Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Curr Top Med Chem ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39297468

RESUMO

Anacardic acids are natural compounds found in various plant families, such as Anacardiaceae, Geraniaceae, Ginkgoaceae, and Myristicaceae, among others. Several activities have been reported regarding these compounds, including antibacterial, antioxidant, anticancer, anti-inflammatory, and antiviral activities, showing the potential therapeutic applicability of these compounds. From a chemical point of view, they are structurally made up of salicylic acids substituted by an alkyl chain containing unsaturated bonds, which can vary in number and position, determining their bioactivity and differentiating them from the various existing forms. Our work aimed to explore the potential of anacardic acids, based on studies that address the bioactivity of these compounds, as well as to establish a greater understanding of the structure-activity relationship of these compounds through in silico methods, with a focus on the elucidation of a possible drug target through the application of computer-aided drug design, CADD.

2.
Pharmaceutics ; 16(9)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39339206

RESUMO

Combination therapy integrated with nanotechnology offers a promising alternative for breast cancer treatment. The inclusion of pequi oil, anacardic acid (AA), and docetaxel (DTX) in a nanoemulsion can amplify the antitumor effects of each molecule while reducing adverse effects. Therefore, the study aims to develop pequi oil-based nanoemulsions (PeNE) containing DTX (PDTX) or AA (PAA) and to evaluate their cytotoxicity against triple-negative breast cancer cells (4T1) in vitro. The PeNE without and with AA (PAA) and DTX (PDTX) were prepared by sonication and characterized by ZetaSizer® and electronic transmission microscopy. Viability testing and combination index (CI) were determined by MTT and Chou-Talalay methods, respectively. Flow cytometry was employed to investigate the effects of the formulations on cell structures. PeNE, PDTX, and PAA showed hydrodynamic diameter < 200 nm and a polydispersity index (PdI) of 0.3. The association PDTX + PAA induced a greater decrease in cell viability (~70%, p < 0.0001) and additive effect (CI < 1). In parallel, an association of the DTX + AA molecules led to antagonism (CI > 1). Additionally, PDTX + PAA induced an expressive morphological change, a major change in lysosome membrane permeation and mitochondria membrane permeation, cell cycle blockage in G2/M, and phosphatidylserine exposure. The study highlights the successful use of pequi oil nanoemulsions as delivery systems for DTX and AA, which enhances their antitumor effects against breast cancer cells. This nanotechnological approach shows significant potential for the treatment of triple-negative breast cancer.

3.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000156

RESUMO

Anacardic acid (AnAc) inhibits the growth of estrogen receptor α (ERα)-positive MCF-7 breast cancer (BC) cells and MDA-MB-231 triple-negative BC (TNBC) cells, without affecting primary breast epithelial cells. RNA sequencing (seq) and network analysis of AnAc-treated MCF-7 and MDA-MB-231 cells suggested that AnAc inhibited lipid biosynthesis and increased endoplasmic reticulum stress. To investigate the impact of AnAc on cellular metabolism, a comprehensive untargeted metabolomics analysis was performed in five independent replicates of control versus AnAc-treated MCF-7 and MDA-MB-231 cells and additional TNBC cell lines: MDA-MB-468, BT-20, and HCC1806. An analysis of the global metabolome identified key metabolic differences between control and AnAc-treated within each BC cell line and between MCF-7 and the TNBC cell lines as well as metabolic diversity among the four TNBC cell lines, reflecting TNBC heterogeneity. AnAc-regulated metabolites were involved in alanine, aspartate, glutamate, and glutathione metabolism; the pentose phosphate pathway; and the citric acid cycle. Integration of the transcriptome and metabolome data for MCF-7 and MDA-MB-231 identified Signal transduction: mTORC1 downstream signaling in both cell lines and additional cell-specific pathways. Together, these data suggest that AnAc treatment differentially alters multiple pools of cellular building blocks, nutrients, and transcripts resulting in reduced BC cell viability.


Assuntos
Ácidos Anacárdicos , Sobrevivência Celular , Metabolômica , Humanos , Ácidos Anacárdicos/farmacologia , Metabolômica/métodos , Feminino , Sobrevivência Celular/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Linhagem Celular Tumoral , Metaboloma/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Células MCF-7 , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Transdução de Sinais/efeitos dos fármacos
4.
Plant Cell Rep ; 43(5): 122, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642121

RESUMO

KEY MESSAGE: Extensive leaf transcriptome profiling and differential gene expression analysis of field grown and elicited shoot cultures of L. speciosa suggest that differential synthesis of CRA is mediated primarily by CYP and TS genes, showing functional diversity. Lagerstroemia speciosa L. is a tree species with medicinal and horticultural attributes. The pentacyclic triterpene, Corosolic acid (CRA) obtained from this species is widely used for the management of diabetes mellitus in traditional medicine. The high mercantile value of the compound and limited availability of innate resources entail exploration of alternative sources for CRA production. Metabolic pathway engineering for enhanced bioproduction of plant secondary metabolites is an attractive proposition for which, candidate genes in the pathway need to be identified and characterized. Therefore, in the present investigation, we focused on the identification of cytochrome P450 (CYP450) and oxidosqualene cyclases (OSC) genes and their differential expression during biosynthesis of CRA. The pattern of differential expression of these genes in the shoot cultures of L. speciosa, elicited with different epigenetic modifiers (azacytidine (AzaC), sodium butyrate (NaBu) and anacardic acid (AA)), was studied in comparison with field grown plant. Further, in vitro cultures with varying (low to high) concentrations of CRA were systematically assessed for the expression of CYP-TS and associated genes involved in CRA biosynthesis by transcriptome sequencing. The sequenced samples were de novo assembled into 180,290 transcripts of which, 92,983 transcripts were further annotated by UniProt. The results are collectively given in co-occurrence heat maps to identify the differentially expressed genes. The combined transcript and metabolite profiles along with RT-qPCR analysis resulted in the identification of CYP-TS genes with high sequence variation. Further, instances of concordant/discordant relation between CRA biosynthesis and CYP-TS gene expression were observed, indicating functional diversity in genes.


Assuntos
Lagerstroemia , Transcriptoma , Triterpenos , Transcriptoma/genética , Lagerstroemia/genética , Lagerstroemia/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Perfilação da Expressão Gênica
5.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338410

RESUMO

Ellagic acid, known for its various biological activities, is widely used. Ellagic acid from pomegranate peels is safe for consumption, while that from gallnuts is only suitable for external use. However, there is currently no effective method to confirm the source of ellagic acid. Therefore, this study establishes an analysis method using ultra-high-performance liquid chromatography-electrospray ionization-high-resolution mass spectrometry (UHPLC-ESI-HR-MS) to identify the components of crude ellagic acid extracts from pomegranate peels and gallnuts. The analysis revealed that there was a mix of components in the crude extracts, such as ellagic acid, palmitic acid, oleic acid, stearic acid, and 9(10)-EpODE. Furthermore, it could be observed that ellagic acid extracted from gallnuts contained toxic substances such as anacardic acid and ginkgolic acid (15:1). These components could be used to effectively distinguish the origin of ellagic acid from pomegranate peels or gallnuts. Additionally, a rapid quantitative analysis method using UHPLC-ESI-MS with multiple reaction monitoring (MRM) mode was developed for the quality control of ellagic acid products, by quantifying anacardic acid and ginkgolic acid (15:1). It was found that one of three ellagic acid health care products contained ginkgolic acid (C15:1) and anacardic acid at more than 1 ppm.


Assuntos
Ácidos Anacárdicos , Punica granatum , Salicilatos , Espectrometria de Massas por Ionização por Electrospray/métodos , Extratos Vegetais/química , Ácido Elágico/química , Cromatografia Líquida de Alta Pressão/métodos
6.
Transl Anim Sci ; 8: txad148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38221956

RESUMO

The objective of this study was to evaluate the effects of including monensin and two doses of CNSE in a high producing dairy cow diet on ruminal bacterial communities. A dual-flow continuous culture system was used in a replicated 4 × 4 Latin Square design. A basal diet was formulated to meet the requirements of a cow producing 45 kg of milk per d (17% crude protein and 27% starch). There were four experimental treatments: the basal diet without any feed additive (CON), 2.5 µM monensin (MON), 100 ppm CNSE granule (CNSE100), and 200 ppm CNSE granule (CNSE200). Samples were collected from the fluid and solid effluents at 3, 6, and 9 h after feeding; a composite of all time points was made for each fermenter within their respective fractions. Bacterial community composition was analyzed by sequencing the V4 region of the 16S rRNA gene using the Illumina MiSeq platform. Treatment responses for bacterial community structure were analyzed with the PERMANOVA test run with the R Vegan package. Treatment responses for correlations were analyzed with the CORR procedure of SAS. Orthogonal contrasts were used to test the effects of (1) ADD (CON vs. MON, CNSE100, and CNSE200); (2) MCN (MON vs. CNSE100 and CNSE200); and (3) DOSE (CNSE100 vs. CNSE200). Significance was declared at P ≤ 0.05. We observed that the relative abundance of Sharpea (P < 0.01), Mailhella (P = 0.05), Ruminococcus (P = 0.03), Eubacterium (P = 0.01), and Coprococcus (P < 0.01) from the liquid fraction and the relative abundance of Ruminococcus (P = 0.03) and Catonella (P = 0.02) from the solid fraction decreased, while the relative abundance of Syntrophococcus (P = 0.02) increased in response to MON when compared to CNSE treatments. Our results demonstrate that CNSE and monensin have similar effects on the major ruminal bacterial genera, while some differences were observed in some minor genera. Overall, the tested additives would affect the ruminal fermentation in a similar pattern.

7.
Regul Toxicol Pharmacol ; 147: 105538, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151226

RESUMO

Organically synthesized fully saturated form of Anacardic acid (AA) has previously shown to be effective in the treatment of inflammatory autoimmune disease. In this study, organically synthesized fully saturated form of AA was orally administered to male and female Swiss albino mice for 90 consecutive days at doses of 25, 50 and 100 mg/kg BW (n = 20 per sex/group). Administration of AA was well tolerated at all dose levels. The treated animals did not show a dose-response toxicity in their hematology, liver, or metabolic profile. Minimally significant changes in serum biochemistry and hematology parameters were noted, but these were not considered to be of biological or toxicological importance and were not outside the known accepted ranges. Sporadic differences in organ weights were observed between groups, but all were minimal (<10%) and unlikely to indicate toxicity. The incidence of histopathological lesions was comparable between treated and control groups across all tested organs. Based upon these findings, the no-observed-adverse-effect level was determined to be ≥ 100 mg/kg BW, which was the highest dose tested. There were no genotoxic (mutagenic and clastogenic) effects seen in In-vivo micronucleus test, In-vitro chromosomal aberration test and Bacterial reverse mutation test. These results support, no genotoxicity and no toxicity associated with oral consumption of AA in mice as a dietary supplement for beverages and food.


Assuntos
Ácidos Anacárdicos , Mutagênicos , Camundongos , Masculino , Feminino , Animais , Ácidos Anacárdicos/toxicidade , Nível de Efeito Adverso não Observado , Mutação , Dano ao DNA
8.
Molecules ; 28(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005345

RESUMO

Thickener, also known as a gelling agent, is a critical component of lubricating greases. The most critical property of thickener, temperature resistance, is determined by the molecular structure of the compounds. Currently, all high-temperature-resistant thickeners are based on 12-hydroxystearic acid, which is exclusively produced from castor oil. Since castor oil is also an important reagent for other processes, finding a sustainable alternative to 12-hydroxystearic acid has significant economic implications. This study synthesises an alternative thickener from abundant agricultural waste, cashew nut shell liquor (CNSL). The synthesis and separation procedure contains three steps: (i) forming and separating calcium anacardate by precipitation, (ii) forming and separating anacardic acid (iii) forming lithium anacardate. The obtained lithium anacardate can be used as a thickener for lubricating grease. It was found that the recovery of anacardic acid was around 80%. The optimal reaction temperature and time conditions for lithium anacardate were 100 °C and 1 h, respectively. The method provides an economical alternative to castor and other vegetable oils. The procedure presents a simple pathway to produce the precursor for the lubricating grease from agricultural waste. The first reaction step can be combined with the existing distillation of cashew nut shell processing. An effective application can promote CNSL to a sustainable feedstock for green chemistry. The process can also be combined with recycled lithium from the spent batteries to improve the sustainability of the battery industry.

9.
Exp Neurol ; 370: 114568, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37820939

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is an important cause of disability and death. TBI leads to multiple forms of nerve cell death including ferroptosis due to iron-dependent lipid peroxidation. Anacardic acid (AA) is a natural component extracted from cashew nut shells, which has been reported to have neuroprotective effects in traumatic brain injury. We investigated whether AA has an anti-ferroptosis effect in TBI. METHODS: We used the Feeney free-fall impact method to construct a TBI model to investigate the effect of AA on ferroptosis caused by TBI, in which Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, served as a positive control group. We first identified the therapeutic effect of AA on TBI through modified neurological severity score (mNSS) and determined the appropriate concentration. Secondly, we investigated the effect of AA on the expression level of the key protein of ferroptosis by Western blotting and immunohistochemistry. Then the effect of AA on nerve tissue injury and nerve function improvement was verified. Finally, enzym-linked immunosorbent assay (ELISA) was used to verify that AA could reduce inflammation after TBI. RESULTS: We found the intensely inhibitory effect of AA on ferroptosis, which is in parallel with the results obtained after Fer-1 treatment. In addition, AA and Fer-1 mitigated TBI-mediated tissue defects, destruction of the blood-brain barrier, and neurodegeneration. Novel object recognition (NOR), mNSS and water maze test showed that AA could significantly reduce the impairment of neural function and behavioral cognitive ability caused by TBI. Finally, we also demonstrated that AA has not only an anti-ferroptosis effect, but also an anti-inflammation effect. CONCLUSIONS: AA can reduce the neurological impairment and behavioral cognitive impairment caused by TBI through the dual effect of anti-ferroptosis and anti-inflammation.


Assuntos
Lesões Encefálicas Traumáticas , Ferroptose , Humanos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Ácidos Anacárdicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico
10.
Nanomaterials (Basel) ; 13(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686994

RESUMO

Cashew nut shell liquid (CNSL), obtained as a byproduct of the cashew industry, represents an important natural source of phenolic compounds, with important environmental benefits due to the large availability and low cost of the unique renewable starting material, that can be used as an alternative to synthetic substances in many industrial applications. The peculiarity of the functional groups of CNSL components, such as phenolic hydroxyl, the aromatic ring, acid functionality, and unsaturation(s) in the C15 alkyl side chain, permitted the design of interesting nanostructures. Cardanol (CA), anacardic acid (AA), and cardol (CD), opportunely isolated from CNSL, served as building blocks for generating an amazing class of nanomaterials with chemical, physical, and morphological properties that can be tuned in view of their applications, particularly focused on their bioactive properties.

11.
J Dairy Sci ; 106(12): 8746-8757, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678783

RESUMO

The objective of this study was to compare cashew nutshell extract (CNSE) to monensin and evaluate changes in in vitro mixed ruminal microorganism fermentation, nutrient digestibility, and microbial nitrogen outflow. Treatments were randomly assigned to 8 fermenters in a replicated 4 × 4 Latin square design with 4 experimental periods of 10 d (7 d for diet adaptation and 3 d for sample collection). Basal diets contained 43.5:56.5 forage: concentrate ratio and each fermenter was fed 106 g of DM/d divided equally between 2 feeding times. Treatments were control (CON, basal diet without additives), 2.5 µM monensin (MON), 0.1 mg CNSE granule/g DM (CNSE100), and 0.2 mg CNSE granule/g DM (CNSE200). On d 8 to10, samples were collected for pH, lactate, NH3-N, volatile fatty acids (VFA), mixed protozoa counts, organic matter (OM), and neutral detergent fiber (NDF) digestibility. Data were analyzed with the GLIMMIX procedure of SAS. Orthogonal contrasts were used to test the effects of (1) ADD (CON vs. MON, CNSE100, and CNSE200); (2) MCN (MON vs. CNSE100 and CNSE200); and (3) DOSE (CNSE100 vs. CNSE200). We observed that butyrate concentration in all treatments was lower compared with CON and the concentration for MON was lower compared with CNSE treatments. Protozoal population in all treatments was lower compared with CON. No effects were observed for pH, lactate, NH3-N, total VFA, OM, or N utilization. Within the 24-h pool, protozoal generation time, tended to be lower, while NDF digestibility tended to be greater in response to all additives. Furthermore, the microbial N flow, and the efficiency of N use tended to be lower for the monensin treatment compared with CNSE treatments. Overall, our results showed that both monensin and CNSE decreased butyrate synthesis and protozoal populations, while not affecting OM digestibility and tended to increase NDF digestibility; however, such effects are greater with monensin than CNSE nutshell.


Assuntos
Anacardium , Monensin , Animais , Monensin/farmacologia , Monensin/metabolismo , Fermentação , Rúmen/metabolismo , Digestão , Dieta , Ácidos Graxos Voláteis/metabolismo , Butiratos/metabolismo , Lactatos/metabolismo , Ração Animal/análise
12.
J Dairy Sci ; 106(12): 9843-9854, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641319

RESUMO

Cashew nut shell extract (CNSE) is a byproduct of the cashew nut industry, containing bioactive compounds that alter rumen fermentation patterns. Therefore, study objectives were to evaluate the effects of CNSE (59% anacardic acid and 18% cardol) on production, rumen fermentation variables, metabolism, and inflammation in transition dairy cows. A total of 51 multiparous Holstein cows were used in a randomized design and assigned to treatment based on their previous 305-d mature equivalent milk and parity. Cows were assigned to 1 of 2 treatments 21 d before expected calving: (1) CON (control diet; n = 17) or (2) CNSE-5.0 (control diet and 5.0 g/d CNSE granule [containing 50% CNSE]; n = 34). Following parturition, 17 cows (preselected at initial treatment assignment) from the CNSE-5.0 treatment were reallocated into a third treatment group: CNSE-2.5 (control diet and 2.5 g/d CNSE granule; n = 17), resulting in 3 total treatments postpartum: (1) CON, (2) CNSE-2.5, and (3) CNSE-5.0. Prepartum rumen pH was unaltered by treatment; however, postpartum rumen pH was increased (0.31 units) in CNSE cows relative to CON. Prepartum rumen ammonia N concentration tended to be decreased (34%) in CNSE-5.0 cows compared with CON, and there tended to be a quadratic effect on postpartum ammonia N, as it was decreased in CNSE-2.5 compared with CON and CNSE-5.0. Prepartum dry matter intake (DMI) was unaffected by treatment; however, postpartum DMI was increased (8%) in CNSE cows relative to CON. No treatment differences were observed in pre- or postpartum digestibility measurements. Milk and protein yields from cows fed CNSE tended to be increased (6% and 7%, respectively) relative to CON. No treatment differences were detected for energy-corrected milk, feed efficiency, body weight, body condition score, energy balance, milk composition, milk urea nitrogen, or somatic cell count. Prepartum fecal pH decreased (0.12 units) in CNSE-5.0 cows relative to CON cows but was similar between treatments postpartum. Supplementing CNSE did not affect prepartum glucose, nonesterified fatty acids (NEFA), ß-hydroxybutyrate (BHB), or insulin. However, prepartum circulating blood urea nitrogen tended to be decreased and glucagon was decreased in CNSE-5.0 cows compared with CON (9 and 20%, respectively). Additionally, CNSE supplementation decreased glucose and insulin concentrations postpartum relative to CON cows (6% and 20%, respectively). Quadratic effects were detected for postpartum circulating NEFA and BHB such that their levels were increased in CNSE-2.5 cows relative to CON and CNSE-5.0. Pre- and postpartum circulating serum amyloid A, lipopolysaccharide-binding protein, and haptoglobin were unaffected by treatment. Overall, CNSE influenced some key rumen fermentation variables, altered postabsorptive metabolism, and increased production parameters in transition dairy cows.


Assuntos
Anacardium , Insulinas , Gravidez , Feminino , Bovinos , Animais , Lactação , Anacardium/metabolismo , Ácidos Graxos não Esterificados , Fermentação , Rúmen/metabolismo , Amônia/metabolismo , Nozes , Dieta/veterinária , Período Pós-Parto , Leite/química , Glucose/metabolismo , Suplementos Nutricionais
13.
Foods ; 12(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37509851

RESUMO

The cashew peduncle has a high nutritional value and contains a wide variety of phenolic compounds. Among these, anacardic acids (AnAc) are biologically active components; however, they influence the cashew juice flavor and, consequently, its acceptance. This study validates a high-performance liquid chromatography method for quantifying the AnAc present in cashew peduncles, using a C18 reverse-phase column and a diode-array detector. The calibration curve obtained showed satisfactory precision for intraday (CV = 0.20%) and interday (CV = 0.29%) quantification, linearity (y = 2333.5x + 2956.2; r2 = 0.9979), repeatability with respect to retention time (CV = 0.45%) and area (CV = 0.30%), and selectivity, and possessed detection and quantification limits of 0.18 and 0.85 µg·mL-1, respectively. Different cashew clones containing AnAc were extracted and analyzed using the proposed method. A recovery of >90% was achieved using two sequential extractions. The total AnAc content ranged from 128.35 to 217.00 mg·100 g-1 in peduncle samples obtained from five different cashew clones.

14.
Trop Anim Health Prod ; 54(6): 397, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36418520

RESUMO

The purpose of this study was to evaluate the inclusion of cardanol in the diet of quails on productive performance, egg quality, reproductive performance, and progeny performance. A total of three hundred European quail breeders of 32 weeks of age, with average body weights of 305.98 g, were housed in laying cages in groups (4 females and 1 male), following a distribution in a completely randomized design with 5 treatments and 6 replications of 10 quails, being the experimental unit constituted by the set of two cages. The treatments consisted of diets with 0, 0.25, 0.50, 0.75, and 1.00% of cardanol. There was reduction in the performance of the quail with the inclusion of 1.00% of cardanol in the diet when compared to the control treatment, while egg weight and egg mass were lower in the treatments with 0.75 and 1.00% of cardanol, respectively. It was observed that there was decrease in the specific gravity, and increase in color and TBARS value of the yolk in all treatments with cardanol. The inclusion of 0.50% of cardanol decreased the percentage of albumen, and increased the percentage of yolk, while the shell thickness decreased with 0.75%. The weight of the incubated eggs and the chick weight at hatching were lower in the treatments with 0.75 and 1.00% of cardanol. In the evaluation of the progeny performance, it was found that the weight at 7 days of age of chicks from breeders fed the diet containing 1.00% of cardanol was decreased when compared to the chicks from breeders fed the control diet. It was concluded that the inclusion of cardanol did not present benefits to the quail breeders.


Assuntos
Óvulo , Codorniz , Masculino , Animais , Feminino , Carne , Fenóis , Galinhas
15.
Pharmacol Res ; 185: 106487, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202184

RESUMO

Alterations in histone modification have been linked to cancer development and progression. Celastrol, a Chinese herbal compound, shows potent anti-tumor effects through multiple signaling pathways. However, the involvement of histone modifications in this process has not yet been illustrated. In this study, barcode sequencing of a eukaryotic genome-wide deletion library revealed that histone modifications, especially histone acetylation associated with the NuA4 histone acetyltransferase complex, were involved in the anti-proliferation actions of celastrol. The essential roles of histone modification were verified by celastrol sensitivity tests in cells lacking specific genes, such as genes encoding the subunits of the NuA4 and Swr1 complex. The combination of celastrol and histone deacetylase inhibitors (HDACi), rather than the combination of celastrol and histone acetyltransferase inhibitors, synergistically suppressed cancer cell proliferation. In addition to upregulating H4K16 acetylation (H4K16ac), celastrol regulates H3K4 tri-methylation and H3S10 phosphorylation. Celastrol treatment significantly enhanced the suppressive effects of HDACi on lung cancer cell allografts in mice, with significant H4K16ac upregulation, indicating that a combination of celastrol and HDACi is a potential novel therapeutic approach for patients with lung cancer.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias Pulmonares , Camundongos , Animais , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Acetilação , Histonas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/uso terapêutico
16.
Sheng Wu Gong Cheng Xue Bao ; 38(6): 2352-2364, 2022 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-35786485

RESUMO

SARS-CoV-2 main protease (Mpro) is responsible for polyprotein cleavage to release non-structural proteins (nsps) for viral genomic RNA replication, and its homologues are absent in human cells. Therefore, Mpro has been regarded as one of the ideal drug targets for the treatment of coronavirus disease 2019 (COVID-19). In this study, we first combined the fluorescence polarization (FP) technique with biotin-avidin system (BAS) to develop a novel sandwich-like FP screening assay for quick discovery of SARS-CoV-2 Mpro inhibitors from a natural product library. With this screening assay, anacardic acid (AA) and 1, 2, 3, 4, 6-O-pentagalloylglucose (PGG) were found to be the competitive inhibitor and mixed-type inhibitor targeting Mpro, respectively. Importantly, our results showed that the majority of the reported Mpro inhibitors are promiscuous cysteine inhibitors that are not specific to Mpro. In summary, this novel sandwich-like FP screening assay is simple, sensitive, and robust, which is ideal for large-scale screening. Natural products AA and PGG will be the promising lead compounds for generating more potent antiviral agents targeting Mpro, and the stringent hit validation at the early stage of drug discovery is urgently needed.


Assuntos
Produtos Biológicos , COVID-19 , Proteases 3C de Coronavírus , Endopeptidases , Humanos , Peptídeo Hidrolases , Pesquisa , SARS-CoV-2
17.
Virology ; 574: 18-24, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35870326

RESUMO

The global scourge of COVID-19 is a serious threat to public health, but effective therapies remain very limited for this disease. Therefore, the discovery of novel antiviral agents is urgently needed to fight against COVID-19. In the lifecycle of SARS-CoV-2, the causing pathogen of COVID-19, papain-like protease (PLpro) is responsible for the cleavage of polyprotein into functional units as well as immune evasion of vaccines. Hence, PLpro has been regarded as an attractive target to develop antiviral agents. Herein, we first developed a robust and simple sandwich-like fluorescence polarization (FP) screening assay for the discovery of PLpro inhibitors, and identified anacardic acid as a novel competitive inhibitor against PLpro in vitro with an IC50 value of 24.26 ± 0.4 µM. This reliable FP screening assay could provide a prospective avenue for rapid discovery of antiviral agents targeting PLpro in a large-scale screening.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Proteases Semelhantes à Papaína de Coronavírus , Polarização de Fluorescência , Humanos , Papaína , Peptídeo Hidrolases , Estudos Prospectivos
18.
Cell Biosci ; 12(1): 65, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590420

RESUMO

Because of the emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in different regions of the world, the battle with infectious coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has been seesawing. Therefore, the identification of antiviral drugs is of particular importance. In order to rapidly identify inhibitors for SARS-CoV-2 3-chymotrypsin-like protease (3CLpro), an enzyme essential for viral replication, we combined the fluorescence polarization (FP) technique with biotin-avidin system (BAS) and developed a novel sandwich-like FP screening assay. Through high-throughput screening, two hits of 3CLpro inhibitors, ginkgolic acid (GA) and anacardic acid (AA) were identified, which showed IC50 values of 11.29 ± 0.48 and 12.19 ± 0.50 µM, respectively. Their binding modes were evaluated by HPLC-Q-TOF-MS. There was no mass increase detected for SARS-CoV-2 3CLpro incubated with either GA or AA, indicating the absence of covalent adducts. The kinetic analysis clearly demonstrated that both GA and AA inhibit SARS-CoV-2 3CLpro via reversible and mixed-inhibition manner. Our results argue against conclusion that GA and AA act as irreversible and covalent inhibitors against SARS-CoV-2 3CLpro, which is based on the studies by Chen et al.

19.
Molecules ; 27(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35565998

RESUMO

Macaranga tanarius (MT) and Syzygium jambos (SJ) are pharmacologically reported to have anti-oxidant, anti-inflammatory, and anti-diabetic effects, and can be neuroprotective agents. Our previous work revealed that MT and SJ exhibited 76.32% and 93.81% inhibition against acetylcholinesterase (AChE) at 50 µg/mL final concentration in their ethyl acetate and hexane fractions, respectively. This study was aimed to investigate the bioactive constituents of MT and SJ and their molecular mechanism toward AChE inhibition. Bioassay-guided isolation afforded prenylflavonoids 1-3 from MT and anacardic acid derivatives 4 and 5 from SJ that were confirmed by NMR and MS data. Compound 5 exerted the strongest anti-AChE potential (IC50: 0.54 µM), followed by 1, 4, 3, and 2 (IC50: 1.0, 2.4, 6.8, and 33 µM, respectively). In silico molecular docking revealed 5 formed stronger molecular interactions including three H-bonds than its derivative 4 based on the saturation of their alkyl chains. The addition of a five carbon-prenyl chain in 1 increased the number of binding interactions, justifying its greater activity than derivatives 2 and 3. This research reflects the first report of AChE inhibitors from these species, thereby adding pharmacological values to MT and SJ as potential remedies in neuroprotection.


Assuntos
Euphorbiaceae , Syzygium , Acetilcolinesterase/metabolismo , Anti-Inflamatórios , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Euphorbiaceae/metabolismo , Simulação de Acoplamento Molecular , Syzygium/química
20.
Biochem Biophys Res Commun ; 613: 34-40, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35526486

RESUMO

Anacardic acid (AA) is a phenolic acid extract found in a number of plants, crops, and fruits. It exhibits a wide range of biological activities. This study displayed that AA effectively alleviated EAE, a classical mouse model of multiple sclerosis. AA administered to the EAE greatly decreased inflammatory cell infiltration to the CNS and protected the myelin integrity in the white matter of the spinal cord. AA could block lipopolysaccharide-induced DC activation. inhibited the polarization of 2D2 mice-derived T cells by inhibiting the DCs activity. Immunoblot results indicated that the phosphorylation of NF-κB is significantly suppressed in AA-treated DCs. This work displayed that AA possessed a potential anti-inflammatory therapeutic effect for the treatment of autoimmune disease.


Assuntos
Encefalomielite Autoimune Experimental , Ácidos Anacárdicos , Animais , Células Dendríticas , Encefalomielite Autoimune Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Medula Espinal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA