Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.819
Filtrar
1.
J Environ Sci (China) ; 149: 374-385, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181650

RESUMO

Electrocatalytic reduction of nitrate to ammonia has been considered a promising and sustainable pathway for pollutant treatment and ammonia has significant potential as a clean energy. Therefore, the method has received much attention. In this work, Cu/Fe 2D bimetallic metal-organic frameworks were synthesized by a facile method applied as cathode materials without high-temperature carbonization. Bimetallic centers (Cu, Fe) with enhanced intrinsic activity demonstrated higher removal efficiency. Meanwhile, the 2D nanosheet reduced the mass transfer barrier between the catalyst and nitrate and increased the reaction kinetics. Therefore, the catalysts with a 2D structure showed much better removal efficiency than other structures (3D MOFs and Bulk MOFs). Under optimal conditions, Cu/Fe-2D MOF exhibited high nitrate removal efficiency (87.8%) and ammonium selectivity (89.3%) simultaneously. The ammonium yielded up to significantly 907.2 µg/(hr·mgcat) (7793.8 µg/(hr·mgmetal)) with Faradaic efficiency of 62.8% at an initial 100 mg N/L. The catalyst was proved to have good stability and was recycled 15 times with excellent effect. DFT simulations confirm the reduced Gibbs free energy of Cu/Fe-2D MOF. This study demonstrates the promising application of Cu/Fe-2D MOF in nitrate reduction to ammonia and provides new insights for the design of efficient electrode materials.


Assuntos
Amônia , Cobre , Ferro , Estruturas Metalorgânicas , Nitratos , Poluentes Químicos da Água , Amônia/química , Cobre/química , Nitratos/química , Estruturas Metalorgânicas/química , Ferro/química , Poluentes Químicos da Água/química , Catálise , Modelos Químicos , Oxirredução , Cinética
2.
Plant Cell Environ ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39351842

RESUMO

Adaptation to abiotic stress is critical for the survival of perennial tree species. Salinity affects plant growth and productivity by interfering with major biosynthetic processes. Detrimental effects of salinity may vary between different plant tissues and cell types. However, spatial molecular mechanisms controlling plant responses to salinity stress are not yet thoroughly understood in perennial trees. We used laser capture microdissection in clones of Populus tremula x alba to isolate palisade and vascular cells of intermediary leaf from plants exposed to 150 mM NaCl for 10 days, followed by a recovery period. Cell-specific changes in proteins and metabolites were determined. Salinity induced a vascular-specific accumulation of proteins associated with photorespiration, and the accumulation of serine, 3-phosphoglycerate and NH4 + suggesting changes in N metabolism. Accumulation of the GLUTAMINE SYNTHETASE 2 protein, and increased GS1.1 gene expression, indicated that NH4 + produced in photorespiration was assimilated to glutamine, the main amino acid translocated in Populus trees. Further analysis of total soluble proteins in stems and roots showed the accumulation of bark storage proteins induced by the salinity treatments. Collectively, our results suggest that the salt-induced photorespiration in vascular cells mediates N-reallocation in Populus, an essential process for the adaptation of trees to adverse conditions.

3.
Ecology ; : e4439, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358884

RESUMO

The loss of consumers threatens the integrity of ecological systems, but the mechanisms underlying the effects on communities and ecosystems remain difficult to predict. This is, in part, due to the complex roles that consumers play in those systems. Here, we highlight this complexity by quantifying two mechanisms by which molluscan grazers-typically thought of as consumers of their algal resources-facilitate algae on rocky shores. Initial observations in high-zone tide pools revealed that both water-column ammonium concentrations and photosynthetic biomass were higher in pools containing higher densities of grazers, suggesting that local-scale nutrient recycling by the grazers could be enhancing algal biomass. We assessed this possibility by experimentally manipulating grazer abundances at the level of whole tide pools but controlling access of those grazers to experimental plots within each pool. Contrary to predictions that algal biomass inside grazer exclusions would increase as grazer abundances in the pools increased, we found that algal biomass inside grazer-exclusion fences was unaffected by grazer abundances. Instead, the consumptive effects of grazers that were evident at low grazer abundances transitioned to facilitative effects as experimentally manipulated grazer abundances increased. This finding suggested that these positive interactions were associated with the physical presence of grazers and not just grazers' effects on nutrient availability. Subsequent experiments highlighted the potential role of "slime"-the pedal mucous trails left behind as the mollusks crawl on the substratum-in promoting the recruitment of algae and thereby mediating a spatial subsidy of new organic matter into the system. Furthermore, different grazer groups contributed disproportionately to ammonium excretion (i.e., turban snails) versus slime production (i.e., littorine snails), suggesting a potential role for grazer diversity. Our work highlights the complex ways in which consumers affect their resources, including multiple, complementary mechanisms by which these grazers facilitate the algae they consume.

4.
mBio ; : e0216924, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360821

RESUMO

Nitrification is a core process in the global nitrogen (N) cycle mediated by ammonia-oxidizing microorganisms, including ammonia-oxidizing archaea (AOA) as a key player. Although much is known about AOA abundance and diversity across environments, the genetic drivers of the ecophysiological adaptations of the AOA are often less clearly defined. This is especially true for AOA within the genus Nitrosocosmicus, which have several unique physiological traits (e.g., high substrate tolerance, low substrate affinity, and large cell size). To better understand what separates the physiology of Nitrosocosmicus AOA, we performed comparative genomics with genomes from 39 cultured AOA, including five Nitrosocosmicus AOA. The absence of a canonical high-affinity type ammonium transporter and typical S-layer structural genes was found to be conserved across all Nitrosocosmicus AOA. In agreement, cryo-electron tomography confirmed the absence of a visible outermost S-layer structure, which has been observed in other AOA. In contrast to other AOA, the cryo-electron tomography highlighted the possibility that Nitrosocosmicus AOA may possess a glycoprotein or glycolipid-based glycocalyx cell covering outer layer. Together, the genomic, physiological, and metabolic properties revealed in this study provide insight into niche adaptation mechanisms and the overall ecophysiology of members of the Nitrosocosmicus clade in various terrestrial ecosystems. IMPORTANCE: Nitrification is a vital process within the global biogeochemical nitrogen cycle but plays a significant role in the eutrophication of aquatic ecosystems and the production of the greenhouse gas nitrous oxide (N2O) from industrial agriculture ecosystems. While various types of ammonia-oxidizing microorganisms play a critical role in the N cycle, ammonia-oxidizing archaea (AOA) are often the most abundant nitrifiers in natural environments. Members of the genus Nitrosocosmicus are one of the prevalent AOA groups detected in undisturbed terrestrial ecosystems and have previously been reported to possess a range of physiological characteristics that set their physiology apart from other AOA species. This study provides significant progress in understanding these unique physiological traits and their genetic drivers. Our results highlight how physiological studies based on comparative genomics-driven hypotheses can contribute to understanding the unique niche of Nitrosocosmicus AOA.

5.
Vet Res Commun ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365554

RESUMO

Didecyl dimethyl ammonium bromide (DDAB) is a quaternary ammonium compound used for the sanitation of drinking water of poultry and water pipelines in farms. There is scarcity of information on the toxicology of DDAB in poultry. This study set out to profile the acute toxicity of DDAB in poultry. Issa brown pullets (n = 34) as experimental birds were orally administered varying doses of DDAB, using a syringe, after 12 h fasting, and observed for toxicity over 14 days. Control birds (n = 10) were similarly given normal saline orally. Toxic signs in the experimental birds were depression, anorexia, adipsia, vocalization with foamy salivation, later emaciation and death. The LD50 was calculated as 458.00 mg/kg. Birds given 2151 mg/kg DDAB died within 24 h, while those treated with 516 mg/kg succumbed on Day 14. At necropsy, grossly, there were necrosis and sloughing of the oesophagus and intestines, pale and friable liver, congested and necrotic lungs, friable popped out kidneys and emaciated carcasses. Microscopically, desquamation and necrosis of the oesophagus, crop, proventriculus and intestines and disruption of the koilin membrane of the gizzard were observed. The lungs, liver and kidneys were congested with mononuclear cellular infiltration plus loss of architecture in the lungs and liver. In conclusion, at high doses, DDAB caused significant toxicity in chickens and these findings provide new information which could serve as a guide in the diagnosis of quaternary ammonium toxicity in chicken. The results could be extrapolated to other quaternary ammonium toxicities in related avian species.

6.
Water Res ; 268(Pt A): 122575, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39383805

RESUMO

Bacteria belonging to the order Fimbriimonadales are frequently detected in anammox reactors. However, the principal functions of these bacteria and their potential contribution to nitrogen removal remain unclear. In this study, we aimed to systematically validate the roles of Fimbriimonadales in an anammox reactor fed with synthetic wastewater. High-throughput 16S rRNA gene sequencing analysis revealed that heterotrophic denitrifying bacteria (HDB) were the most abundant bacterial group at the initial stage of reactor operation and the abundance of Fimbriimonadales members gradually increased to reach 38.8 % (day 196). At the end of reactor operation, Fimbriimonadales decreased to 0.9 % with an increase in anammox bacteria. Correlation analysis demonstrated nitrate competition between Fimbriimonadales and HDB during reactor operation. Based on the phylogenetic analysis, the Fimbriimonadales sequences acquired from the reactor were clustered into three distinct groups, which included the sequences obtained from other anammox reactors. Metagenome-assembled genome analysis of Fimbriimonadales allowed the identification of the genes narGHI and nrfAH, responsible for dissimilatory nitrate reduction to ammonium (DNRA), and nrt and nasA, responsible for nitrate and nitrite transport. In a simulation based on mass balance equations and quantified bacterial groups, the total nitrogen concentrations in the effluent were best predicted when Fimbriimonadales was assumed to perform DNRA (R2 = 0.70 and RMSE = 18.9). Moreover, mass balance analysis demonstrated the potential contribution of DNRA in enriching anammox bacteria and promoting nitrogen removal. These results prove that Fimbriimonadales compete with HDB for nitrate utilization through DNRA in the anammox reactor under non-exogenous carbon supply conditions. Overall, our findings suggest that the DNRA pathway in Fimbriimonadales could enhance anammox enrichment and nitrogen removal by providing substrates (nitrite and/or ammonium) for anammox bacteria.

7.
J Vet Intern Med ; 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39368059

RESUMO

BACKGROUND: Minimally invasive approaches are the standard for treatment of upper urinary tract uroliths in humans. OBJECTIVE: To describe the medical dissolution of upper urinary tract uroliths in a series of dogs and report clinical outcomes. ANIMALS: 6 female dogs (9 kidneys). METHODS: Retrospective case series. A review of medical records in dogs that underwent medical dissolution of upper urinary tract uroliths utilizing diet, administration of antibiotics, and double-pigtail ureteral stent(s) placement, when indicated, was performed. Medical management was generally continued for 4 weeks beyond urolith dissolution. Information on biochemical, microbiological, imaging, and clinical outcomes before and after dissolution were recorded. RESULTS: Six dogs (9 kidneys) were included with bilateral (3) or unilateral (3) nephrolithiasis, ureterolithiasis, or a combination. A ureteral stent(s) was placed endoscopically in 5/6 dogs (6/9 kidneys) for obstructive ureterolithiasis (n = 5) or a nonobstructive massive nephrolith (n = 1). All dogs had a positive urine culture of Staphylococcus pseudintermedius with a median urine pH of 7.25 (range, 6.5-8) and 4/5 had pyonephrosis. All dogs had initial evidence of urolith dissolution at a median of 1.1 months (range, 0.42-5.9), with complete dissolution of ureteroliths at a median of 3.9 months (range, 1.5-7.6), nephroliths at 5.3 months (range, 1.5-7.6), and lower urinary tract uroliths at 0.87 months (range, 0.42-5.9). Stents were removed in 3/6 once dissolution was documented. The median follow-up time was 519 days (range, 177-2492 days). CONCLUSION AND CLINICAL IMPORTANCE: Medical dissolution and decompression of upper urinary tract struvite uroliths should be considered a minimally invasive treatment for dogs before more invasive options.

8.
Water Res ; 267: 122490, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39368186

RESUMO

The ammonium (NH4+) removal efficiency in constructed wetlands (CWs) is often limited by insufficient oxygen. In this study, an extract of Eucalyptus robusta Smith leaves was used to prepare multivalent manganese oxides (MVMOs) as substrates, which were used to drive manganese oxide (MnOx) reduction coupled to anaerobic NH4+ oxidation (Mnammox). To investigate the effects and mechanisms of MVMOs on ammonium nitrogen (NH4+-N) removal, four laboratory-scale CWs (0 %/5 %/15 %/25 % volume ratios of MVMOs) were set up and operated as continuous systems. The results showed that compared to controlled C-CW (0 % MVMOs), Mn25-CW (25 % MVMOs) improved the average NH4+-N removal efficiency from 24.31 % to 80.51 %. Furthermore, N2O emissions were reduced by 81.12 % for Mn25-CW. Isotopic tracer incubations provided direct evidence of Mnammox occurrence in Mn-CWs, contributing to 18.05-43.64 % of NH4+-N removal, primarily through the N2-producing pathway (73.54-90.37 %). Notably, batch experiments indicated that Mn(III) played a predominant role in Mnammox. Finally, microbial analysis revealed the highest abundance of the nitrifying bacteria Nitrospira and Mn-cycling bacteria Pseudomonas, Geobacter, Anaeromyxobacter, Geothrix and Novosphingobium in Mn25-CW, corresponding to its superior NH4+-N removal efficiency. The enhancement of NH4+ oxidation, first to hydroxylamine and then to nitrite, in Mn25-CW was attributed to the upregulation of ammonia monooxygenase genes (amoABC and hao). This study enhanced our understanding of Mnammox and provided further support for the use of manganese oxide substrates in CWs for efficient NH4+-N removal.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39374865

RESUMO

The whiteleg marine shrimp Penaeus vannamei, originally from the Eastern Pacific Ocean, now inhabits tropical waters across Asia and Central and Southern America. This benthic species exhibits rapid growth, wide salinity and temperature tolerance, and disease resistance. These physiological traits have led to extensive research on its osmoregulatory mechanisms, including next-generation sequencing, transcriptomic analyses, and lipidomic responses. In crustaceans, osmotic and ionic homeostasis is primarily maintained by the membrane-bound metalloenzyme (Na+, K+)-ATPase. However, little is known about how various ligands modulate this enzyme in P. vannamei. Here, we examined the kinetic characteristics of the gill (Na+, K+)-ATPase to get biochemical insights into its modulation. A prominent immunoreactive band of ~120 kDa, corresponding to the (Na+, K+)-ATPase alpha-subunit, was identified. The enzyme exhibited two ATP hydrolyzing sites with K0.5 = 0.0003 ±â€¯0.00002 and 0.05 ±â€¯0.003 mmol L-1 and was stimulated by low sodium ion concentrations. Potassium and ammonium ions also stimulated enzyme activity with similar K0.5 values of 0.08 ±â€¯0.004 and 0.06 ±â€¯0.003 mmol L-1, respectively. Ouabain inhibition profile suggested a single enzyme isoform with a KI value of 2.10 ±â€¯0.16 mmol L-1. Our findings showed significant kinetic differences in the (Na+, K+)-ATPase in Penaeus vannamei compared to marine and freshwater crustaceans. We expect our results to enhance understanding of the modulation of gill (Na+, K+)-ATPase in Penaeus vannamei and to provide a valuable tool for studying the shrimp's biochemical acclimation to varying salinity conditions.

10.
Water Res ; 266: 122537, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39378696

RESUMO

NH4+ is an ion with versatile potential; however, the release of wastewater containing this component, regardless of its high or low concentration, causes severe eutrophication in aquatic systems and contaminates numerous manufacturing processes. Thus, this study developed a sustainable method that can simultaneously remove, recover NH4+, polish water, oxidize organic matter, and yet release a material that can still be used as fertilizer. Regarding NH4+ removal, FeP400 rapidly exhibited an exceptional NH4+ uptake capacity (343.5 mg g-1) within 8 min, even in dairy processing wastewater with high NH4+ concentrations and diverse co-existing components. FeP400 could oxidize organic compounds spontaneously to remove TOC, indirectly enhancing its NH4+ uptake up to 33.5 % through charge balance mechanisms. The adsorption process involved both chemical (i.e., double-salt precipitation) and physical mechanisms (i.e., H-bonding and electrostatic interaction), as confirmed by thermodynamics, FT-IR, and XPS analyses. Regarding recovery, FeP400 can be reused for over 10 cycles with high removal (81 %) and NH4+ recovery (88 %), a significant improvement over conventional options. FeP400 also performed efficiently under flowing conditions using low-range NH4+ and TOC samples over 10 cycles, polishing not only 34.1 L of water with undetected NH4+, neutral pH, and extremely low TOC but also effectively recovering the NH4+ uptake at an economical cost. Lastly, its environmentally friendly nature, which contains essential nutrients for plant growth, further enhances its recyclability after release. Thus, FeP400 is believed to offer a transformative, sustainable, and highly efficacious solution to the NH4+contamination and critical ultrapure water issues that industries urgently address.

11.
Sci Total Environ ; 954: 176674, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39368503

RESUMO

Ammonium sulfate and dinotefuran are widely used in agricultural practices; however, limited knowledge exists regarding the potential risks associated with their co-exposure. In this study, the impact of ammonium sulfate on the degradation of dinotefuran in four soils was investigated, and the formation of the main metabolites UF, DN, MNG, and NG was also determined. The underlying mechanisms were explored by the impact of ammonium sulfate on soil physicochemical properties as well as soil microorganisms. The half-life of dinotefuran sole exposure in soils were determined between 27.47 and 60.05 days. Co-exposure of ammonium sulfate significantly impeded the degradation of dinotefuran, resulting in 1.70-5.05 times longer half-life, reduced the content of the metabolites and changed their composition. Ammonium sulfate induced significant alterations in the structure and dominance of bacterial communities in the soils. The reduced relative abundance of Bacteroidota, Proteobacteria and Chloroflexi phyla related to dinotefuran degradation. Ammonium sulfate also led to a decrease in soil pH and organic matter content, which were negatively correlated with the degradation. PLS-SEM analysis revealed soil microbial diversity had a significant impact on the degradation of dinotefuran. The findings serve as a cautionary note regarding the risks of co-exposure to fertilizers and pesticides.

12.
Sci Rep ; 14(1): 23175, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369104

RESUMO

In this study, experimental reactors for cathodic nitrogen plasma electrolysis were designed by the composition of galvanic (voltaic) and electrolytic cells with wide and narrow connectors filled with tap water and agar solutions. The designed reactor can be used to simultaneously perform and manage nitrification in acidic and alkaline environments. According to the reactor's performance, it can be installed on the irrigation system and used depending on the soil pH of the fields for delivering water and nitrogen species that are effective in growth. The nitrification process was investigated by choosing the optimal reactor with a wide connector based on different changes in oxidation-reduction potential and pH on the anode and cathode sides. The nitrite concentration changed directly with ammonium and nitrate concentrations on the cathode side. It changed inversely and directly with ammonium and nitrate concentrations on the anode side respectively. Nitrite concentration decreased from 5.387 ppm with water connector, to 0.326 ppm with 20% agar solution, and 0.314 ppm with 30% agar solution connectors on the anode side. It increased from 0 ppm to 0.191 ppm with a water connector, 0.405 ppm with 20% agar solution, and 7.454 ppm with 30% agar solution connectors on the cathode side.

13.
Sci Total Environ ; 954: 176711, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366566

RESUMO

Electrolytic manganese residue (EMR) and CO2 emissions from the electrolytic manganese metal (EMM) production process present significant challenges to achieving cleaner production within the industry. Given the high capacity for CO2 sequestration and the stability of the sequestered forms, CO2 mineralization methods utilizing minerals or industrial residues have garnered considerable research interest. The efficacy of such methods is fundamentally dependent on the properties of the materials employed. EMR, due to its calcium sulfate dihydrate (CaSO4·2H2O) content, possesses an intrinsic potential for CO2 solidification. In this study, we propose a novel method for CO2 mineralization utilizing EMR, coupled with NH3·H2O recycling. Experimental results indicated that under conditions of a reaction temperature of 55 °C and a pH of approximately 8, each ton of EMR can sequester 0.16 t of CO2, with equilibrium achieved within 10 min. The mineralization mechanism was elucidated using SEM, TG curves, and XRD analyses, which revealed that Ca2+ ions are initially leached from CaSO4·2H2O in the EMR, subsequently precipitating with CO32- ions to form CaCO3. This CaCO3 layer effectively covers the surface of CaSO4·2H2O, inhibiting further Ca2+ release and stabilizing the reaction equilibrium. Furthermore, the ammonia in the solution is regenerated into NH3·H2O, facilitating its reuse and preventing secondary pollution. The utilization of EMR for CO2 mineralization not only mitigates carbon emissions in the EMM production process but also promotes environmentally sustainable practices in the industry. This study highlights a promising pathway towards achieving carbon neutrality and cleaner production in electrolytic manganese production.

14.
Front Plant Sci ; 15: 1427720, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39385989

RESUMO

Improving vegetable yield and optimizing its quality through nutrient management have long been central to plant nutrition and horticultural science. Copper (Cu) is recognized as an essential trace element that promotes plant growth and development. However, the mechanisms by which Cu influences nitrogen (N) metabolism remain largely unknown, with limited studies exploring the interaction between Cu and varying nitrate-to-ammonium (nitrate/ammonium) ratios. In this study, Chinese cabbage was exposed to two Cu concentrations (0 and 0.02 mg L-1) in combination with three nitrate/ammonium ratios (10/90, 50/50, and 90/10) under hydroponic conditions. The results showed that Cu application increased plant biomass, nitrate reductase (NR) and glutamine synthetase (GS) enzyme activities, the expression of NR (NIA) and GS2 (Gln2) genes, and N content in both shoots and roots. Additionally, Cu treatment decreased nitrate and free amino acid contents, as well as the expression of nitrate transporters NRT1.1 and NRT2.1 in roots while increasing these four parameters in shoots. Additionally, these effects were significantly modulated by the nitrate/ammonium ratios. In conclusion, Cu may facilitate nitrate transportation, enhance nitrate reduction, promote ammonium assimilation, and influence the transformation of organic N compounds, highlighting its potential role in improving N metabolism in Chinese cabbage.

15.
Sci Total Environ ; 954: 176699, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366584

RESUMO

Electrodialysis (ED) is a cost-effective membrane technology used is a variety of fields for desalination and concentration. This feasibility study explores the potential of ED as an NH4-N recovery technology from anaerobic digestate liquor (ADL), and the use of the concentrate as a nitrogen source in an industrial wastewater treatment plant (WWTP). Three neighboring WWTPs were the focus of this study: Two municipal WWTPs A and B, operating anaerobic sludge stabilization, and a pulp & paper WWTP C, utilizing urea as a nitrogen source. Two-stage bench-scale experiments with the municipal ADL from WWTP A and WWTP B were conducted, and performance indicators were determined. A concentration of approximately 10 g NH4-N/L and 15 g NH4-N/L was obtained in stages 1 and 2, respectively. The NH4-N removal was above 85 % in all experiment, while recovery varied between 25 and 95 %. The specific energy consumption (SEC) was on average 12.9 kWh/kg NH4-N. Moreover, mass and energy balances in a model WWTP demonstrated that an ED side-stream treatment for NH4-N removal coupled with microfiltration (MF) pre-treatment results in a net energy gain, also without the added benefit of the ED concentrate as a nitrogen source.

16.
Toxicol Sci ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363503

RESUMO

Benzalkonium chlorides (BACs) are commonly used disinfectants in a variety of consumer and food-processing settings, and the COVID-19 pandemic has led to increased usage of BACs. The prevalence of BACs raises the concern that BAC exposure could disrupt the gastrointestinal microbiota, thus interfering with the beneficial functions of the microbes. We hypothesize that BAC exposure can alter the gut microbiome diversity and composition, which will disrupt bile acid homeostasis along the gut-liver axis. In this study, male and female mice were exposed orally to d7-C12- and d7-C16-BACs at 120 µg/g/day for one week. UPLC-MS/MS analysis of liver, blood, and fecal samples of BAC-treated mice demonstrated the absorption and metabolism of BACs. Both parent BACs and their metabolites were detected in all exposed samples. Additionally, 16S rRNA sequencing was carried out on the bacterial DNA isolated from the cecum intestinal content. For female mice, and to a lesser extent in males, we found that treatment with either d7-C12- or d7-C16-BAC led to decreased alpha diversity and differential composition of gut bacteria with notably decreased actinobacteria phylum. Lastly, through a targeted bile acid quantitation analysis, we observed decreases in secondary bile acids in BAC-treated mice, which was more pronounced in the female mice. This finding is supported by decreases in bacteria known to metabolize primary bile acids into secondary bile acids, such as the families of Ruminococcaceae and Lachnospiraceae. Together, these data signify the potential impact of BACs on human health through disturbance of the gut microbiome and gut-liver interactions.

17.
Adv Mater ; : e2409354, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39344865

RESUMO

Aqueous ammonium ion batteries have garnered significant research interest due to their safety and sustainability advantages. However, the development of reliable ammonium-based full batteries with consistent electrochemical performance, particularly in terms of cycling stability, remains challenging. A primary issue stems from the lack of suitable anode materials, as the relatively large NH4 + ions can cause structural damage and material dissolution during battery operation. To address this challenge, an Aza-based covalent organic framework (COF) material is introduced as an anode for aqueous ammonium ion batteries. This material exhibits superior ammonium storage capabilities compared to existing anode materials. It operates effectively within a negative potential range of 0.3 to‒1.0 V versus SCE, achieves high capacity even at elevated current densities (≈74 mAh g-1 at 10 A g-1), and demonstrates exceptional stability, retaining a capacity over 20 000 cycles at 1.0 A g-1. Furthermore, by pairing this COF anode with a Prussian blue cathode, an ammonium rocking-chair full battery is developedd that maintains 89% capacity over 20 000 cycles at 1.0 A g-1, surpassing all previously reported ammonium ion full batteries. This study offers insights for the design of future anodes for ammonium ion batteries and holds promise for high-energy storage solutions.

18.
J Hazard Mater ; 480: 135934, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39326142

RESUMO

Benzylalkyldimethylammonium (BACs), dialkyldimethylammonium (DDACs), and alkyltrimethylammonium compounds (ATMACs) are quaternary ammonium compounds (QACs) widely used in industrial and consumer products. Nevertheless, little is known about their fates in wastewater treatment plants (WWTPs). We detected 7 BACs, 6 DDACs, 6 ATMACs, and 8 hydroxy- and carboxyl- metabolites of BACs (BACm) in wastewater collected from a WWTP in New York State. The median concentrations of ∑All (sum concentration of all 27 analytes) in influent and final effluent were 31900 and 545 ng/L, respectively, which corresponded to a removal efficiency of 98 %. C14-BAC, C10-DDAC, C18-DDAC, and C16-ATMAC were the major compounds found in influent (collectively accounting for 62 % of ∑All), suggestive of their prevalent usage in consumer products. BACm were detected for the first time in wastewater (median: 1720 ng/L in influent), and they comprised 8-11 % of ∑All in wastewater, which highlighted the importance of monitoring QAC metabolites in wastewater. The mass loadings of QACs into the WWTP were in the range of 1480-10700 mg/d/1000 inhabitants, whereas the corresponding emission rates were in the range of 119-7720 mg/d/1000 inhabitants. QACs present in final effluents may exert low to moderate risks on aquatic organisms, which warrants more attention.

19.
Bioresour Technol ; 413: 131539, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39332696

RESUMO

Combining the light-harvesting capabilities of photosensitizers with microbial catalysis shows great potential in solar-driven biomanufacturing. However, little information is available about the effects of photosensitizers on the photoelectron transport during the dissimilatory nitrate reduction to ammonium (DNRA) process. Herein, redox carbon dots (CDs-500) were prepared from sludge via the pyrolysis-Fenton reaction and then used to construct a photosynthetic system with Shewanella oneidensis MR-1. The MR-1/CDs-500 photosynthetic system showed a 5.9-fold increase in ammonia production (4.9 mmol(NH3)·g-1(protein)·h-1) with a high selectivity of 94.0 %. The photoelectrons were found to be stored in CDs-500 and transferred into the cells. During the inward electron transport, the intracellular CDs-500 could be used as the direct photoelectron transfer stations between outer membrane cytochrome c and DNRA-related enzymes without the involvement of CymA and MtrA. This work provides a new method for converting waste into functional catalysts and increases solar-driven NH3 production to a greater extent.

20.
Small ; : e2406635, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340283

RESUMO

Aqueous zinc ion batteries (AZIBs) stand out from the crowd of energy storage equipment for their superior energy density, enhanced safety features, and affordability. However, the notorious side reaction in the zinc anode and the dissolution of the cathode materials led to poor cycling stability has hindered their further development. Herein, ammonium salicylate (AS) is a bidirectional electrolyte additive to promote prolonged stable cycles in AZIBs. NH4 + and C6H4OHCOO- collaboratively stabilize the pH at the interface of the electrolyte/electrode and guide the homogeneous deposition of Zn2+ at the zinc anode. The higher adsorption energy of NH4 + compared to H2O on the Zn (002) crystal plane mitigates the side reactions on the anode surface. Moreover, NH4 + is similarly adsorbed on the cathode surface, maintaining the stability of the electrode. C6H4OHCOO- and Zn2+ are co-intercalation/deintercalation during the cycling process, contributing to the higher electrochemical performance of the full cell. As a result, with the presence of AS additive, the Zn//Zn symmetric cells achieved 700 h of highly reversible cycling at 5 mA cm-2. In addition, the assembled NH4V4O10(NVO)//Zn coin and pouch batteries achieved higher capacity and higher cycle lifetime, demonstrating the practicality of the AS electrolyte additive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA