Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39484868

RESUMO

The rapid reduction of Cr(VI) across a wide pH range, from acidic to alkaline pH conditions to stable Cr(III) species for efficient remediation of Cr(VI) pollution, has long been a challenge. Herein, we propose a new concept of in situ nanoconfinement catalysis (iNCC) for highly efficient remediation of Cr(VI) by growing nanosheets of in situ layered double hydroxide (iLDH) on the surface of Al-Mg-Fe alloy achieving chemical reduction rates of >99% in 1 min from pH 3 to 11 for 100 mg L-1 Cr(VI) with a rate constant of 201 h-1. In stark contrast, the reduction rate is less than 6% in 12 h with a rate constant of 0.77 h-1 for the pristine Al-Mg-Fe alloy. The ultrafast reduction of Cr(VI) is most likely attributed to the synergistic catalysis of Al12Mg17 and Al13Fe4 and nanoconfinement of MgAlFe-iLDH and superstable mineralization of Cr(III) by MgAlCrIII- and MgFeCrIII-iLDHs. This study demonstrates the potential of in situ nanoconfinement catalysis on redox transformation for environmental remediation.

2.
Materials (Basel) ; 17(19)2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39410445

RESUMO

Electron backscattered diffraction (EBSD) characterization was conducted on the typical regions in friction-stir-welded dissimilar Al/Mg joints of 2 mm thick sheets with/without ultrasonic assistance. The effects of ultrasonic vibration (UV) on the grain size, recrystallization mechanisms, and degree of recrystallization on both sides of the Al-Mg bonding interface and the intermetallic compounds (IMCs) were investigated. It was found that on the Mg side of the weld nugget zone (WNZ), the primary dynamic recrystallization (DRX) mechanisms were discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX), with geometric dynamic recrystallization (GDRX) playing a secondary role. On the Al side of the WNZ, CDRX was identified as the primary mechanism, with GDRX as a secondary contributor. While UV did not significantly alter the DRX mechanisms in either alloy within the WNZ, it promoted the aggregation and rearrangement of dislocations. This led to an increase in high-angle grain boundaries (HAGBs) and an enhanced degree of recrystallization in the welds. The average grain size in both the Al and Mg alloys of the WNZ followed a pattern of initially increasing and then decreasing along the thickness direction, reaching a maximum in the upper-middle part and a minimum at the bottom. The influence of UV on the average grain size in the WNZ was minimal, with only slight grain refinement observed, and the minimum refinement degree was only 0.9%. The Schmid factor (SF) on the WNZ and thermo-mechanically affected zone (TMAZ) boundary regions of the advancing side (AS) indicates that the application of UV increased the likelihood of basal slip and extension twinning in the crystal structure. In addition, UV reduced the thickness of IMCs and improved the strength of the Al-Mg bonding interface. These results suggest a higher probability of fracture along the TMAZ and WNZ boundary on the AS when UV was applied.

3.
3D Print Addit Manuf ; 11(3): e1324-e1333, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39359575

RESUMO

The microstructure, mechanical properties (tensile, fatigue, etc.) and the anisotropies of the Al-Mg alloy fabricated by wire arc additive manufacturing are studied in this work. The results show that the microstructure of the deposited alloy is composed of coarse columnar grains in the inner-layer region and fine equiaxed grains in the interlayer region. The tensile and fatigue properties exhibit strong anisotropies. The ultimate tensile strength (258 MPa), yield strength (140 MPa), elongation (21.3%), and fatigue life (2.56 × 105) of the sample along travel direction (0° direction) are the best, whereas those of the sample along the deposited direction (90° direction) are the lowest and those of the sample along 45° direction are the medium. It is found that the lowest strength and elongation of the sample in the deposited direction can be attributed to the large weak bonding areas between the deposition layers, whereas the lowest fatigue property is associated with the fatigue crack propagation along the grain boundaries of the columnar grains.

4.
Molecules ; 29(19)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39407574

RESUMO

Aluminum alloys, characterized by their low density and high mechanical strength, are widely applied in the manufacturing sector. However, the application of aluminum alloys in extreme environments presents severe corrosion challenges. Sol-gel organic coating techniques have garnered significant attention due to their excellent stability, barrier properties, and cost-effectiveness, as well as their simpler processing. Nevertheless, conventional sol-gel coatings are unable to withstand the corrosive effects of high-chloride and high-halide ion environments such as marine conditions, owing to their inherent structural defects. Therefore, this study proposes the utilization of a simple method to synthesize catechol (CA) and meta-phenylenediamine (MPD)-derived catecholamine compounds to modify sol-gel coatings. Surface characteristics of the modified coatings were analyzed using Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The thickness of the modified coating was approximately 6.8 µm. The CA/MPD-modified substance effectively densifies the sol-gel coating, enhancing its corrosion protection performance. A 3.5 wt% NaCl solution was used to simulate a marine environment, and electrochemical impedance spectroscopy (EIS) was conducted using an electrochemical workstation to evaluate the coating's protective properties over a long-term period. The results indicate that the modified coating provides protection for 3003 aluminum alloy for a minimum of 30 days under corrosive conditions, outperforming unmodified sol-gel coatings in terms of corrosion resistance.

5.
Materials (Basel) ; 17(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39336251

RESUMO

Mg-Y-Zn-Al alloys processed by the rapidly solidified ribbon consolidation (RSRC) technique are candidate materials for structural applications due to their improved mechanical performance. Their outstanding mechanical strength is attributed to solute-enriched stacking faults (SESFs), which can form cluster-arranged layers (CALs) and cluster-arranged nanoplates (CANaPs) or complete the long-period stacking ordered (LPSO) phase. The thermal stability of these solute arrangements strongly influences mechanical performance at elevated temperatures. In this study, an RSRC-processed Mg-0.9%, Zn-2.05%, Y-0.15% Al (at%) alloy was heated at a rate of 0.666 K/s up to 833 K, a temperature very close to melting point. During annealing, in situ X-ray diffraction (XRD) measurements were performed using synchrotron radiation in order to monitor changes in the structure. These in situ XRD experiments were completed with ex situ electron microscopy investigations before and after annealing. At 753 K and above, the ratio of the matrix lattice constants, c/a, decreased considerably, which was restored during cooling. This decrease in c/a could be attributed to partial melting in the volumes with high solute contents, causing a change in the chemical composition of the remaining solid material. In addition, the XRD intensity of the secondary phase increased at the beginning of cooling and then remained unchanged, which was attributed to a long-range ordering of the solute-enriched phase. Both the matrix grains and the solute-enriched particles were coarsened during the heat treatment, as revealed by electron microscopy.

6.
Angew Chem Int Ed Engl ; : e202415221, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324946

RESUMO

A zinc (Zn) metal anode paired with a vanadium oxide (VOx) cathode is a promising system for aqueous Zn-ion batteries (AZIBs); however, side reactions proliferating on the Zn anode surface and the infinite dissolution of the VOx cathode destabilise the battery system. Here, we introduce a multi-functional additive into the ZnSO4 (ZS) electrolyte, KAl(SO4)2 (KASO), to synchronise the in situ construction of the protective layer on the surface of the Zn anode and the VOx cathode. Theoretical calculations and synchrotron radiation have verified that the high-valence Al3+ plays dual roles of competing with Zn2+ for solvation and forming a Zn-Al alloy layer with a homogeneous electric field on the anode surface to mitigate the side reactions and dendrite generation. The Al-containing cathode-electrolyte interface (CEI) considerably alleviates the irreversible dissolution of the VOx cathode and the accumulation of byproducts. Consequently, the Zn||Zn cell with KASO exhibits an ultra-long cycle of 6000 h at 2 mA cm-2. Importantly, the VOx cathodes (VO2, V2O5 and NH4V4O10) in the ZS-KASO electrolyte showed excellent cycling stability, including Zn powder||VO2 cells and Zn||VO2 pouch cells. Even better, the full cell exhibits excellent cycling stability at low negative/positive (N/P) ratio of 2.83 and high mass loading (~16 mg cm-2). This study offers a straightforward and practical reference for concurrently addressing challenges at the anode and cathode of AZIBs.

7.
Materials (Basel) ; 17(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39203223

RESUMO

Friction stir welding (FSW) and ultrasonic vibration enhanced FSW (UVeFSW) experiments were conducted by using 6061-T6 Al alloy and AZ31B-H24 Mg alloy sheets of thickness 2 mm. The suitable process parameters windows were obtained for the butt joining of Al/Mg sheets. The effect of ultrasonic vibration on the macrostructure and mechanical properties of the dissimilar joints was studied. The results showed that the width of the weld nugget zone (WNZ) was enlarged to some extent and the hardness distribution in WNZ was more uniform in UVeFSW. In addition, the application of ultrasonic vibration effectively promoted the interpenetration degree of dissimilar materials in the WNZ so that the mechanical interlocking on the bonding interface of dissimilar Al/Mg materials was enhanced. The facture positions were changed from the bonding interface in FSW to the boundary between WNZ and the thermo-mechanical affected zone, and the ductile fracture zone was expanded. The highest ultimate tensile strength was 205 MPa at the process parameters set of 1200 rpm-50 mm/min in UVeFSW in this experiment. The average ultimate tensile strength of FSW/UVeFSW joints was 172.3 MPa and 184.4 MPa, respectively, and the average ultimate tensile strength was increased by 7.02% with the introduction of ultrasonic vibration.

8.
Materials (Basel) ; 17(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124373

RESUMO

This study investigated the migration patterns of oxygen in the deoxidation process of Ti-48Al alloy scrap using electromagnetic levitation (EML) technology. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were employed to analyze the oxygen distribution patterns and migration path during EML. The refining process resulted in three types of oxygen migration: (1) escape from the lattice and evaporation in the form of AlO, Al2O; (2) formation of metal oxides and remaining in the alloy melt; (3) attachment to the quartz tube wall in the form of metal oxides such as Al2O3 and Cr2O3. The oxygen content of the scrap was dropped with a deoxidation ratio of 62%. It indicated that EML can greatly promote the migration and removal of oxygen elements in Ti-Al alloy scrap.

9.
Sci Rep ; 14(1): 19023, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152151

RESUMO

Owing to their exceptional mechanical properties, the various welding wires used to combine aluminum can meet the needs of many engineering applications that call for components with both good mechanical and lightweight capabilities. This study aims to produce high-quality welds made of AA7075 aluminum alloy using the GTAW technique and various welding wires, such as ER5356, ER4043, and ER4047. The microstructure, macrohardness, and other mechanical characteristics, such as tensile strength and impact toughness, were analyzed experimentally. To check the fracture surface of the AA7075 welded joints, the specimens were examined using optical and scanning electron microscopy (SEM). A close examination of the samples that were welded with ER5356 welding wire revealed a fine grain in the weld zone (WZ). In addition, the WZ of the ER4043 and ER4047 welded samples had a coarse grain structure. Because the hardness values of the welded samples were lower in the WZ than in the base metal (BM) and heat-affected zone (HAZ), the joints filled with ER5356 welding wire provided the highest hardness values compared to other filler metals. Additionally, the ER4047 filler metal yielded the lowest hardness in the weld zone. The welding wire of ER5356 produced the greatest results for ultimate tensile stress, yield stress, welding efficiency, and strain-hardening capacity (Hc), whereas the filler metal of ER4043 produced the highest percentage of elongation. In addition, the ER4047 fracture surface morphology revealed coarser and deeper dimples than the ER5356 fine dimples in the welded joints. Finally, the highest impact toughness was obtained at joints filled with the ER4047 filler metal, whereas the lowest impact toughness was obtained at the BM.

10.
Adv Mater ; 36(39): e2407128, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39129345

RESUMO

Compared to lithium (Li) anode, the alloy/Li-alloy anodes show more compatible with sulfide solid electrolytes (SSEs), and are promising candidates for practical SSE-based all-solid-state Li batteries (ASSLBs). In this work, a porous Li-Al alloy (LiAl-p) anode is crafted using a straightforward mechanical pressing method. Various characterizations confirm the porous nature of such anode, as well as rich oxygen species on its surface. To the best knowledge, such LiAl-p anode demonstrates the best room temperature cell performance in comparison with reported Li and alloy/Li-alloy anodes in SSE-based ASSLBs. For example, the LiAl-p symmetric cells deliver a record critical current density of 6.0 mA cm-2 and an ultralong cycling of 5000 h; the LiAl-p|LiNi0.8Co0.1Mn0.1O2 full cells achieve a high areal capacity of 11.9 mAh cm-2 and excellent durability of 1800 cycles. Further in situ and ex situ experiments reveal that the porous structure can accommodate volume changes of LiAl-p and ensure its integrity during cycling; and moreover, a robust Li inorganics-rich solid electrolyte interphase can be formed originated from the reaction between SSE and surface oxygen species of LiAl-p. This study offers inspiration for designing high-performance alloy anodes by focusing on designing special architecture to alleviate volume change and constructing stable interphase.

11.
Sci Rep ; 14(1): 16999, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043708

RESUMO

This study focuses on optimizing double stir casting process parameters to enhance the tensile strength of hybrid composites comprising aluminum alloy, brown pumice, and coal ash, intended for brake disc applications. Analytical techniques including X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy were employed to characterize the composite constituents. The Taguchi method was utilized for experimental design and optimization to determine the optimal weight compositions of brown pumice and coal ash, as well as stir casting parameters (stirrer speed, pouring temperature, and stirring duration). Regression analysis was employed to develop a predictive mathematical model for the tensile strength of the hybrid composites and to assess the significance of process parameters. The optimized composite achieved a predicted tensile strength of 186.81 MPa and an experimental strength of 190.67 MPa using 7.5 vol% brown pumice, 2.5 vol% coal ash, a pouring temperature of 700 °C, stirrer speed of 500 rpm, and stirring duration of 10 min. This represents a 52.23% improvement over the as-cast aluminum alloy's tensile strength. Characterization results revealed that brown pumice and coal ash contain robust minerals (SiO2, Fe2O3, Al2O3) suitable for reinforcing metal matrices like aluminum, titanium, and magnesium. Thermogravimetric and differential thermal analyses demonstrated thermal stability up to 614.01 °C for the optimized composite, making it suitable for brake disc applications.

12.
Materials (Basel) ; 17(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38998159

RESUMO

Diesel engines in heavy-duty vehicles are predicted to maintain a stable presence in the future due to the difficulty of electrifying heavy trucks, mine equipment, and railway cars. This trend encourages the effort to develop new aluminum alloy systems with improved performance at diesel engine conditions of elevated temperature and stress combinations to reduce vehicle weight and, consequently, CO2 emissions. Aluminum alloys need to provide adequate creep resistance at ~300 °C and room-temperature tensile properties better than the current commercial aluminum alloys used for powertrain applications. The studies for improving creep resistance for aluminum casting alloys indicate that their high-temperature stability depends on the formation of high-density uniform dispersoids with low solid solubility and low diffusivity in aluminum. This review summarizes three generations of diesel engine aluminum alloys and focuses on recent work on the third-generation dispersoid-strengthened alloys. Additionally, new trends in developing creep resistance through the development of alloy systems other than Al-Si-based alloys, the optimization of manufacturing processes, and the use of thermal barrier coatings and composites are discussed. New progress on concepts regarding the thermal stability of rapidly solidified and nano-structured alloys and on creep-resistant alloy design via machine learning-based algorithms is also presented.

13.
Materials (Basel) ; 17(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38998418

RESUMO

Electromagnetic levitation (EML) is a good method for high-temperature processing of reactive materials such as titanium-aluminum (Ti-Al) alloys. In this study, the oscillation and deformation processes of Ti-48Al-2Cr alloy specimens at different high-frequency currents during the EML process were simulated using the Finite Element Method and Arbitrary Lagrangian-Eulerian (ALE) methods. The data of oscillation, stabilization time, deformation, and distribution of electromagnetic-thermal-fluid fields were finally obtained. The accuracy of the simulation results was verified by EML experiments. The results show the following: the strength and distribution of the induced magnetic field inside the molten droplet are determined by the high-frequency current; under the coupling effect of the electromagnetic field, thermal field, and fluid field, the temperature rise of electromagnetic heating is rapid, and accompanied by strong stirring, resulting in a uniform distribution of the internal temperature and a small temperature difference. Under the joint action of gravity and Lorentz force, the molten droplets are first within a damped oscillation and then tend to stabilize with time, and finally maintain the "near rhombus" shape.

14.
Nanomaterials (Basel) ; 14(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39057875

RESUMO

A phase-field model for the precipitation of Fe-Cr-Al alloy is established incorporating grain boundary (GB) effects and irradiation-accelerated diffusion. The radiation source and grain boundary effect are incorporated to broaden the applicability of the Fe-Cr-Al precipitated phase-field model. The model is firstly employed to simulate the precipitation of the Cr-rich α' phase in a single-crystal alloy. The precipitation rate and the size distribution of the precipitated phase were analyzed. Subsequently, the model is utilized to simulate segregation at GBs in a double-crystal system, analyzing the enrichment of Cr and depletion of Al near these boundaries. The simulation results are consistent with experimental observations reported in the references. Finally, the model is applied to simulate the precipitation in a polycrystalline Fe-Cr-Al system. The simulated results revealed that the presence of GBs induces the formation of localized regions with enhanced Cr and Al content as well as depleted zones adjacent to these boundaries. GBs also diminish both the quantity and precipitation rate of the formed phase within the grains.

15.
Ultrason Sonochem ; 109: 107001, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39068685

RESUMO

Tailoring the phase constitutions of the interfacial reaction layers under the assistance of ultrasonic vibration is a convenient method to fabricate high-strength Al/Cu brazing joints. In this study, 1060-Al and T2-Cu dissimilar metals were ultrasonically brazed with Zn-3Al (wt. %) filler metals. Effects of ultrasonic brazing time on the microstructure and mechanical properties of joints were investigated. Results showed that the CuZn5 intermetallic compound (IMC) layer and Cu-based diffusion layer were created on the Cu substrate surface in the joint ultrasonically brazed at 400 ℃ for 2 s. However, the CuZn5 IMC layer was gradually transformed into a thin Al4.2Cu3.2Zn0.7 IMC layer by increasing the ultrasonic vibration time to 15 s. A well-matched coherent interface was formed between the Al4.2Cu3.2Zn0.7 ternary phase and the Cu-based diffusion layer. The phase transition of the Cu-side interfacial layer correlated closely with the acoustic cavitations induced super-saturation regions near the Cu substrate surface. The measured tensile strength of the Al/Zn-3Al/Cu joint ultrasonically brazed for 15 s was 89.3 MPa, which was approximately 2.5 times higher than that brazed for 2 s, and the tensile failure mainly occurred at the interface between the Al4.2Cu3.2Zn0.7 layer and the Cu-based diffusion layer.

16.
Exploration (Beijing) ; 4(3): 20230085, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38939859

RESUMO

To overcome the overheating phenomena of electronic devices and energy components, developing advanced energy-free cooling coatings with promising radiative property seem an effective and energy-saving way. However, the further application of these coatings is greatly limited by their sustainability because of their fragile and easy contamination. Herein, it is reported that a bioinspired radiative cooling coating (BRCC) displayed sustainably efficient heat dissipation by the combination of high emittance and robust self-cleaning property. With the hierarchical porous structure constructed by multiwalled carbon nanotubes (MWCNTs), modified SiO2 and fluorosilicone (FSi) resin, the involvement of the BRCC improves the cooling performance by increasing ≈25% total heat transfer coefficient. During the abrasion and soiling tests, the BRCC-coated Al alloy heat sink always displays stable radiative cooling performance. Moreover, the simulation and experimental results both revealed that reducing surface coverage of BRCC (≈80.9%) can still keep highly cooling efficiency, leading to a cost-effective avenue. Therefore, this study may guide the design and fabrication of advanced radiative cooling coating.

17.
Materials (Basel) ; 17(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38730947

RESUMO

This study investigates the potential of the plate-shaped Zn-22 wt.% Al (Zn-22Al) alloy as an innovative energy dissipation material for seismic damping devices, since plate-shaped material is more suitable to fabricate large-scale devices for building structures. The research begins with the synthesis of Zn-22Al alloy, given its unavailability in the commercial market. Monotonic tensile tests and low-cycle fatigue tests are performed to analyze material properties and fatigue performance of plate-shaped specimens. Monotonic tensile curves and cyclic stress-strain curves, along with SEM micrographs for microstructure and fracture surface analysis, are acquired. The combined cyclic hardening material model is calibrated to facilitate finite element analysis. Experimental results reveal exceptional ductility in Zn-22Al alloy, achieving a fracture strain of 200.37% (1.11 fracture strain). Fatigue life ranges from 1126 to 189 cycles with increasing strain amplitude (±0.8% to ±2.5%), surpassing mild steel by at least 6 times. The cyclic strain-life relationships align well with the Basquin-Coffin-Manson relationship. The combined kinematic/isotropic hardening model in ABAQUS accurately predicts the hysteretic behavior of the material, showcasing the promising potential of Zn-22Al alloy for seismic damping applications.

18.
Materials (Basel) ; 17(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38591422

RESUMO

It is a challenge to polish the interior surface of a small bent pipe with complex structures and sizes less than 0.5 mm. This is because of the fact that traditional polishing methods could destroy, block, or break the small complex structures. For a small bent pipe made of aluminum alloy produced using additive manufacturing, the defects, such as adhered powders and spatters, are easy to jam the pipe without polishing, possibly resulting in catastrophic failure for aerospace applications. To overcome this challenge, a novel water jet polisher was developed using soft polymethyl methacrylate (PMMA) abrasives. After polishing a specific area, the adhered powders on the interior surface were reduced from over 140 to 2, 3, and 6 by the soft abrasives with mesh sizes of 200, 400, and 600, respectively. The surface roughness Sa was decreased from 3.41 to 0.92 µm after polishing using PMMA abrasives with a mesh size of 200. In comparison, silica abrasives were also employed to polish the small bent pipes, leading to the bent part of pipes breaking. However, this kind of failure was absent when using soft abrasives. Computational fluid dynamics calculations elucidate that a peak erosion rate of silica abrasives for a bent pipe with a turn angle of 30° is 2.18 kg/(m2·s), which is 17 times that of soft abrasives. This is why the small bent pipe was broken using silica abrasives, whereas it remained intact when polished with soft abrasives. In addition, water jet polishing has a lower erosion rate, a relatively smooth erosion curve, and less erosion energy, leaving the bent parts intact. The developed soft abrasive water jet polisher and the findings of this study suggest new possibilities for cleaning the adhered powders and spatters and polishing the interior surface of small bent pipes with complex structures.

19.
Materials (Basel) ; 17(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38255546

RESUMO

The degradation process of a red iron oxide epoxy coating on three kinds of metals under a periodic cycling exposure to 3.5 wt% NaCl solution (45 °C 12 h + 25 °C 12 h) was comparatively studied using electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) methods. The influence of the metal substrates (carbon steel, brass, and Al alloy) on the protection performance of the coating was analyzed using variations in the electrochemical and chemical parameters. The failure criteria of the coating were discussed. The results show that the coating on the three substrates presents different failure times, with the coating on steel presenting the shortest time and the coating on Al alloy the longest time. The characteristics of metal substrates and their corrosion products influence the coating failure behavior. The corrosion products with loose and hygroscopic properties of steel and brass have promoting effects on the diffusion of water through the coating. The passive film of the Al alloy substrate and the formation of salt film containing Cl- have corrosion-inhibiting effects on the substrate. Evaluation of the coating performance by |Z|0.01Hz should consider the characteristics of the metal substrates.

20.
Materials (Basel) ; 16(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005105

RESUMO

CCDR 4043 Al alloys are an outstanding candidate for producing mechanical components for automotive or aircraft engines. Two experimental environments-sustained high temperature and repeated heating-cooling-were simulated in the laboratory to replicate the actual operating conditions of engine components. This research investigated the microstructural evolution, mechanical properties, and fracture characteristics of the 4043 Al alloy manufactured through the continuous casting direct rolling (CCDR) process under different post-processing conditions. The CCDR process combines continuous casting, billet heating, and subsequent continuous rolling in a single equipment of production line, enabling the mass production of Al alloy in a cost-effective and energy-efficient manner. In the present work, the 4043 alloy was subjected to two environmental conditions: a sustained high-temperature environment (control group) and a cyclic heating-cooling environment (experimental group). The maximum temperature was set to 200 °C in the experiment. The experimental results show that, in a sustained high temperature working environment, the strength and elongation of the CCDR 4043 Al alloy tend to be stable. The overall effect involves the Al matrix softening and the spheroidization of eutectic Si caused by prolonged exposure to high temperature. This can enhance its ductility while retaining a certain level of mechanical strength. Comparatively, in the working environment of cyclic heating-cooling (thermal cycle), the direction of Si diffusion was different in each cycle, thus leading to the formation of an irregular Ai-Si eutectic structure containing precipitated Si particles of different sizes. The two compositions of Al and Si with very different thermal expansion coefficients may induce defects at the sharp points of Si particles under repeated heating-cooling, thereby reducing the strength and ductility of the material. The results of this work can confirm that the fracture behavior of 4043 Al alloys is obviously controlled by the morphology of the precipitated eutectic Si. In addition, CCDR 4043 Al alloys are not suitable to be used in working environments with a thermal cycle. In practical applications, it is necessary to add traces of special elements or to employ other methods to achieve the purpose of spheroidizing the precipitated eutectic Si and Al-Fe-Si phases to avoid the deterioration of strength and ductility under cyclic heating. To date, no other literature has explored the changes in the microstructure and mechanical properties of CCDR 4043 Al alloys across various time scales under the aforementioned working environments. In summary, the findings provide valuable insights into the effect of thermal conditions on the properties and behavior of CCDR 4043 Al alloys, offering potential applications for it in various engineering fields, such as the automotive and aerospace industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA