Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 171648, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521277

RESUMO

In this study, a high-solid anaerobic membrane bioreactor was established for treating food waste, and membrane fouling rates were regulated through multivariate modulation. The anaerobic membrane bioreactor operated stably at a high organic loading rate of 28.75 gCOD/L/d achieved a methane production rate of 8.03 ± 0.61 L/L/d. Experimental findings revealed that the most effective control of membrane fouling was achieved at a filtration- relaxation ratio (F/R) of 10/90 s. This indicates that a higher relaxation frequency provided improved the mitigation of membrane fouling. Compared with single F/R modulation, the combined modulation of biochar and F/R provided enhanced control over membrane fouling. Moreover, the addition of biochar altered the sludge properties of the reactor, thereby preventing the formation of a dense cake layer. Additionally, biochar enhanced the sheer force of the fluid on the membrane surface and facilitated the separation of pollutants during the relaxation stage, thereby contributing to improved control of membrane fouling.


Assuntos
Carvão Vegetal , Eliminação de Resíduos , Eliminação de Resíduos Líquidos , Anaerobiose , Alimentos , Reatores Biológicos , Esgotos , Filtração , Membranas Artificiais
2.
J Environ Manage ; 323: 116151, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36130427

RESUMO

The deterministic mechanistic model derived from the fundamental of the dynamical fouling system was investigated to estimate fouling parameters, with theoretical biogas sparging performance evaluated of a Submerged Anaerobic Membrane Bioreactor treating trade wastewater. The result showed that the sparging effectiveness of EPSc removal was average, 35% higher than the sparging effectiveness of EPSp, with the coefficient of fouling removal characterizing the dynamic time behaviour increasing with the organic loading rate. The dynamic system analysis predicted that the process gain for SAnMBR-1 was more than 30% compared with SAnMBR-2, which supported a widely known theory of fouling dependence of organic loading rate.


Assuntos
Biocombustíveis , Águas Residuárias , Anaerobiose , Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos
3.
Sci Total Environ ; 832: 154716, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35337865

RESUMO

This study aimed to explore the effect of a bacteriophage cocktail, pyophage, on the treatment of wastewater containing antibiotics in an anaerobic membrane bioreactor (AnMBR). During the operational period, performance of the AnMBR was monitored through the changes in chemical oxygen demand (COD), antibiotic removal, transmembrane pressure, and biogas production. Microbial community structure and composition, as well as the occurrence of antibiotic resistance genes were analyzed through shotgun metagenomics analysis. When exposed to pyophage, COD removal efficiency was enhanced up to 96%, whereas membrane fouling was delayed by 25%. Average biogas production was doubled from 224.2 mL/d in control with antibiotics to 447.3 mL/d when exposed to pyophage cocktail with considerable alterations to the archaeal and bacterial community structures. Most notably, the methanogenic community shifted from dominance of Methanothermobacter to Methanoculleus, along with syntrophic bacteria. The results provide insight into the synergistic effects of phage-bacteria and methanogenic communities and illustrate the potential of bacteriophages as bio-enhancers.


Assuntos
Bacteriófagos , Biocombustíveis , Anaerobiose , Antibacterianos/farmacologia , Bactérias/genética , Reatores Biológicos/microbiologia , Membranas Artificiais , Metano , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
4.
Environ Technol ; 43(26): 4168-4179, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34184618

RESUMO

ABSTRACTTo address the inadequate removal of antibiotic resistance genes in wastewater treatment plants, this study investigated the impact of bioaugmentation with dried Eichhornia crassipes roots on removal of antibiotics sulfamethoxazole, tetracycline and erythromycin from pharmaceutical wastewater while optimizing potential for reclaiming value through biogas production, utilizing an anaerobic membrane bioreactor (AnMBR). Three sets of AnMBRs were set up for the experiment, C1 (inoculum), C2 (inoculum + antibiotics) and EC (inoculum + antibiotics + E. crassipes). The results showed that E. crassipes mitigated some of the toxic effects of antibiotics on the microbial community and prevented negative impact on the archaeal community, and significantly increased average biogas production (by 37% compared to control without antibiotics and 42% compared to control with antibiotics) as well as antibiotics removal. Furthermore, bioaugmented reactor showed significant reduction of erythromycin (97%) and tetracycline (83%) concentrations in effluent. Utilization of E. crassipes root offers a simple yet powerful tool for preventing the emergence of antimicrobial resistance and dissemination of such pollutants into the environment.


Assuntos
Eichhornia , Biocombustíveis , Biomassa , Anaerobiose , Reatores Biológicos , Águas Residuárias , Resistência Microbiana a Medicamentos , Tetraciclina/farmacologia , Eritromicina/farmacologia , Antibacterianos/farmacologia
5.
Water Res X ; 11: 100097, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33817615

RESUMO

Anaerobic membrane bioreactors reduce the energy cost of wastewater treatment and meet filtration requirements for non-potable reuse. However, sulfides (H2S/HS-) formed during anaerobic treatment exert a high chlorine demand and inhibit UV disinfection by photon shielding at 254 nm. This study evaluated the feasibility of hydrogen peroxide (H2O2) for sulfide oxidation, UV disinfection for inactivation of MS2 bacteriophage, and chlorine to provide a residual for distribution. H2O2 treatment at pH ≥ 8 favored sulfide oxidation to sulfate in 30 min at a 4:1 H2O2:sulfide stoichiometry. Compared to a 6:1 H2O2:sulfide molar ratio, treatment of anaerobic effluent with 0.5 mM sulfides with a 4:1 H2O2:sulfide molar ratio would increase the applied UV fluence needed for 5-log MS2 inactivation from 180 mJ cm-2 to 225 mJ cm-2. However, the lower H2O2 dose reduced the dose of chlorine needed to quench residual H2O2 and provide a residual for distribution. Treatment at the 4:1 H2O2:sulfide molar ratio was favored, because the cost savings in H2O2 and chlorine reagents outweighed the energy savings associated with UV treatment. However, H2O2/UV/chlorine treatment of anaerobic effluent was cost-competitive with conventional treatment of aerobic effluent for non-potable reuse only for < 285 µM sulfides.

6.
J Environ Manage ; 259: 109783, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32072952

RESUMO

Large volume of wastewater consisting complex forms of organics, lipids and nutrients, is discharged from the abattoir (red meat) processing industry. In this study, nutrient rich pre-Anaerobic Membrane Bioreactor (AnMBR) treated abattoir effluent was fed to a struvite (MgNH4PO4.6H2O) precipitator to evaluate the possibility of developing an innovative environmentally sustainable treatment technology to produce nutrient free high-quality treated effluent. A series of continuous and batch experiments were conducted to investigate the influence of pH and presence of Ca2+ on struvite precipitation. The study found that Mg2+:Ca2+ molar ratio of 0.8 (or high Ca2+) impacts on the production and quality of struvite significantly. Pre-AnMBR treated abattoir wastewater with negligible Ca2+ (Mg2+:Ca2+ molar ratio > 20) showed over 80% removal of phosphorus via struvite precipitation. The highest removal rates of both nitrogen and phosphorus were achieved at pH 9.5 with Mg2+:PO43- molar ratio of 2:1.


Assuntos
Matadouros , Águas Residuárias , Reatores Biológicos , Precipitação Química , Nutrientes , Fosfatos , Fósforo , Estruvita , Eliminação de Resíduos Líquidos
7.
Water Res ; 158: 94-105, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31022531

RESUMO

This study discovered a strong correlation between the autoinducer-2 (AI-2)-mediated quorum sensing (QS) with the performance of a submerged anaerobic membrane bioreactor during its recovery from a pentachlorophenol (PCP) shock: a decrease in AI-2 levels coincided with a reduction in volatile fatty acid concentrations, and corresponded significantly to a decrease in the relative abundance of Firmicutes, and to an increase in the relative abundance of Bacteroidetes and Synergistetes. Further batch experiments with the addition of an AI-2-regulating Escherichia coli mutant culture showed that a reduction in AI-2 levels resulted in the highest biogas production rate during a PCP shock. In contrast, an increase in AI-2 levels via addition of the E. coli wild type strain or an AI-2 precursor showed no obvious effects on biogas production. These results suggest that the AI-2 level in anaerobic sludge was governed primarily by Firmicutes, and the AI-2-mediated QS partially regulates the toxic shock response of anaerobic sludge via tuning the activities of Firmicutes and Synergistetes. A decrease in the AI-2 level might reduce acetogenesis and favor hydrogenotrophic methanogenesis, thus resulting in less VFA accumulation and higher methane production during the PCP shock. This study is the first of this type that exploits the role of quorum sensing in the toxic shock response of anaerobic sludge; it demonstrates a novel approach to shortening the recovery period of anaerobic processes via manipulating the AI-2-mediated QS.


Assuntos
Percepção de Quorum , Choque Séptico , Anaerobiose , Reatores Biológicos , Escherichia coli , Humanos , Esgotos
8.
Bioresour Technol ; 267: 714-724, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30082132

RESUMO

Antibiotic wastewater has become a major concern due to the toxicity and recalcitrance of antibiotics. Anaerobic membrane bioreactors (AnMBRs) are considered alternative technology for treating antibiotic wastewater because of their advantages over the conventional anaerobic processes and aerobic MBRs. However, membrane fouling remains the most challenging issue in the AnMBRs' operation and this limits their application. This review critically discusses: (i) antibiotics removal and antibiotic resistance genes (ARGs) in different types of AnMBRs and the impact of antibiotics on membrane fouling and (ii) the integrated AnMBRs systems for fouling control and removal of antibiotics. The presence of antibiotics in AnMBRs could aggravate membrane fouling by influencing fouling-related factors (i.e., sludge particle size, extracellular polymeric substances (EPS), soluble microbial products (SMP), and fouling-related microbial communities). Conclusively, integrated AnMBR systems can be a practical technology for antibiotic wastewater treatment.


Assuntos
Antibacterianos/isolamento & purificação , Reatores Biológicos , Eliminação de Resíduos Líquidos , Membranas Artificiais , Esgotos , Águas Residuárias
9.
Bioresour Technol ; 267: 756-768, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30030048

RESUMO

This review surveys the implementation of anaerobic membrane bioreactors in municipal wastewater treatment at ambient temperature. High chemical oxygen demand (COD) removal efficiencies and methane conversion rates were achieved under various conditions, while also achieving a low sludge yield of 0.04-0.09 g volatile suspended solids (VSS)/g COD. A survey of energy demands for pilot-scale anaerobic membrane bioreactors showed that they could be energy neutral or even positive, even though high energy (0.08-0.35 kWh/m3) is required to clear membrane fouling. Thus, the use of anaerobic membrane bioreactors in municipal wastewater treatment at ambient temperature is very promising. However, some challenges such as membrane fouling control, methane in effluent, low COD/SO42--S ratio, and deficiencies in alkalinity should be addressed, especially the latter. Future research perspectives relating to the challenges and further research are proposed.


Assuntos
Reatores Biológicos , Águas Residuárias , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Metano , Esgotos , Temperatura , Eliminação de Resíduos Líquidos
10.
Sci Total Environ ; 635: 78-91, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660730

RESUMO

Recent concerns over public health, environmental protection, and resource recovery have induced to look at domestic wastewater more as a resource than as a waste. Anaerobic treatment, owing to attractive advantages of energy saving, biogas recovery and lower sludge production, has been suggested as an alternative technology to the traditional practice of aerobic wastewater treatment, which is energy intensive, produces high excess of sludge, and fails to recover the potential resources available in wastewater. Sewage treatment by high-rate anaerobic processes has been widely reported over the last decades as an attractive method for providing a good quality effluent. Among the available high-rate anaerobic technologies, membrane bioreactors feature many advantages over aerobic treatment and conventional anaerobic systems, since high treatment efficiency, high quality effluent, pathogens retention and recycling of nutrients, were generally achieved. The objective of this paper is to review the currently available knowledge on anaerobic domestic wastewater treatment for the mostly applied high-rate systems and membrane bioreactors, presenting benefits and drawbacks, and focusing on the most promising emerging technologies, which need more investigation for their scale-up.


Assuntos
Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Reatores Biológicos
11.
Environ Technol ; 38(10): 1263-1274, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27590000

RESUMO

Kinetic control of Mean Cell Residence Time (MCRT) was shown to have a significant impact on membrane flux under steady-state conditions. Two laboratory-scale flat-plate submerged anaerobic membrane bioreactors were operated for 245 days on a low-to-intermediate strength substrate with high suspended solids. Transmembrane pressure was maintained at 2.2 kPa throughout four experimental phases, while MCRT in one reactor was progressively reduced. This allowed very accurate measurement of sustainable membrane flux rates at different MCRTs, and hence the degree of membrane fouling. Performance data were gathered on chemical oxygen demand (COD) removal efficiency, and a COD mass balance was constructed accounting for carbon converted into new biomass and that lost in the effluent as dissolved methane. Measurements of growth yield at each MCRT were made, with physical characterisation of each mixed liquor based on capillary suction time. The results showed membrane flux and MLSS filterability was highest at short MCRT, although specific methane production (SMP) was lower since a proportion of COD removal was accounted for by higher biomass yield. There was no advantage in operating at an MCRT <25 days. When considering the most suitable MCRT there is thus a trade-off between membrane performance, SMP and waste sludge yield.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Biomassa , Reatores Biológicos/microbiologia , Membranas Artificiais , Metano/biossíntese , Esgotos , Fatores de Tempo
12.
Bioresour Technol ; 214: 816-825, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27233838

RESUMO

The anaerobic digestion process in anaerobic membrane bioreactors is an effective way for waste management, energy sustainability and pollution control in the environment. This digestion process basically involves the production of volatile fatty acids and biohydrogen as intermediate products and methane as a final product. This paper compares the value of bioproducts from different stages of anaerobic membrane bioreactors through a thorough assessment. The value was assessed in terms of technical feasibility, economic assessment, environmental impact and impact on society. Even though the current research objective is more inclined to optimize the production of methane, the intermediate products could also be considered as economically attractive and environment friendly options. Hence, this is the first review study to correlate the idea into an anaerobic membrane bioreactor which is expected to guide future research pathways regarding anaerobic process and its bioproducts.


Assuntos
Biocombustíveis , Reatores Biológicos , Biotecnologia/instrumentação , Anaerobiose , Biotecnologia/economia , Meio Ambiente , Ciência
13.
Water Res ; 82: 94-103, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26025599

RESUMO

The influence of substrate acidification on sludge filtration characteristics was systematically investigated by using short term filtration tests. Four reactors were operated with raw and acidified whey permeate in order to evaluate the effect of acidogens on sludge filterability. The results showed that feeding non-acidified substrate promoted the growth of acidogens which in return decreased the median particle size of the sludge and adversely influenced specific resistance to filtration (SRF). In addition to the presence of acidogens, the food to mass (F:M) ratio was found as an important operation parameter on sludge filterability. Various filterability indicators, such as capillary suction time (CST), SRF and supernatant filterability, tended to became worse at increased F:M ratios. The decreased filterability at high F:M ratio was attributed to the accumulation of soluble microbial products (SMP) in the reactors. Interestingly, impact of acidogens on short term critical flux tests was not significant, but this may be a consequence of the experimental set-up.


Assuntos
Reatores Biológicos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Biomassa , Filtração/métodos , Resíduos Industriais , Tamanho da Partícula , Soro do Leite/química
14.
Water Res ; 49: 453-64, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24238260

RESUMO

The potential of anaerobic membrane bioreactors (AnMBRs) for the treatment of lipid rich corn-to-ethanol thin stillage was investigated at three different sludge retention times (SRT), i.e. 20, 30 and 50 days. The membrane assisted biomass retention in AnMBRs provided an excellent solution to sludge washout problems reported for the treatment of lipid rich wastewaters by granular sludge bed reactors. The AnMBRs achieved high COD removal efficiencies up to 99% and excellent effluent quality. Although higher organic loading rates (OLRs) up to 8.0 kg COD m(-3) d(-1) could be applied to the reactors operated at shorter SRTs, better biological degradation efficiencies, i.e. up to 83%, was achieved at increased SRTs. Severe long chain fatty acid (LCFA) inhibition was observed at 50 days SRT, possibly caused by the extensive dissolution of LCFA in the reactor broth, inhibiting the methanogenic biomass. Physicochemical mechanisms such as precipitation with divalent cations and adsorption on the sludge played an important role in the occurrence of LCFA removal, conversion, and inhibition.


Assuntos
Reatores Biológicos/microbiologia , Biotecnologia/instrumentação , Biotecnologia/métodos , Etanol/metabolismo , Membranas Artificiais , Esgotos/microbiologia , Zea mays/metabolismo , Anaerobiose/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Análise da Demanda Biológica de Oxigênio , Cálcio/química , Precipitação Química , Ácidos Graxos/farmacologia , Magnésio/química , Metano/metabolismo , Oxigênio/metabolismo , Fatores de Tempo , Águas Residuárias/química , Zea mays/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA