Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microlife ; 4: uqad024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223727

RESUMO

Cyclic AMP (cAMP) is a ubiquitous second messenger synthesized by most living organisms. In bacteria, it plays highly diverse roles in metabolism, host colonization, motility, and many other processes important for optimal fitness. The main route of cAMP perception is through transcription factors from the diverse and versatile CRP-FNR protein superfamily. Since the discovery of the very first CRP protein CAP in Escherichia coli more than four decades ago, its homologs have been characterized in both closely related and distant bacterial species. The cAMP-mediated gene activation for carbon catabolism by a CRP protein in the absence of glucose seems to be restricted to E. coli and its close relatives. In other phyla, the regulatory targets are more diverse. In addition to cAMP, cGMP has recently been identified as a ligand of certain CRP proteins. In a CRP dimer, each of the two cyclic nucleotide molecules makes contacts with both protein subunits and effectuates a conformational change that favors DNA binding. Here, we summarize the current knowledge on structural and physiological aspects of E. coli CAP compared with other cAMP- and cGMP-activated transcription factors, and point to emerging trends in metabolic regulation related to lysine modification and membrane association of CRP proteins.

2.
mBio ; 14(2): e0302822, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37017526

RESUMO

In bacteria, the most prevalent receptor proteins of 3',5'-cyclic AMP (cAMP) and 3',5'-cyclic GMP (cGMP) are found among transcription factors of the Crp-Fnr superfamily. The prototypic Escherichia coli catabolite activator protein (CAP) represents the main Crp cluster of this superfamily and is known to bind cAMP and cGMP but to mediate transcription activation only in its cAMP-bound state. In contrast, both cyclic nucleotides mediate transcription activation by Sinorhizobium meliloti Clr, mapping to cluster G of Crp-like proteins. We present crystal structures of Clr-cAMP and Clr-cGMP bound to the core motif of the palindromic Clr DNA binding site (CBS). We show that both cyclic nucleotides shift ternary Clr-cNMP-CBS-DNA complexes (where cNMP is cyclic nucleotide monophosphate) to almost identical active conformations, unlike the situation known for the E. coli CAP-cNMP complex. Isothermal titration calorimetry measured similar affinities of cAMP and cGMP binding to Clr in the presence of CBS core motif DNA (equilibrium dissociation constant for cNMP (KDcNMP], ~7 to 11 µM). However, different affinities were determined in the absence of this DNA (KDcGMP, ~24 µM; KDcAMP, ~6 µM). Sequencing of Clr-coimmunoprecipitated DNA as well as electrophoretic mobility shift and promoter-probe assays expanded the list of experimentally proven Clr-regulated promoters and CBS. This comprehensive set of CBS features conserved nucleobases that are consistent with the sequence readout through interactions of Clr amino acid residues with these nucleobases, as revealed by the Clr-cNMP-CBS-DNA crystal structures. IMPORTANCE Cyclic 3',5'-AMP (cAMP) and cyclic 3',5'-GMP (cGMP) are both long known as important nucleotide secondary messengers in eukaryotes. This is also the case for cAMP in prokaryotes, whereas a signaling role for cGMP in this domain of life has been recognized only recently. Catabolite repressor proteins (CRPs) are the most ubiquitous bacterial cAMP receptor proteins. Escherichia coli CAP, the prototypic transcription regulator of the main Crp cluster, binds both cyclic mononucleotides, but only the CAP-cAMP complex promotes transcription activation. In contrast, Crp cluster G proteins studied so far are activated by cGMP or by both cAMP and cGMP. Here, we report a structural analysis of the cAMP- and cGMP-activatable cluster G member Clr from Sinorhizobium meliloti, how binding of cAMP and cGMP shifts Clr to its active conformation, and the structural basis of its DNA binding site specificity.


Assuntos
AMP Cíclico , Sinorhizobium meliloti , AMP Cíclico/metabolismo , GMP Cíclico , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Transporte , Proteína Receptora de AMP Cíclico/metabolismo , DNA
3.
Methods Enzymol ; 647: 257-281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33482992

RESUMO

We describe the operational principle, synthesis, and applications of the enzyme-DNA chimeras. These are supramolecular constructions where a DNA spring is coupled to an enzyme and introduces artificial allosteric control of the enzyme. This method is universal and can be applied to various enzymes and proteins. In addition, this method is versatile as the stresses applied by the DNA spring on the enzymes can be fine-tuned semi-continuously and thus their enzymatic activities can be modulated gradually. We give detailed protocols for the synthesis of these molecules. Summarizing our experience with different enzymes, we explain their use for fundamental studies of conformational plasticity, as well as the potential as molecular probes.


Assuntos
Quimera , Proteínas , Regulação Alostérica , DNA/genética
4.
Chemistry ; 26(72): 17514-17524, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-32845572

RESUMO

The complexation processes of N,N'-dibutyl-1,4,5,8-naphthalene diimide (NDI) into two types of π-electron-rich molecular containers consisting of two Zn(II)-porphyrins connected by four flexible linkers of two different lengths, were characterized by means of absorption and emission spectroscopies and molecular dynamics simulation. Notably, the addition of NDI leads to a strong quenching of the fluorescence of both cages only when they are in an open conformation suitable for guest encapsulation, a situation triggered by silver(I) ions binding to the lateral triazoles. Molecular dynamics simulations confirm the fast binding of NDI, likely assisted by NDI-silver(I) interactions. Upon NDI complexation, the two porphyrin macrocycles get closer, with an optimized face to face orientation, suggesting an induced-fit mechanism through π-π interactions with the NDI aromatic cycle. Ultrafast transient absorption experiments allowed to identify the process of quenching of the Zn-porphyrin fluorescence as an efficient photoinduced electron transfer reaction between the cage porphyrin and the included NDI guest. The process occurs on fast and ultrafast time scales in the two complexes (1.5 ps and ≤300 fs) leading to a short-lived charge separated state (charge recombination lifetimes in the order of 30-40 ps). The combined computational and experimental approach used here is able to furnish a reliable model of the NDI-cage complexation mechanism and of the corresponding electron transfer reaction, attesting the allosteric control of both processes by the silver(I) ions.

5.
Eur J Med Chem ; 199: 112312, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32442851

RESUMO

Antimicrobial resistance is an imminent threat worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the "superbug" family, manifesting resistance through the production of a penicillin binding protein, PBP2a, an enzyme that provides its transpeptidase activity to allow cell wall biosynthesis. PBP2a's low affinity to most ß-lactams, confers resistance to MRSA against numerous members of this class of antibiotics. An Achilles' heel of MRSA, PBP2a represents a substantial target to design novel antibiotics to tackle MRSA threat via inhibition of the bacterial cell wall biosynthesis. In this review we bring into focus the PBP2a enzyme and examine the various aspects related to its role in conferring resistance to MRSA strains. Moreover, we discuss several antibiotics and antimicrobial agents designed to target PBP2a and their therapeutic potential to meet such a grave threat. In conclusion, we consider future perspectives for targeting MRSA infections.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Química Farmacêutica , Inibidores Enzimáticos/química , Staphylococcus aureus Resistente à Meticilina/enzimologia , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas/metabolismo
6.
Proteins ; 88(5): 710-717, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31743491

RESUMO

Conversion of the free energy of NTP hydrolysis efficiently into mechanical work and/or information by transducing enzymes sustains living systems far from equilibrium, and so has been of interest for many decades. Detailed molecular mechanisms, however, remain puzzling and incomplete. We previously reported that catalysis of tryptophan activation by tryptophanyl-tRNA synthetase, TrpRS, requires relative domain motion to re-position the catalytic Mg2+ ion, noting the analogy between that conditional hydrolysis of ATP and the escapement mechanism of a mechanical clock. The escapement allows the time-keeping mechanism to advance discretely, one gear at a time, if and only if the pendulum swings, thereby converting energy from the weight driving the pendulum into rotation of the hands. Coupling of catalysis to domain motion, however, mimics only half of the escapement mechanism, suggesting that domain motion may also be reciprocally coupled to catalysis, completing the escapement metaphor. Computational studies of the free energy surface restraining the domain motion later confirmed that reciprocal coupling: the catalytic domain motion is thermodynamically unfavorable unless the PPi product is released from the active site. These two conditional phenomena-demonstrated together only for the TrpRS mechanism-function as reciprocally-coupled gates. As we and others have noted, such an escapement mechanism is essential to the efficient transduction of NTP hydrolysis free energy into other useful forms of mechanical or chemical work and/or information. Some implementation of both gating mechanisms-catalysis by domain motion and domain motion by catalysis-will thus likely be found in many other systems.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Geobacillus stearothermophilus/enzimologia , Magnésio/química , Triptofano-tRNA Ligase/química , Triptofano/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Fenômenos Biomecânicos , Domínio Catalítico , Cátions Bivalentes , Geobacillus stearothermophilus/química , Geobacillus stearothermophilus/genética , Cinética , Magnésio/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Especificidade por Substrato , Termodinâmica , Triptofano/metabolismo , Triptofano-tRNA Ligase/genética , Triptofano-tRNA Ligase/metabolismo
7.
Curr Res Struct Biol ; 2: 191-203, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34235479

RESUMO

Studies of protein allostery increasingly reveal an involvement of the back and forth order-disorder transitions in this mechanism of protein activity regulation. Here, we investigate the allosteric mechanisms mediated by structural disorder using the structure-based statistical mechanical model of allostery (SBSMMA) that we have previously developed. We show that SBSMMA accounts for the energetics and causality of allosteric communication underlying dimerization of the BirA biotin repressor, activation of the sortase A enzyme, and inhibition of the Rac1 GTPase. Using the SBSMMA, we also show that introducing structural order or disorder in various regions of esterases can originate tunable allosteric modulation of the catalytic triad. On the basis of obtained results, we propose that operating with the order-disorder continuum allows one to establish an allosteric control scale for achieving desired modulation of the protein activity.

8.
Chemistry ; 25(6): 1481-1487, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30536482

RESUMO

The allosteric control of the receptor properties of two flexible covalent cages is reported. These receptors consist of two zinc(II) porphyrins connected by four linkers of two different sizes, each incorporating two 1,2,3-triazolyl ligands. Silver(I) ions act as effectors, responsible for an on/off encapsulation mechanism of neutral guest molecules. Binding silver(I) ions to the triazoles opens the cages and triggers the coordination of pyrazine or the encapsulation of N,N'-dibutyl-1,4,5,8-naphthalene diimide. The X-ray structure of the silver(I)-complexed receptor with short connectors is reported, revealing the hollow structure with a cavity well-defined by two eclipsed porphyrins. Rather unexpectedly, the crystallographic structure of this receptor with pyrazine as a guest molecule showed that the cavity is occupied by two pyrazines, each binding to the zinc(II) porphyrin in a monotopic fashion.

9.
Amino Acids ; 50(12): 1647-1661, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30238253

RESUMO

In all organisms, carbamoylphosphate (CP) is a precursor common to the synthesis of arginine and pyrimidines. In Escherichia coli and most other Gram-negative bacteria, CP is produced by a single enzyme, carbamoylphosphate synthase (CPSase), encoded by the carAB operon. This particular situation poses a question of basic physiological interest: what are the metabolic controls coordinating the synthesis and distribution of this high-energy substance in view of the needs of both pathways? The study of the mechanisms has revealed unexpected moonlighting gene regulatory activities of enzymes and functional links between mechanisms as diverse as gene regulation and site-specific DNA recombination. At the level of enzyme production, various regulatory mechanisms were found to cooperate in a particularly intricate transcriptional control of a pair of tandem promoters. Transcription initiation is modulated by an interplay of several allosteric DNA-binding transcription factors using effector molecules from three different pathways (arginine, pyrimidines, purines), nucleoid-associated factors (NAPs), trigger enzymes (enzymes with a second unlinked gene regulatory function), DNA remodeling (bending and wrapping), UTP-dependent reiterative transcription initiation, and stringent control by the alarmone ppGpp. At the enzyme level, CPSase activity is tightly controlled by allosteric effectors originating from different pathways: an inhibitor (UMP) and two activators (ornithine and IMP) that antagonize the inhibitory effect of UMP. Furthermore, it is worth noticing that all reaction intermediates in the production of CP are extremely reactive and unstable, and protected by tunneling through a 96 Å long internal channel.


Assuntos
Carbamoil-Fosfato/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Ligases/genética , Arginina/biossíntese , Escherichia coli/genética , Regiões Promotoras Genéticas , Pirimidinas/biossíntese
10.
Methods Mol Biol ; 1688: 391-405, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29151219

RESUMO

Mapping allosteric sites is emerging as one of the central challenges in physiology, pathology, and pharmacology. Nuclear Magnetic Resonance (NMR) spectroscopy is ideally suited to map allosteric sites, given its ability to sense at atomic resolution the dynamics underlying allostery. Here, we focus specifically on the NMR CHEmical Shift Covariance Analysis (CHESCA), in which allosteric systems are interrogated through a targeted library of perturbations (e.g., mutations and/or analogs of the allosteric effector ligand). The atomic resolution readout for the response to such perturbation library is provided by NMR chemical shifts. These are then subject to statistical correlation and covariance analyses resulting in clusters of allosterically coupled residues that exhibit concerted responses to the common set of perturbations. This chapter provides a description of how each step in the CHESCA is implemented, starting from the selection of the perturbation library and ending with an overview of different clustering options.


Assuntos
Sítio Alostérico , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Ligantes , Ligação Proteica
11.
J Bacteriol ; 200(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29109186

RESUMO

RbdA is a positive regulator of biofilm dispersal of Pseudomonas aeruginosa Its cytoplasmic region (cRbdA) comprises an N-terminal Per-ARNT-Sim (PAS) domain followed by a diguanylate cyclase (GGDEF) domain and an EAL domain, whose phosphodiesterase activity is allosterically stimulated by GTP binding to the GGDEF domain. We report crystal structures of cRbdA and of two binary complexes: one with GTP/Mg2+ bound to the GGDEF active site and one with the EAL domain bound to the c-di-GMP substrate. These structures unveil a 2-fold symmetric dimer stabilized by a closely packed N-terminal PAS domain and a noncanonical EAL dimer. The autoinhibitory switch is formed by an α-helix (S-helix) immediately N-terminal to the GGDEF domain that interacts with the EAL dimerization helix (α6-E) of the other EAL monomer and maintains the protein in a locked conformation. We propose that local conformational changes in cRbdA upon GTP binding lead to a structure with the PAS domain and S-helix shifted away from the GGDEF-EAL domains, as suggested by small-angle X-ray scattering (SAXS) experiments. Domain reorientation should be facilitated by the presence of an α-helical lever (H-helix) that tethers the GGDEF and EAL regions, allowing the EAL domain to rearrange into an active dimeric conformation.IMPORTANCE Biofilm formation by bacterial pathogens increases resistance to antibiotics. RbdA positively regulates biofilm dispersal of Pseudomonas aeruginosa The crystal structures of the cytoplasmic region of the RbdA protein presented here reveal that two evolutionarily conserved helices play an important role in regulating the activity of RbdA, with implications for other GGDEF-EAL dual domains that are abundant in the proteomes of several bacterial pathogens. Thus, this work may assist in the development of small molecules that promote bacterial biofilm dispersal.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Clonagem Molecular , Cristalografia , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Pseudomonas aeruginosa/genética
12.
Proc Natl Acad Sci U S A ; 114(8): 1904-1909, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28174273

RESUMO

V(D)J recombination is initiated by the recombination-activating gene (RAG) recombinase, consisting of RAG-1 and RAG-2 subunits. The susceptibility of gene segments to cleavage by RAG is associated with histone modifications characteristic of active chromatin, including trimethylation of histone H3 at lysine 4 (H3K4me3). Binding of H3K4me3 by a plant homeodomain (PHD) in RAG-2 stimulates substrate binding and catalysis, which are functions of RAG-1. This has suggested an allosteric mechanism in which information regarding occupancy of the RAG-2 PHD is transmitted to RAG-1. To determine whether the conformational distribution of RAG is altered by H3K4me3, we mapped changes in solvent accessibility of cysteine thiols by differential isotopic chemical footprinting. Binding of H3K4me3 to the RAG-2 PHD induces conformational changes in RAG-1 within a DNA-binding domain and in the ZnH2 domain, which acts as a scaffold for the catalytic center. Thus, engagement of H3K4me3 by the RAG-2 PHD is associated with dynamic conformational changes in RAG-1, consistent with allosteric control by active chromatin.


Assuntos
Domínio Catalítico , Cromatina/metabolismo , Genes RAG-1/fisiologia , Histonas/metabolismo , Proteínas de Plantas/química , VDJ Recombinases/química , Regulação Alostérica , Sítios de Ligação , Cisteína/metabolismo , DNA/metabolismo , Metilação de DNA , Lisina/metabolismo , Fenômenos Fisiológicos Vegetais , Ligação Proteica , Conformação Proteica , Recombinação V(D)J
13.
ACS Synth Biol ; 6(2): 357-366, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-27794600

RESUMO

Genetic switches in which the activity of T7 RNA polymerase (RNAP) is directly regulated by external signals are obtained with an engineering strategy of splitting the protein into fragments and using regulatory domains to modulate their reconstitutions. Robust switchable systems with excellent dark-off/light-on properties are obtained with the light-activatable VVD domain and its variants as regulatory domains. For the best split position found, working switches exploit either the light-induced interactions between the VVD domains or allosteric effects. The split fragments show high modularity when they are combined with different regulatory domains such as those with chemically inducible interaction, enabling chemically controlled switches. To summarize, the T7 RNA polymerase-based switches are powerful tools to implement light-activated gene expression in different contexts. Moreover, results about the studied split positions and domain organizations may facilitate future engineering studies on this and on related proteins.


Assuntos
Bacteriófago T7/genética , RNA Polimerases Dirigidas por DNA/genética , Proteínas Virais/genética , Escuridão , Engenharia Genética , Luz , Domínios Proteicos/genética
14.
Elife ; 52016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27938660

RESUMO

Two-component systems (TCS) are protein machineries that enable cells to respond to input signals. Histidine kinases (HK) are the sensory component, transferring information toward downstream response regulators (RR). HKs transfer phosphoryl groups to their specific RRs, but also dephosphorylate them, overall ensuring proper signaling. The mechanisms by which HKs discriminate between such disparate directions, are yet unknown. We now disclose crystal structures of the HK:RR complex DesK:DesR from Bacillus subtilis, comprising snapshots of the phosphotransfer and the dephosphorylation reactions. The HK dictates the reactional outcome through conformational rearrangements that include the reactive histidine. The phosphotransfer center is asymmetric, poised for dissociative nucleophilic substitution. The structural bases of HK phosphatase/phosphotransferase control are uncovered, and the unexpected discovery of a dissociative reactional center, sheds light on the evolution of TCS phosphotransfer reversibility. Our findings should be applicable to a broad range of signaling systems and instrumental in synthetic TCS rewiring.


Assuntos
Bacillus subtilis/enzimologia , Histidina Quinase/química , Histidina Quinase/metabolismo , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Fosforilação , Conformação Proteica , Processamento de Proteína Pós-Traducional
15.
Proc Natl Acad Sci U S A ; 113(40): E5783-E5791, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698129

RESUMO

Nitrogenase catalyzes the ATP-dependent reduction of dinitrogen (N2) to two ammonia (NH3) molecules through the participation of its two protein components, the MoFe and Fe proteins. Electron transfer (ET) from the Fe protein to the catalytic MoFe protein involves a series of synchronized events requiring the transient association of one Fe protein with each αß half of the α2ß2 MoFe protein. This process is referred to as the Fe protein cycle and includes binding of two ATP to an Fe protein, association of an Fe protein with the MoFe protein, ET from the Fe protein to the MoFe protein, hydrolysis of the two ATP to two ADP and two Pi for each ET, Pi release, and dissociation of oxidized Fe protein-(ADP)2 from the MoFe protein. Because the MoFe protein tetramer has two separate αß active units, it participates in two distinct Fe protein cycles. Quantitative kinetic measurements of ET, ATP hydrolysis, and Pi release during the presteady-state phase of electron delivery demonstrate that the two halves of the ternary complex between the MoFe protein and two reduced Fe protein-(ATP)2 do not undergo the Fe protein cycle independently. Instead, the data are globally fit with a two-branch negative-cooperativity kinetic model in which ET in one-half of the complex partially suppresses this process in the other. A possible mechanism for communication between the two halves of the nitrogenase complex is suggested by normal-mode calculations showing correlated and anticorrelated motions between the two halves.


Assuntos
Trifosfato de Adenosina/química , Molibdoferredoxina/química , Complexos Multiproteicos/química , Oxirredutases/química , Trifosfato de Adenosina/metabolismo , Animais , Transporte de Elétrons , Hidrólise , Cinética , Molibdoferredoxina/metabolismo , Complexos Multiproteicos/metabolismo , Fixação de Nitrogênio , Oxirredutases/metabolismo , Ligação Proteica , Salmão/metabolismo
16.
Structure ; 24(10): 1766-1777, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27667691

RESUMO

The I domain of HslU sits above the AAA+ ring and forms a funnel-like entry to the axial pore, where protein substrates are engaged, unfolded, and translocated into HslV for degradation. The L199Q I-domain substitution, which was originally reported as a loss-of-function mutation, resides in a segment that appears to adopt multiple conformations as electron density is not observed in HslU and HslUV crystal structures. The L199Q sequence change does not alter the structure of the AAA+ ring or its interactions with HslV but increases I-domain susceptibility to limited endoproteolysis. Notably, the L199Q mutation increases the rate of ATP hydrolysis substantially, results in slower degradation of some proteins but faster degradation of other substrates, and markedly changes the preference of HslUV for initiating degradation at the N or C terminus of model substrates. Thus, a structurally dynamic region of the I domain plays a key role in controlling protein degradation by HslUV.


Assuntos
Trifosfato de Adenosina/química , Endopeptidase Clp/química , Endopeptidase Clp/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/enzimologia , Mutação , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Hidrólise , Microscopia Eletrônica , Modelos Moleculares , Domínios Proteicos , Proteólise , Especificidade por Substrato
17.
Angew Chem Int Ed Engl ; 55(35): 10512-7, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27436617

RESUMO

The nanomechanical switch 1 with its three orthogonal binding motifs-the zinc(II) porphyrin, azaterpyridine, and shielded phenanthroline binding station-is quantitatively and reversibly toggled back and forth between four different switching states by means of addition and removal of appropriate metal-ion inputs. Two of the four switching stages are able to initiate catalytic transformations (ON1, ON2), while the two others shut down any reaction (OFF1, OFF2). Thus, in a cyclic four-state switching process the sequential transformation A+B+C→AB+C→ABC can be controlled, which proceeds stepwise along the switching states OFF1→ON1 (click reaction: A+B→AB)→OFF2→ON2 (Michael addition: AB+C→ABC)→OFF1. Two consecutive cycles of the sequential catalysis were realized without loss in activity in a reaction system with eleven different components.

18.
C R Biol ; 338(6): 372-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25869676

RESUMO

In this review, I compare the development of Monod's intellectual leadership in two fields, the regulation of enzyme biosynthesis and the control of enzymatic activity. I characterize the comings and goings between his scrupulous analysis of a given model system, his ability to compare the outcome with very distant experimental results, his audacity in formulating, then a physical interpretation of this convergence through a unifying mechanism. Finally, I briefly discuss how his attitude has durably impacted the whole field of molecular biology.


Assuntos
Enzimas/biossíntese , Biologia Molecular/história , Regulação Alostérica , História do Século XX , História do Século XXI , Humanos
19.
J Biochem ; 156(6): 323-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25092436

RESUMO

Glycine riboswitches contain two aptamers and turn on the expression of downstream genes in bacteria. Although full-length glycine riboswitches were shown to exhibit no glycine-binding cooperativity, the truncated glycine riboswitches were confirmed to bind two glycine molecules cooperatively. Thorough understanding of the ligand-binding cooperativity may shed light on the molecular basis of the cooperativity and help design novel intricate biosensing genetic circuits for application in synthetic biology. A previously proposed sequential model does not readily provide explanation for published data showing a deleterious mutation in the first aptamer inhibiting the glycine binding of the second one. Using the glycine riboswitch from Vibrio cholerae as a model system, we have identified a region in the first aptamer that modulates the second aptamer function especially in the shortened glycine riboswitch. Importantly, this modulation can be rescued by the addition of a complementary oligodeoxynucleotide, demonstrating the feasibility of developing this system into novel genetic circuits that sense both glycine and a DNA signal.


Assuntos
Aptâmeros de Nucleotídeos/genética , Glicina/metabolismo , Riboswitch/genética , Vibrio cholerae/genética , Regulação Alostérica , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , DNA/metabolismo , Glicina/genética , Ligantes , Conformação de Ácido Nucleico , RNA Mensageiro/genética
20.
Arch Biochem Biophys ; 545: 22-32, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24434004

RESUMO

GMP synthetase is the glutamine amidotransferase that catalyzes the final step in the guanylate branch of de novo purine biosynthesis. Conformational changes are required to efficiently couple distal active sites in the protein; however, the nature of these changes has remained elusive. Structural information derived from both limited proteolysis and sedimentation velocity experiments support the hypothesis of nucleotide-induced loop- and domain-closure in the protein. These results were combined with information from sequence conservation and precedents from other glutamine amidotransferases to develop the first structural model of GMPS in a closed, active state. In analyzing this Catalytic model, an interdomain salt bridge was identified residing in the same location as seen in other triad glutamine amidotransferases. Using mutagenesis and kinetic analysis, the salt bridge between H186 and E383 was shown to function as a connection between the two active sites. Mutations at these residues uncoupled the two half-reactions of the enzyme. The chemical events of nucleotide binding initiate a series of conformational changes that culminate in the establishment of a tunnel for ammonia as well as an activated glutaminase catalytic site. The results of this study provide a clearer understanding of the allostery of GMPS, where, for the first time, key substrate binding and interdomain contacts are modeled and analyzed.


Assuntos
Amônia/metabolismo , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo , Escherichia coli/enzimologia , Regulação Alostérica , Carbono-Nitrogênio Ligases/genética , Domínio Catalítico , Escherichia coli/química , Escherichia coli/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteólise , Purinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA