The properties of UV-aged PS were significantly altered compared to pristine PS, with notable increases in specific surface area, carbonyl index, hydrophilicity, and hydroxyl radical content. Importantly, the adsorption capacity of UV-aged PS towards erythromycin was approximately 8-fold higher than that of pristine PS. Biofilms colonizing on UV-aged PS had a greater cell count (5.6 × 108 CFU mg-1) and a higher frequency of resistance mutation (1.0 × 10-7) than those on pristine PS (1.4 × 108 CFU mg-1 and 1.4 × 10-8, respectively). Moreover, erythromycin at 0.1 and 1.0 mg L-1 significantly (p < 0.05) promoted the formation and resistance mutation of biofilm on both pristine and UV-aged PS. DNA sequencing results confirmed that the biofilm resistance was attributed to point mutations in rpoB segment of the bacterial genome. qPCR results demonstrated that both UV aging and erythromycin repressed the expression levels of a global regulator rpoS in biofilm bacteria, as well as two DNA mismatch repair genes mutS and uvrD, which was likely to contribute to increased resistance mutation frequency.


Assuntos
Biofilmes , Eritromicina , Escherichia coli , Microplásticos , Mutação , Poliestirenos , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Eritromicina/farmacologia , Microplásticos/toxicidade , Antibacterianos/farmacologia , Raios Ultravioleta , Farmacorresistência Bacteriana/genética
9.
Environ Geochem Health ; 46(5): 166, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592562

RESUMO

Cadmium (Cd) pollution ranks first in soils (7.0%) and microplastics usually have a significant adsorption capacity for it, which could pose potential threats to agricultural production and human health. However, the joint toxicity of Cd and microplastics on crop growth remains largely unknown. In this study, the toxic effects of Cd2+ and two kinds of microplastic leachates, polyvinyl chloride (PVC) and low-density polyethylene (LDPE), on wheat seed germination and seedlings' growth were explored under single and combined conditions. The results showed that Cd2+ solution and two kinds of microplastic leachates stimulated the wheat seed germination process but inhibited the germination rate by 0-8.6%. The combined treatments promoted wheat seed germination but inhibited the seedlings' growth to different degrees. Specifically, the combination of 2.0 mg L-1 Cd2+ and 1.0 mgC L-1 PVC promoted both seed germination and seedlings' growth, but they synergistically increased the antioxidant enzyme activity of seedlings. The toxicity of the PVC leachate to wheat seedlings was stronger than LDPE leachate. The addition of Cd2+ could alleviate the toxicity of PVC leachate on seedlings, and reduce the toxicity of LDPE leachate on seedlings under the same concentration class combinations but aggravated stress under different concentration classes, consistent with the effect on seedlings' growth. Overall, Cd2+, PVC, and LDPE leachates have toxic effects on wheat growth, whether treated under single or combined treatments. This study has important implications for the joint toxicity of Cd2+ solution and microplastic leachates in agriculture.


Assuntos
Plântula , Triticum , Humanos , Germinação , Cádmio/toxicidade , Microplásticos , Plásticos , Polietileno , Sementes , Antioxidantes
10.
Environ Pollut ; 348: 123809, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493869

RESUMO

Numerous studies have focused on the interaction between microplastics (MPs) and phenanthrene (PHE) in aquatic environments. However, the intricate roles of aquatic humic substances (HS), which vary with environmental conditions, in influencing PHE-MP interactions are not yet fully understood. This study investigates the variable and environmentally sensitive roles of HS in modifying the interactions between PHE and polyethylene (PE) MPs under laboratory-simulated aquatic conditions with varying solution chemistry, including pH, HS types, HS concentrations, and ionic strength. Our findings show that the presence of HS significantly reduces the adsorption of PHE onto both pristine and aged PE MPs, with a more pronounced reduction observed in aged PEs. This effect is highlighted by a notable decrease in the partitioning coefficient (Kd) of PHE, which falls from 2.60 × 104 to 1.30 × 104 L/kg on MPs in the presence of HS. The study also demonstrates that alterations in the net charge of HS solutions are crucial in modifying PHE distribution onto PEs. An initial decrease in Kd values at higher pH levels is reversed when HS is introduced. Furthermore, an increase in HS concentrations is associated with lower Kd values. In conditions of higher ionic strength, the retention of PHE by HS is intensified, likely due to an enhanced salting-out effect. This research highlights the significant role of aquatic HS in modulating the distribution of PHE in MP-polluted waters, which is highly influenced by various solution chemistry factors. The findings are vital for understanding the fate of PHE in MP-contaminated aquatic environments and can contribute to refining predictive models that consider diverse solution chemistry scenarios.


Assuntos
Fenantrenos , Poluentes Químicos da Água , Microplásticos , Substâncias Húmicas/análise , Plásticos/química , Fenantrenos/análise , Polietileno , Poluentes Químicos da Água/análise , Adsorção
11.
Environ Pollut ; 345: 123502, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38316252

RESUMO

Microplastics (MPs) pose a global concern due to their ubiquitous distribution. Once in the environment, they are subject to aging, which changes their chemical-physical properties and ability to interact with organic pollutants, such as pesticides. Therefore, this study investigated the interaction of the hydrophobic herbicide terbuthylazine (TBA), which is widely used in agriculture, with artificially aged polyethylene (PE) MP (PE-MP) to understand how aging affects its sorption. PE was aged by an accelerated weathering process including UV irradiation, hydrogen peroxide, and ultrasonic treatment, and aged particles were characterized in comparison to pristine particles. Sorption kinetics were performed for aged and pristine materials, while further sorption studies with aged PE-MP included determining environmental factors such as pH, temperature, and TBA concentration. Sorption of TBA was found to be significantly lower on aged PE-MP compared to pristine particles because aging led to the formation of oxygen-containing functional groups, resulting in a reduction in hydrophobicity and the formation of negatively charged sites on oxidized surfaces. For pristine PE-MP, sorption kinetics were best described by the pseudo-second-order model, while it was intra-particle diffusion for aged PE-MP as a result of crack and pore formation. Sorption followed a decreasing trend with increasing pH, while it became less favorable at higher temperatures. The isotherm data revealed a complex sorption process on altered, heterogeneous surfaces involving hydrophobic interactions, hydrogen bonding, and π-π interactions, and the process was best described by the Sips adsorption isotherm model. Desorption was found to be low, confirming a strong interaction. However, thermodynamic results imply that increased temperatures, such as those resulting from climate change, could promote the re-release of TBA from aged PE-MP into the environment. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) confirmed TBA sorption onto PE.


Assuntos
Praguicidas , Poluentes Químicos da Água , Microplásticos/química , Plásticos/química , Praguicidas/análise , Triazinas/análise , Polietileno/química , Adsorção , Poluentes Químicos da Água/análise
12.
Sci Total Environ ; 914: 169964, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211862

RESUMO

Naturally aged microplastics (NAMPs) and arsenic (As) have been reported to coexist in and threaten potentially to soil-plant ecosystem. The research explored the combined toxic effects of NAMPs and As to lettuce (Lactuca sativa L.) growth, and the distribution, accumulation and bioavailability of As in soil aggregates. The As contaminated soil with low, medium and high concentrations (L-As, M-As, H-As) were treated with or without NAMPs, and a total of six treatments. The results displayed that, in comparison to separate treatments of L-As and M-As, the presence of NAMPs increased the total biomass of lettuce grown at these two As concentrations by 68.9 % and 55.4 %, respectively. Simultaneous exposure of NAMPs and L-As or M-As led to a decrease in As content in shoot (0.45-2.17 mg kg-1) and root (5.68-14.66 mg kg-1) of lettuce, indicating an antagonistic effect between them. In contrast, co-exposure to H-As and NAMPs showed synergistic toxicity, and the leaf chlorophyll and nutritional quality of lettuce were also reduced. NAMPs altered the ratio of different soil aggregate fractions and the distribution of bioavailable As within them, which influenced the absorption of As by lettuce. In conclusion, these direct observations assist us in enhancing the comprehend of the As migration and enrichment characteristics in soil-plant system under the influence of NAMPs.


Assuntos
Arsênio , Poluentes do Solo , Arsênio/análise , Lactuca , Microplásticos , Plásticos , Solo , Disponibilidade Biológica , Ecossistema , Poluentes do Solo/análise
13.
Chemosphere ; 350: 141067, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163463

RESUMO

Aged microplastics are ubiquitous in the aquatic environment, which inevitably accumulate metals, and then alter their migration. Whereas, the synergistic behavior and effect of microplastics and Hg(II) were rarely reported. In this context, the adsorptive behavior of Hg(II) by pristine/aged microplastics involving polystyrene, polyethylene, polylactic acid, and tire microplastics were investigated via kinetic (pseudo-first and second-order dynamics, the internal diffusion model), Langmuir, and Freundlich isothermal models; the adsorption and desorption behavior was also explored under different conditions. Microplastics aged by ozone exhibited a rougher surface attached with abundant oxygen-containing groups to enhance hydrophilicity and negative surface charge, those promoted adsorption capacity of 4-20 times increment compared with the pristine microplastics. The process (except for aged tire microplastics) was dominated by a monolayer chemical reaction, which was significantly impacted by pH, salinity, fulvic acid, and co-existing ions. Furthermore, the adsorbed Hg(II) could be effectively eluted in 0.04% HCl, simulated gastric liquids, and seawater with a maximum desorption amount of 23.26 mg/g. An artificial neural network model was used to predict the performance of microplastics in complex media and accurately capture the main influencing factors and their contributions. This finding revealed that aged microplastics had the affinity to trap Hg(II) from freshwater, whereafter it released the Hg(II) once transported into the acidic medium, the organism's gastrointestinal system, or the estuary area. These indicated that aged microplastics could be the sink or the source of Hg(II) depending on the surrounding environment, meaning that aged microplastics could be the vital carrier to Hg(II).


Assuntos
Aprendizado Profundo , Mercúrio , Poluentes Químicos da Água , Microplásticos , Plásticos , Adsorção , Poluentes Químicos da Água/análise
14.
J Hazard Mater ; 466: 133545, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244453

RESUMO

Caenorhabditis elegans was employed as model to compare reproductive toxicity between pristine and aged polylactic acid microplastics (PLA-MPs). Aged PLA-MPs induced by UV irradiation showed degradation reflected by decrease in size and alteration in morphological surface. Aged PLA-MPs also exhibited some certain changes of chemical properties compared to pristine PLA-MP. Compared with pristine PLA-MPs, more severe toxicity on reproductive capacity and gonad development was detected in 1-100 µg/L aged PLA-MPs. Meanwhile, aged PLA-MPs caused more severe enhancement in germline apoptosis and alterations in expressions of ced-9, ced-4, ced-3, and egl-1 governing cell apoptosis. In addition, aged PLA-MPs resulted in more severe increase in expression of DNA damage related genes (cep-1, mrt-2, hus-1, and clk-2) compared to pristine PLA-MPs, and the alterations in expression of ced-9, ced-4, ced-3, and egl-1 in pristine and aged PLA-MPs could be reversed by RNAi of cep-1, mrt-2, hus-1, and clk-2. Besides this, enhanced germline apoptosis in pristine and aged PLA-MPs exposed animals was also suppressed by RNAi of cep-1, mrt-2, hus-1, and clk-2. Therefore, our results suggested the more severe exposure risk of aged PLA-MPs than pristine PLA-MPs in causing reproductive toxicity, which was associated with the changed physicochemical properties and DNA damage induced germline apoptosis.


Assuntos
Caenorhabditis elegans , Microplásticos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Microplásticos/metabolismo , Plásticos/metabolismo , Poliésteres
15.
Mar Environ Res ; 195: 106367, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277815

RESUMO

Microplastics (MPs) aging in natural ecosystems are caused by solar irradiation. Photo-aged MPs in aquatic systems are a major threat to molluscs. In this study, polystyrene (PS) photo-aging was simulated using a sunlight simulator. After exposure of Crassostrea gigas to photo-aged PS, a decreased gonadosomatic index, coupled with histological alterations, suggested an inhibitory effect on the gonadal development of bivalves. As the concentration of aged PS increased, the inhibitory effects on gonadal development became more severe. The sex hormone (testosterone and estradiol) and energy metabolism (glycogen, lipid, and protein content) differences between C. gigas males and females suggested a disruption of sex hormonal homeostasis and a shift in energy allocation strategy, which may have affected reproduction, especially female oysters. In addition, the substantial downregulation of SOX-8, SOX-E, Piwi1, and TGF-ß genes may be contributing factors causing the inhibitory effect of aged PS on the gonadal development of C. gigas. This study provides an essential reference for evaluating the reproductive health risks posed by aged MPs and offers novel insights and perspectives for exploring the impact of MPs under natural conditions.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Masculino , Feminino , Microplásticos , Poliestirenos , Plásticos , Ecossistema , Crassostrea/fisiologia , Luz Solar , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
16.
Environ Res ; 245: 117803, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38043900

RESUMO

The relationship between microplastics (MPs) and human respiratory health has garnered significant attention since inhalation constitutes the primary pathway for atmospheric MP exposure. While recent studies have revealed respiratory risks associated with MPs, virgin MPs used as plastic surrogates in these experiments did not represent the MPs that occur naturally and that undergo aging effects. Thus, the effects of aged MPs on respiratory health remain unknown. We herein analyzed the interaction between inhalable aged MPs with lung surfactant (LS) extracted from porcine lungs vis-à-vis interfacial chemistry employing in-vitro experiments, and explored oxidative damage induced by aged MPs in simulated lung fluid (SLF) and the underlying mechanisms of action. Our results showed that aged MPs significantly increased the surface tension of the LS, accompanied by a diminution in its foaming ability. The stronger adsorptive capacity of the aged MPs toward the phospholipids of LS appeared to produce increased surface tension, while the change in foaming ability might have resulted from a variation in the protein secondary structure and the adsorption of proteins onto MPs. The adsorption of phospholipid and protein components then led to the aggregation of MPs in SLF, where the aged MPs exhibited smaller hydrodynamic diameters in comparison with the unaged MPs, likely interacting with biomolecules in bodily fluids to exacerbate health hazards. Persistent free radicals were also formed on aged MPs, inducing the formation of reactive oxygen species such as superoxide radicals (O2•-), hydrogen peroxide (HOOH), and hydroxyl radicals (•OH); this would lead to LS lipid peroxidation and protein damage and increase the risk of respiratory disease. Our investigation was the first-ever to reveal a potential toxic effect of aged MPs and their actions on the human respiratory system, of great significance in understanding the risk of inhaled MPs on lung health.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Suínos , Humanos , Idoso , Plásticos/toxicidade , Pulmão/metabolismo , Estresse Oxidativo , Tensoativos , Poluentes Químicos da Água/metabolismo
17.
Sci Total Environ ; 896: 166332, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37597563

RESUMO

Microplastics (MPs) has been suggested that it can greatly affect soil greenhouse gases (GHGs) emissions via altering soil physical, chemical, and biological properties. However, the difference in GHGs emissions, especially for those from coastal wetland soils, between varied aged MPs was rarely explored and the underlying mechanisms of GHGs emissions affected by the aged MPs were poorly understood. Therefore, the implications of fibrous polypropylene MPs (FPP-MPs) exposure on N2O, CO2, and CH4 emissions were examined by a 60-day soil incubation experiment. Compared with the control, the additions of un-aged FPP-MPs with both two rates (0.2 and 2 %) and aged FPP-MPs with a low rate (0.2 %) showed an insignificant effect on N2O emission, while the aged FPP-MPs added with a high rate (2 %) resulted in a remarkably increase in N2O emission, especially for those of the 30-day-aged FPP-MPs. A significant increase in CO2 emission was only observed in the 30-day-aged FPP-MPs treatments, compared with the control, and a higher addition rate produced a higher increase of CO2 emission. Regarding CH4 emission, it was significantly increased by adding aged FPP-MPs, and a longer aging period or/and a higher addition rate generated a higher degree of promotion of CH4 emission. However, compared with the CO2 emission, the quantity of CH4 emission was extremely low. These increased GHGs emissions can be ascribed to the improvements in soil physical structure and other chemical properties (e.g., pH and contents of soil organic matter and dissolved organic carbon) and enhancements in the abundances of denitrification- and carbon mineralization-related microorganisms. Overall, our results highlight the risk of elevated GHGs emissions from the soil polluted with 30-day-aged FPP-MPs, which should not be ignored as long-term aged FPP-MPs continue to increase in coastal wetland soils.

18.
J Hazard Mater ; 459: 132272, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37573824

RESUMO

The composite pollutants formed by aged polystyrene (APS) and natural organic matter are complex and harmful, which lead to the deterioration of water quality. In this work, the interaction mechanism between humic acid (HA) and APS was discussed by investigating the changes in their functional groups. Besides, a novel polyaluminum-titanium chloride composite coagulant (PATC) was prepared, and its binding behaviors with HA@APS under different pH conditions were analyzed from a microscopic perspective. It was found that at pH 4, π-π conjugation was the dominant interaction between HA and APS. And the main removal mechanism of HA@APS by PATC was surface complexation. With the increase of pH, π-π conjugation, n-π electron donor-acceptor interaction (EDA), and hydrogen bonding gradually dominated the interaction between APS and HA. At pH 7, PATC hydrolyzed to form various polynuclear Al-Ti species, which could meet the demand for different binding sites of HA@APS. Under alkaline conditions, HB and n-π EDA in HA@APS were weakened, while π-π conjugation held a dominant position again. At this time, the main coagulation mechanism of PATC changed from charge neutralization to sweeping action, accompanied by hydrogen bonding. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) have attracted the public's attention due to their potential toxicity to humans. The combined pollution of aged microplastics and humic acid (HA) will bring great harm to aquatic environment. The development of novel composite coagulants is hopeful to efficiently remove MPs and their combined pollutants. Elucidating the interactions between HA and aged MPs is helpful to understand the transformation and fate of MPs in actual environments, and to reveal the removal mechanism of composite pollutants by coagulation. The findings presented here will provide theoretical guidance for addressing the challenges of coagulation technology in treating new pollutants in practice.

19.
J Hazard Mater ; 458: 131963, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406525

RESUMO

We investigated the adsorption mechanism of 66 coexisting pharmaceuticals and personal care products (PPCPs) on microplastics treated with potassium persulfate, potassium hydroxide, and Fenton reagent for 54, 110, and 500 days. The total adsorption capacity (qe) of 66 PPCPs on 15 original microplastics was 171.8 - 1043.7 µg/g, far below that of 177 long-term aged microplastics (7114.0 - 13,114.4 µg/g). Around 69.8% of qe was primarily influenced by the total energy, energy of the highest occupied molecular orbital, and energy gap of PPCPs, calculated using the B3LYP/6-31 G* level. Furthermore, 111 aged microplastics exhibited similar total qe values. Additionally, we developed predictive models based on attenuated total reflectance Fourier transform infrared spectroscopy to predict the individual and total qe on 192 microplastics. These models, including the maximal information coefficient and gradient boosting decision tree regression, exhibited high accuracy with Rtraining2 values of 0.9772 and 0.9661, respectively, and p-values below 0.001. Spectroscopic analysis and machine learning models highlighted surface functional group alterations and the importance of the 1528-1700 cm-1 spectral region and carbon skeleton in the adsorption process. In summary, our findings contribute to understanding the adsorption of PPCPs on microplastics, particularly in the context of long-term aging effects.


Assuntos
Cosméticos , Poluentes Químicos da Água , Microplásticos , Plásticos , Adsorção , Poluentes Químicos da Água/química , Aprendizado de Máquina , Preparações Farmacêuticas
20.
Sci Total Environ ; 890: 164177, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37230355

RESUMO

Heavy metals (HMs) and microplastics (MPs) are ubiquitous in agricultural soils. Rhizosphere biofilms are important sites for HM adsorption, and biofilms are easily disturbed by soil MPs. However, the adsorption of HMs on rhizosphere biofilms induced by aged MPs is not clear. In this study, the adsorption behavior of Cd(II) on biofilms and pristine/aged polyethylene (PE/APE) was analyzed and quantified. The results showed that the adsorption amount of Cd(II) on APE was greater than that on PE, in which the oxygen-containing functional groups of APE could provide binding sites to increase the adsorption of HMs. Density functional theory (DFT) calculations revealed that the binding energy of Cd(II) onto APE (-6.00 kcal·mol-1) was much stronger than that of PE (7.11 kcal·mol-1) due to hydrogen bonding interactions and oxygen atom-metal interactions. For HM adsorption on MP biofilms, APE increased the adsorption capacity of Cd(II) by 4.7 % relative to PE. The pseudo-second-order kinetic and Langmuir models suitably described the adsorption kinetics and isothermal adsorption of Cd(II), respectively (R2 > 80 %), indicating that monolayer chemisorption dominated. However, the hysteresis indices of Cd(II) in the Cd(II)-Pb(II) system (< 1) were higher than those in the single system (> 1) due to the competitive adsorption of HMs. Overall, this study clarifies the effect of MPs on the adsorption of HMs in rhizosphere biofilms and will help researchers assess the ecological risks of HMs in soils.


Assuntos
Hominidae , Metais Pesados , Poluentes Químicos da Água , Animais , Microplásticos/química , Plásticos/química , Cádmio/química , Rizosfera , Metais Pesados/análise , Solo/química , Adsorção , Biofilmes , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA