Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Med ; 7(6): 2518-2529, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29659181

RESUMO

Investigate whether rAAV-anginex gene therapy combined with radiotherapy could decrease growth and pulmonary metastasis of osteosarcoma in mice and examine the mechanisms involved in this therapeutic strategy. During in vitro experiment, multiple treatment regimes (rAAV-eGFP, radiotherapy, rAAV-anginex, combination therapy) were applied to determine effects on proliferation of endothelial cells (ECs) and G-292 osteosarcoma cells. During in vivo analysis, the same multiple treatment regimes were applied to osteosarcoma tumor-bearing mice. Use microcomputed tomography to evaluate tumor size. Eight weeks after tumor cell inoculation, immunohistochemistry was used to assess the therapeutic efficacy according to microvessel density (MVD), proliferating cell nuclear antigen (PCNA), and terminal-deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assays. Metastasis of lungs was also evaluated by measuring number of metastatic nodules and wet weight of metastases. The proliferation of ECs and the tumor volumes in combination therapy group were inhibited more effectively than the other three groups at end point (P < 0.05). Cell clone assay showed anginex had radiosensitization effect on ECs. Immunohistochemistry showed tumors from mice treated with combination therapy exhibited the lowest MVD and proliferation rate, with highest apoptosis rate, as confirmed by IHC staining for CD34 and PCNA and TUNEL assays (P < 0.05). Combination therapy also induced the fewest metastatic nodules and lowest wet weights of the lungs (P < 0.05). rAAV-anginex combined with radiotherapy induced apoptosis of osteosarcoma cells and inhibited tumor growth and pulmonary metastasis on the experimental osteosarcoma models. We conclude that the primary mechanism of this process may be due to sensitizing effect of anginex to radiotherapy.


Assuntos
Neoplasias Ósseas/genética , Terapia Genética , Osteossarcoma/genética , Peptídeos/genética , Radiação Ionizante , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Terapia Combinada , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Humanos , Camundongos , Metástase Neoplásica , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/patologia , Osteossarcoma/terapia , Radiossensibilizantes , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Int J Radiat Biol ; 94(3): 289-294, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29355463

RESUMO

PURPOSE: Although radiation is used to treat cancer and generate electricity, radiotherapy-induced complications and nuclear disasters are issues of great concern. The small bowel and bone marrow are the two major organs injured by radiation, especially that from nuclear disasters. The development of effective drugs to alleviate radiation injuries is very important. We tested potential radiation response modifiers given after irradiation to alleviate radiation injuries and mortality. MATERIALS AND METHODS: Xenografts of C33A tumor cells with or without galectin-1 expression were implanted in SCID mice. Local tumor irradiation (6 Gy) was used to study radiosensitivity. The rate and time of tumor growth to 2 cm were observed using the Kaplan-Meier method. C57BL/6N mice were used to study the effects of whole-abdominal or whole-body irradiation. Drug administration was as follows: (1) vehicle; (2) interleukin 6 (IL-6) (50 ng/day); (3) anginex (10 mg/kg/day) (galectin-1 antagonist); or (4) flagellin (0.2 mg/kg) (Toll-like receptor 5 agonist). These treatments were compared for tumor size and survival time. RESULTS: The median time of tumor growth delay after 6 Gy irradiation was one week in tumors without galectin-1 expression, regardless of anginex administration. Anginex did not prolong the survival time after 18 Gy whole-abdominal irradiation. Flagellin did not prolong survival time after 18 Gy whole-abdominal irradiation. IL-6 prolonged the survival time after 18 Gy whole-abdominal irradiation, with 5% survival. This was the best result in treating lethal 18 Gy whole-abdominal irradiation. Other than IL-6, no drugs decreased the survival rate after 7.5 Gy whole-body irradiation. CONCLUSIONS: Anginex has no protective effects against radiation injury and no radiosensitized effects on tumors. IL-6 is a potential agent for treating radiation-induced lethal injuries to the small bowel. However, it is not suitable for treating bone marrow damage after whole-body irradiation.


Assuntos
Abdome/efeitos da radiação , Protetores contra Radiação/farmacologia , Animais , Linhagem Celular Tumoral , Galectina 1/metabolismo , Interleucina-6/metabolismo , Estimativa de Kaplan-Meier , Camundongos , Irradiação Corporal Total/efeitos adversos
3.
Int J Mol Sci ; 18(12)2017 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-29232825

RESUMO

Galectin-1 is a hypoxia-regulated protein and a prognostic marker in head and neck squamous cell carcinomas (HNSCC). Here we assessed the ability of non-peptidic galectin-1 inhibitor OTX008 to improve tumor oxygenation levels via tumor vessel normalization as well as tumor growth inhibition in two human HNSCC tumor models, the human laryngeal squamous carcinoma SQ20B and the human epithelial type 2 HEp-2. Tumor-bearing mice were treated with OTX008, Anginex, or Avastin and oxygen levels were determined by fiber-optics and molecular marker pimonidazole binding. Immuno-fluorescence was used to determine vessel normalization status. Continued OTX008 treatment caused a transient reoxygenation in SQ20B tumors peaking on day 14, while a steady increase in tumor oxygenation was observed over 21 days in the HEp-2 model. A >50% decrease in immunohistochemical staining for tumor hypoxia verified the oxygenation data measured using a partial pressure of oxygen (pO2) probe. Additionally, OTX008 induced tumor vessel normalization as tumor pericyte coverage increased by approximately 40% without inducing any toxicity. Moreover, OTX008 inhibited tumor growth as effectively as Anginex and Avastin, except in the HEp-2 model where Avastin was found to suspend tumor growth. Galectin-1 inhibitor OTX008 transiently increased overall tumor oxygenation via vessel normalization to various degrees in both HNSCC models. These findings suggest that targeting galectin-1-e.g., by OTX008-may be an effective approach to treat cancer patients as stand-alone therapy or in combination with other standards of care.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Calixarenos/administração & dosagem , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Oxigênio/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Bevacizumab/administração & dosagem , Bevacizumab/farmacologia , Calixarenos/farmacologia , Carcinoma de Células Escamosas/irrigação sanguínea , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Galectina 1/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/irrigação sanguínea , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Camundongos , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Anticancer Res ; 35(11): 5945-54, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26504018

RESUMO

Angiogenesis is a prerequisite for solid tumors to grow and metastasize, providing oxygen and nutrients to the tumor site. The protein galectin-1 has been identified to be overexpressed on tumor vasculature and represents an interesting target for anti-angiogenic therapy, as well as in molecular imaging. Therefore, the galectin-1-binding peptide Anginex was modified for radiolabeling using (111)In. In vitro, (111)In-Ax showed significantly more binding to galectin-1-positive EC-RF24 and MDA-MB-231-LITG cells than to galectin-1-negative LS174T cells and association with EC-RF24 cells was reduced in the presence of excess native Anginex. However, ex vivo biodistribution profiles showed little tumor uptake of (111)In-Ax and extensive accumulation in non-target organs. Although this study shows the ease of modification of the therapeutic peptide Anginex and favorable characteristics in vitro, in vivo assessment of the tracer revealed negligible tumor targeting. Hence, the strategy we employed lends little support for successful non-invasive imaging of tumor angiogenesis using this peptide.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias do Colo/diagnóstico por imagem , Galectina 1/metabolismo , Radioisótopos de Índio/farmacocinética , Neovascularização Patológica/diagnóstico por imagem , Peptídeos/farmacocinética , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Citometria de Fluxo , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Traçadores Radioativos , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Eur J Cancer ; 50(14): 2463-77, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25042151

RESUMO

BACKGROUND: Galectin-1 (Gal1), a carbohydrate-binding protein is implicated in cancer cell proliferation, invasion and tumour angiogenesis. Several Gal1-targeting compounds have recently emerged. OTX008 is a calixarene derivative designed to bind the Gal1 amphipathic ß-sheet conformation. Our study contributes to the current understanding of the role of Gal1 in cancer progression, providing mechanistic insights into the anti-tumoural activity of a novel small molecule Gal1-inhibitor. METHODS: We evaluated in vitro OTX008 effects in a panel of human cancer cell lines. For in vivo studies, an ovarian xenograft model was employed to analyse the antitumour activity. Finally, combination studies were performed to analyse potential synergistic effects of OTX008. RESULTS: In cultured cancer cells, OTX008 inhibited proliferation and invasion at micromolar concentrations. Antiproliferative effects correlated with Gal1 expression across a large panel of cell lines. Furthermore, cell lines expressing epithelial differentiation markers were more sensitive than mesenchymal cells to OTX008. In SQ20B and A2780-1A9 cells, OTX008 inhibited Gal1 expression and ERK1/2 and AKT-dependent survival pathways, and induced G2/M cell cycle arrest through CDK1. OTX008 enhanced the antiproliferative effects of Semaphorin-3A (Sema3A) in SQ20B cells and reversed invasion induced by exogenous Gal1. In vivo, OTX008 inhibited growth of A2780-1A9 xenografts. OTX008 treatment was associated with downregulation of Gal1 and Ki67 in treated tumours, as well as decreased microvessel density and VEGFR2 expression. Finally, combination studies showed OTX008 synergy with several cytotoxic and targeted therapies, principally when OTX008 was administered first. CONCLUSION: This study provides insights into the role of Gal1 in cancer progression as well as OTX008 mechanism of action, and supports its further development as an anticancer agent.


Assuntos
Calixarenos/farmacologia , Neoplasias/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Galectina 1/antagonistas & inibidores , Células HT29 , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Biol Chem ; 289(35): 24043-58, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25023279

RESUMO

Angiogenesis or the formation of new blood vessels is important in the growth and metastatic potential of various cancers. Therefore, understanding the mechanism(s) by which angiogenesis occurs can have important therapeutic implications in numerous malignancies. We and others have demonstrated that low molecular weight hyaluronan (LMW-HA, ∼2500 Da) promotes endothelial cell (EC) barrier disruption and angiogenesis. However, the mechanism(s) by which this occurs is poorly defined. Our data indicate that treatment of human EC with LMW-HA induced CD44v10 association with the receptor-tyrosine kinase, EphA2, transactivation (tyrosine phosphorylation) of EphA2, and recruitment of the PDZ domain scaffolding protein, PATJ, to the cell periphery. Silencing (siRNA) CD44, EphA2, PATJ, or Dbs (RhoGEF) expression blocked LMW-HA-mediated angiogenesis (EC proliferation, migration, and tubule formation). In addition, silencing EphA2, PATJ, Src, or Dbs expression blocked LMW-HA-mediated RhoA activation. To translate our in vitro findings, we utilized a novel anginex/liposomal targeting of murine angiogenic endothelium with either CD44 or EphA2 siRNA and observed inhibition of LMW-HA-induced angiogenesis in implanted Matrigel plugs. Taken together, these results indicate LMW-HA-mediated transactivation of EphA2 is required for PATJ and Dbs membrane recruitment and subsequent RhoA activation required for angiogenesis. These results suggest that targeting downstream effectors of LMW-HA could be a useful therapeutic intervention for angiogenesis-associated diseases including tumor progression.


Assuntos
Efrina-A2/genética , Ácido Hialurônico/fisiologia , Neoplasias/patologia , Neovascularização Patológica/fisiopatologia , Receptores Proteína Tirosina Quinases/genética , Ativação Transcricional , Animais , Progressão da Doença , Efrina-A2/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Hialurônico/química , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Receptores Proteína Tirosina Quinases/fisiologia
7.
Int J Pharm ; 472(1-2): 175-84, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24950365

RESUMO

Angiogenesis is one of the hallmarks of cancer which renders it an attractive target for therapy of malignancies. Tumor growth suppression can be achieved by inhibiting angiogenesis since it would deprive tumor cells of oxygen and vital nutrients. Activation of endothelial cells of tumor vasculature is the first step in angiogenesis which is mediated by various factors. One of the major triggers in this process is vascular endothelial growth factor (VEGF) which binds to VEGF receptors on endothelial cells of tumor vessels. This induces a series of signaling cascades leading to activation of cellular processes involved in angiogenesis, and therefore down-regulation of VEGF receptor-2 (VEGFR-2) expression seems a viable option to inhibit angiogenesis. In our investigations, this aim has been pursued by using siRNA interfering with the expression of VEGFR-2. Since the discovery of RNA interference (RNAi) as a gene regulation process, successful delivery of small non-coding RNA has presented itself as a major challenge. In the current study, we have characterized a galectin-1 targeted anginex-coupled lipoplex (Angiplex) containing siRNA against the gene of VEGFR-2 as an angiostatic therapeutic. Angiplex particles had a size of approximately 120 nm with a net negative charge and were stable in vitro. These particles were internalized in a specific manner by HUVECs compared to a non-targeted lipoplex system, and their uptake was higher than Lipofectamine 2000. Gene silencing efficiency of Angiplex was shown to be 61%.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Peptídeos/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Inibidores da Angiogênese/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Inativação Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lipídeos/química , Peptídeos/química , RNA Interferente Pequeno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA