Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Sci Rep ; 14(1): 21953, 2024 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304727

RESUMO

Antiapoptotic protein, including Mcl-1, expression is frequently observed in pancreatic cancer. Gemcitabine plus nabpaclitaxel (GnP) is the standard chemotherapy for metastatic pancreatic cancer (MPC); however, predictive markers for its efficacy remain unestablished. This study evaluated the association between GnP's therapeutic effects and Mcl-1 expression in tissue samples obtained using endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) for pancreatic tumor or percutaneous ultrasound-guided biopsy for metastatic liver tumor. We retrospectively reviewed 38 patients with histologically diagnosed MPC who received GnP as the first-line chemotherapy at our institute between December 2014 and July 2018. Post-immunohistochemistry analysis for Mcl-1 expression detection, patients were divided to into two groups based on the cell proportion showing Mcl-1 immunoreactivity: positive (> 20%; 23 [60.5%] patients) and negative (≤ 20%; 15 [39.5%] patients) groups. Clinical characteristics did not differ between the two groups. The Mcl-1 positive group showed a significantly higher disease control rate (95.7% vs. 73.3%; P = 0.046), longer progressionfree survival (PFS) (7.2 months vs. 4.9 months; P = 0.018) and longer overall survival (OS) (14.9 months vs. 9.2 months; P = 0.008) than the Mcl-1 negative group. Multivariate analysis showed that Mcl-1 expression was an independent predictive marker for PFS and OS. Mcl-1 expression could be a predictive marker for favorable response to GnP.


Assuntos
Albuminas , Protocolos de Quimioterapia Combinada Antineoplásica , Biomarcadores Tumorais , Desoxicitidina , Gencitabina , Proteína de Sequência 1 de Leucemia de Células Mieloides , Paclitaxel , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Desoxicitidina/administração & dosagem , Masculino , Feminino , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Idoso , Pessoa de Meia-Idade , Albuminas/administração & dosagem , Albuminas/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estudos Retrospectivos , Biomarcadores Tumorais/metabolismo , Prognóstico , Metástase Neoplásica , Adulto , Resultado do Tratamento , Idoso de 80 Anos ou mais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia
2.
Rep Biochem Mol Biol ; 12(4): 619-630, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39086591

RESUMO

Background: Organ ischemia-reperfusion (IR) is a common clinical condition associated with various situations such as trauma surgery, organ transplantation, and myocardial ischemia. Current therapeutic methods for IR injury have limitations, and nanotechnology, particularly zinc oxide nanoparticles (ZnO NPs), offers new approaches for disease diagnosis and treatment. In this study, we investigated the protective and anti-apoptotic effects of ZnO NPs in liver ischemia-reperfusion (IR) injury in rats. Methods: Forty-eight male rats were divided into six groups: sham, ZnO5, ZnO10, ischemia-reperfusion (IR), IR+ZnO5, and IR+ZnO10. The protective effect of ZnO NPs was evaluated by liver enzymes (AST, ALT, Bilirubin, ALP), biochemical (TAC, TNF-α, and MDA), molecular examinations (Bcl2, BAX), and histopathological evaluations (H&E, TUNEL). Results: Pre-treatment with ZnO5 and ZnO10 improved hepatic function in IR liver injury, attenuated the levels of oxidants (P = 0.03) and inflammatory mediators, and reduced apoptosis (P = 0). ZnO10 was found to have a greater effect on ischemic reperfusion injury than ZnO5 did. Histopathological examination also showed a dose-dependent decrease in alterations in the IR+ZnO5 and IR+ZnO10 groups. Conclusion: Administration of ZnO5 and ZnO10 improved liver function after IR. The findings of this study suggest that ZnO NPs have a protective effect against oxidative stress and apoptosis in liver ischemia-reperfusion injury in rats. These results may have important implications for developing advanced methods in ischemia-reperfusion treatment.

3.
Bioorg Med Chem Lett ; 101: 129658, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38373466

RESUMO

Bcl-2 anti-apoptotic protein family suppresses cell death by deploying a surface groove to capture the critical BH3 α-helix of pro-apoptotic members. Bfl-1 is a relatively understudied member of this family, though it has been implicated in the pathogenesis and chemoresistance of a variety of human cancers. Reported small molecular Bfl-1 inhibitors encountered the issue of either lack in potency or poor selectivity against its most homologous member Mcl-1. In order to tackle this issue, compound library was screened and a hit compound UMI-77 was identified. We modified its chemical structure to remove the characteristic of PAINS (pan-assay interference compounds), demonstrated the real binding affinity and achieved selectivity against Mcl-1 under the guidance of computational modeling. After optimization 15 was obtained as leading compound to block Bfl-1/BIM interaction in vitro with more than 10-fold selectivity over Mcl-1. We believe 15 is of great value for the exploration of Bfl-1 biological function and its potential as therapeutic target.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Ácido Acético , Proteínas Reguladoras de Apoptose , Neoplasias/metabolismo , Apoptose
4.
Biomed Pharmacother ; 170: 115982, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056236

RESUMO

The phosphatidyl inositol 3-kinase (PI3K)/AKT signaling plays a critical role in cancer cell proliferation, migration, and invasion. This signal transduction axis in HPV-positive cervical cancer has been proved to be directly activated by E6/E7 proteins of the virus enhancing cervical cancer progression. Hence, the PI3K/AKT pathway is one of the key therapeutic targets for HPV-positive cervical cancer. Here we discovered that oxyresveratrol (Oxy) at noncytotoxic concentration specifically suppressed the phosphorylation of AKT but not ERK1/2. This potent inhibitory effect of Oxy was still observed even when cells were stimulated with fetal bovine serum. Inhibition of AKT phosphorylation at serine 473 by Oxy resulted in a significant decrease in serine 9 phosphorylation of GSK-3ß, a downstream target of AKT. Dephosphorylation of GSK-3ß at this serine residue activates its function in promoting the degradation of MCL-1, an anti-apoptotic protein. Results clearly demonstrated that in association with GSK-3ß activation, Oxy preferentially downregulated the expression of anti-apoptotic protein MCL-1. Furthermore, results from the functional analyses revealed that Oxy inhibited cervical cancer cell proliferation, at least in part through suppressing nuclear expression of Ki-67. Besides, the compound retarded cervical cancer cell migration even the cells were exposed to a potent enhancer of epithelial-mesenchymal transition, TGF-ß1. In consistent with these data, Oxy reduced the expression of ß-catenin, N-cadherin, and vimentin. In conclusion, the study disclosed that Oxy specifically inhibits the AKT/GSK-3ß/MCL-1 axis resulting in reduction in cervical cancer cell viability, proliferation, and migration.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Serina/farmacologia
5.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834104

RESUMO

The Bcl-2 family plays a crucial role in regulating cell apoptosis, making it an attractive target for cancer therapy. In this study, a series of indole-based compounds, U1-6, were designed, synthesized, and evaluated for their anticancer activity against Bcl-2-expressing cancer cell lines. The binding affinity, safety profile, cell cycle arrest, and apoptosis effects of the compounds were tested. The designed compounds exhibited potent inhibitory activity at sub-micromolar IC50 concentrations against MCF-7, MDA-MB-231, and A549 cell lines. Notably, U2 and U3 demonstrated the highest activity, particularly against MCF-7 cells. Respectively, both U2 and U3 showed potential BCL-2 inhibition activity with IC50 values of 1.2 ± 0.02 and 11.10 ± 0.07 µM using an ELISA binding assay compared with 0.62 ± 0.01 µM for gossypol, employed as a positive control. Molecular docking analysis suggested stable interactions of compound U2 at the Bcl-2 binding site through hydrogen bonding, pi-pi stacking, and hydrophobic interactions. Furthermore, U2 demonstrated significant induction of apoptosis and cell cycle arrest at the G1/S phase. Importantly, U2 displayed a favourable safety profile on HDF human dermal normal fibroblast cells at 10-fold greater IC50 values compared with MDA-MB-231 cells. These findings underscore the therapeutic potential of compound U2 as a Bcl-2 inhibitor and provide insights into its molecular mechanisms of action.


Assuntos
Antineoplásicos , Humanos , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Proteínas Proto-Oncogênicas c-bcl-2 , Apoptose , Indóis/farmacologia , Proliferação de Células , Relação Estrutura-Atividade , Estrutura Molecular
6.
J Biomol Struct Dyn ; : 1-11, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37837418

RESUMO

Breast cancer (BC) accounts for 30% of all diagnosed cases of cancer in women and remains a leading cause of cancer-related deaths among women worldwide. The current study looks for a protein from the anti-apoptotic/pro-survival BCL-2 family whose overexpression reduces survivability in BC patients and a potential inhibitor for the protein. We found BCL-2A1/BFL1 protein with high expression linked to low survivability in BC. The protein shows prognosis in 8 out of 29 categories, whereas no other family member manifests this property. Out of 7379 compounds, three small molecules (CHEMBL9509, CHEMBL2104550 and CHEMBL3545011) form an H-bond with BCL-2A1/BFL1 protein's unique residue Cys55. Of the three small molecules, we found CHEMBL9509 (Silibinin) to be a potent inhibitor. The compound forms a stable H-bond with the residue Cys55 with the lowest binding energy compared to the other two compounds. It remains stable in the BH3 binding region for more than 100 ns, whereas the other two detach from the region. Additionally, the compound is found to be better than Venetoclax and Nematoclax. We firmly believe in the compound CHEMBL9509 potency to halt BC's progression by inhibiting the BCL-2A1/BFL1 protein, increasing patients' survivability.Communicated by Ramaswamy H. Sarma.

7.
Cancer Lett ; 554: 216028, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462556

RESUMO

Ewing sarcoma is a pediatric bone and soft tissue cancer with an urgent need for new therapies to improve disease outcome. To identify effective drugs, phenotypic drug screening has proven to be a powerful method, but achievable throughput in mouse xenografts, the preclinical Ewing sarcoma standard model, is limited. Here, we explored the use of xenografts in zebrafish for high-throughput drug screening to discover new combination therapies for Ewing sarcoma. We subjected xenografts in zebrafish larvae to high-content imaging and subsequent automated tumor size analysis to screen single agents and compound combinations. We identified three drug combinations effective against Ewing sarcoma cells: Irinotecan combined with either an MCL-1 or an BCL-XL inhibitor and in particular dual inhibition of the anti-apoptotic proteins MCL-1 and BCL-XL, which efficiently eradicated tumor cells in zebrafish xenografts. We confirmed enhanced efficacy of dual MCL-1/BCL-XL inhibition compared to single agents in a mouse PDX model. In conclusion, high-content screening of small compounds on Ewing sarcoma zebrafish xenografts identified dual MCL-1/BCL-XL targeting as a specific vulnerability and promising therapeutic strategy for Ewing sarcoma, which warrants further investigation towards clinical application.


Assuntos
Sarcoma de Ewing , Humanos , Animais , Camundongos , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Peixe-Zebra/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Avaliação Pré-Clínica de Medicamentos , Xenoenxertos , Apoptose , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Linhagem Celular Tumoral
8.
Redox Biol ; 56: 102469, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36126419

RESUMO

BACKGROUND & AIMS: Excessive inflammatory responses and oxidative stress are considered the main characteristics of inflammatory bowel disease (IBD). Endogenous hydrogen sulfide (H2S) has been reported to show anti-inflammatory activity in IBD. The main aim of this study was to explore the role of 3-mercaptopyruvate sulfurtransferase (MPST), a key enzyme that regulates endogenous H2S biosynthesis, in IBD. METHODS: Colonic MPST expression was evaluated in mice and patients with IBD. Various approaches were used to explore the concrete mechanism underlying MPST regulation of the progression of colitis through in vivo and in vitro models. RESULTS: MPST expression was markedly decreased in colonic samples from patients with ulcerative colitis (UC) or Crohn's disease (CD) and from mice treated with DSS. MPST deficiency significantly aggravated the symptoms of murine colitis, exacerbated inflammatory responses and apoptosis, and inhibited epithelium stem cell-derived organoid formation in an H2S-independent manner. Consistently, when HT29 cells were treated with TNF-α, inhibition of MPST significantly increased the expression of proinflammatory cytokines, the amount of ROS and the prevalence of apoptosis, whereas overexpression of MPST markedly improved these effects. RNA-seq analysis showed that MPST might play a role in regulating apoptosis through AKT signaling. Mechanistically, MPST directly interacted with AKT and reduced the phosphorylation of AKT. Additionally, MPST expression was positively correlated with AKT expression in human IBD samples. In addition, overexpression of AKT rescued IEC apoptosis caused by MPST deficiency, while inhibition of AKT significantly aggravated it. CONCLUSIONS: MPST protects the intestines from inflammation most likely by regulating the AKT/apoptosis axis in IECs. Our results may provide a novel therapeutic strategy for the treatment of colitis.


Assuntos
Colite , Sulfeto de Hidrogênio , Doenças Inflamatórias Intestinais , Proteínas Proto-Oncogênicas c-akt , Sulfurtransferases , Animais , Apoptose , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Citocinas , Sulfato de Dextrana , Células Epiteliais/metabolismo , Células HT29 , Humanos , Sulfeto de Hidrogênio/metabolismo , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Intestinos , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Sulfurtransferases/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
9.
ACS Nano ; 16(4): 6293-6308, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35353498

RESUMO

Glioblastoma (GBM) is among the most treatment-resistant solid tumors and often recurrs after resection. One of the mechanisms through which GBM escapes various treatment modalities is the overexpression of anti-apoptotic Bcl-2 family proteins (e.g., Bcl-2, Bcl-xl, and Mcl-1) in tumor cells. Small-molecule inhibitors such as ABT-263 (ABT), which can promote mitochondrial-mediated cell apoptosis by selectively inhibiting the function of Bcl-2 and Bcl-xl, have been proven to be promising anticancer agents in clinical trials. However, the therapeutic prospects of ABT for GBM treatment are hampered by its limited blood-brain barrier (BBB) penetration, dose-dependent thrombocytopenia, and the drug resistance driven by Mcl-1, which is overexpressed in GBM cells and further upregulated upon treatment with ABT. Herein, we reported that the Mcl-1-specific inhibitor A-1210477 (A12) can act synergistically with ABT to induce potent cell apoptosis in U87 MG cells, drug-resistant U251 cells, and patient-derived GBM cancer stem cells. We further designed a biomimetic nanomedicine, based on the apolipoprotein E (ApoE) peptide-decorated red blood cell membrane and pH-sensitive dextran nanoparticles, for the brain-targeted delivery of ABT and A12. The synergistic anti-GBM effect was retained after encapsulation in the nanomedicine. Additionally, the obtained nanomedicine possessed good biocompatibility, exhibited efficient BBB penetration, and could effectively suppress tumor growth and prolong the survival time of mice bearing orthotopic GBM xenografts without inducing detectable adverse effects.


Assuntos
Antineoplásicos , Glioblastoma , Nanopartículas , Humanos , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Proteína bcl-X/metabolismo , Proteína bcl-X/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Biomimética , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Encéfalo/metabolismo
10.
Molecules ; 28(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36615305

RESUMO

Aplysinopsins are a class of indole alkaloids that possess various pharmacological activities. Although their action has been studied in regard to many diseases, their effect on prostate cancer has not yet been examined. Therefore, we synthesized a new series of aplysinopsin analogs and investigated their cytotoxic activity against prostate cancer. Five analogs showed high antitumor activity via suppressing the expression of the anti-apoptotic gene Bcl2, simulationously increasing the expression of the pro-apoptotic genes p53, Bax and Caspase 3. The inhibition of BCL2 led to the activation of BAX, which in turn activated Caspase 3, leading to apoptosis. This dual mechanism of action via apoptosis and cell cycle arrest induction is responsible for aplysinopsin analogs antitumor activity. Hence, our newly synthesized analogs are highly promising candidates for further preclinical studies against prostate cancer.


Assuntos
Alcaloides , Antineoplásicos , Neoplasias da Próstata , Masculino , Humanos , Caspase 3/farmacologia , Proteínas Reguladoras de Apoptose , Proteína X Associada a bcl-2 , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias da Próstata/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células
11.
J Musculoskelet Neuronal Interact ; 21(4): 528-532, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34854392

RESUMO

OBJECTIVES: This research aims to analyze the expression of pro-apoptotic proteins (Bax, p53) and anti-apoptotic protein (Bcl-2) in the nerve roots of the brachial plexus following traumatic brachial plexus injury (TBPI) in the early and late stage. METHODS: A total of 30 biopsy samples were taken from the proximal stump of the postganglionic nerve roots of the TBPI patients' brachial plexus from January 2018 until September 2019. The samples were taken from patients within six months of trauma (early stage, group A) and more than six months following trauma (late stage, group B). Bcl-2, Bax, and p53 expressions in each group were measured and compared. RESULTS: We found significant differences in the Bcl-2 (p=0.04), Bax (p<0.0001), p53 (p<0.0001) expressions between group A and B. The Bcl-2/Bax expression ratio in group A and B was 2.26 and 0.22, respectively. Meanwhile, the Bcl-2/p53 expression ratio in group A and B was 1.64 and 0.23, respectively. CONCLUSION: Apoptosis is inhibited by Bcl-2 activities in the early stage following trauma. In the late stage, a significant decrease of Bcl-2 coupled with a substantial increase of Bax and p53 indicates a continuation of the apoptotic process.


Assuntos
Plexo Braquial/lesões , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53 , Apoptose , Plexo Braquial/metabolismo , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(10): 1432-1438, 2020 Oct 30.
Artigo em Chinês | MEDLINE | ID: mdl-33118512

RESUMO

OBJECTIVE: To investigate the effect of interleukin (IL) -13 combined with cold stimulation on synthesis and secretion of mucin (MUC) 5AC in human bronchial epithelial cell line 16HBE and explore the role of transient receptor potential 8 (TRPM8) and anti-apoptotic factor B-cell lymphoblast-2 (Bcl-2) in this process. METHODS: 16HBE cells were stimulated with 10 ng/mL IL-13, 1 mmol/L menthol, or both (1 mmol/L menthol was added after 6 days of IL-13 stimulation), and the changes in the expression of MUC5AC, intracellular Ca2+ concentration and Bcl-2 expression were evaluated. The effects of ABT-263 (a Bcl-2 inhibitor) and BCTC (a TRPM8 ion channel inhibitor), alone or in combination, on MUC5AC expression in the cells were tested, and the changes in intracellular Ca2+ and Bcl-2 expression following BCTC treatment were observed. The cell viability was assessed using CCK-8 assay, the mRNA expressions of MUC5AC and Bcl-2 were detected with real-time quantitative PCR, the level of MUC5AC in the culture medium was measured with ELISA, and the intracellular Ca2+ fluorescence intensity was determined with flow cytometry. RESULTS: The mRNA and protein expressions of MUC5AC increased significantly in 16HBE cells following stimulation with IL-13, menthol, and both (P < 0.05), and were the highest in the combined treatment group with its peak level occurred at 24 h (P < 0.01). The intracellular Ca2+ fluorescence intensity and Bcl-2 mRNA expression were also increased in 16HBE cells after the stimulations (P < 0.05), and the increments were the most obvious in the combined treatment group (P < 0.01). Treatment with BCTC significantly lowered intracellular Ca2+ fluorescence intensity and the expressions of Bcl-2 and MUC5AC mRNA and protein in the cells stimulated with menthol or with both IL-13 and menthol (P < 0.05), but caused no significant changes in IL-13-stimulated cells (P > 0.05). Treatment with ABT-263 significantly lowered the mRNA and protein expressions of MUC5AC in the cells stimulated with IL-13 and menthol either alone or in combination (P < 0.05). CONCLUSIONS: Menthol combined with IL-13 produces a synergistic effect to promote the synthesis and secretion of MUC5AC in 16HBE cells possibly by activating TRPM8 receptor to upregulate the expression of Bcl-2.


Assuntos
Células Epiteliais/efeitos dos fármacos , Brônquios , Humanos , Interleucina-13 , Mentol/farmacologia , Mucina-5AC
13.
Bioorg Chem ; 104: 104245, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911196

RESUMO

Quinoxaline is one of the privileged heterocyclic fragments for drug molecules. Quinoxaline anticancer drug candidates XK469 and CQS exhibit antiproliferative and proapoptotic properties against various cancers. Based on their chemical structures, we therefore synthesized a series of quinoxaline-1,3,4-oxadiazole hybrids and assessed their anticancer potential on human leukemia HL-60 cells. Although these hybrids exerted significant inhibition of HL-60 cell proliferation, they showed high cytotoxicity on human normal cells (WI-38). Utilizing information from molecular modelling of the hybrids to the anti-apoptotic Bcl-2 protein, we added substructures including phenyl, piperazine, piperidine, and morpholine rings to their frameworks. The designed quinoxaline-1,3,4-oxadiazole hybrid derivatives successfully induced apoptotic response on HL-60 cells with low toxicity on WI-38 cells. Furthermore, RT-PCR analysis demonstrated that these derivatives predominantly inhibit Bcl-2 expression. Our findings highlight the great potential for the development of synthetic quinoxaline-1,3,4-oxadiazole hybrid derivatives as proapoptotic anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Oxidiazóis/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Quinoxalinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
14.
Biochem Pharmacol ; 161: 98-112, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30639456

RESUMO

Chemotherapy is the preferred treatment for advanced ovarian cancer, but the 5-year survival rate remains low partly because of the development of drug resistance. Although it has been reported that X-linked inhibitor of apoptosis (XIAP) causes more severe chemoresistance in ovarian cancer cells and is highly expressed in chemoresistant ovarian cancer, the molecular mechanism underlying this dysregulation is unknown. The purpose of this study was to identify microRNAs (miRNAs) that bind to the 3' untranslated region (3'UTR) of XIAP and have a role in chemoresistance in ovarian cancer. Using in silico analysis and literature review, a panel of miRNAs dysregulated in chemoresistant ovarian cancer was generated from hundreds of miRNAs that were predicted to target the XIAP 3'UTR. Using a dual luciferase reporter assay and cellular co-transfection of a miRNA expression vector and a luciferase reporter fused to the XIAP 3'UTR cognate miRNA binding site, we identified three miRNAs of which miR-142-5p had the greatest inhibitory effect. We found that overexpression of miR-142-5p suppressed XIAP expression by binding to its 3'UTR in OVCAR3 and SKOV3 cells. Using a chemosensitivity assay, we found that in OVCAR3, SKOV3, and primary epithelial ovarian cancer (EOC) cells, overexpression or inhibition of miR-142-5p increased or suppressed their sensitivities to cisplatin respectively. In contrast, introducing XIAP without a 3'UTR counteracted the effect of overexpressed miR-142-5p on cisplatin-induced apoptosis in OVCAR3 ovarian cancer cells. Furthermore, we found a negative correlation between miR-142-5p expression and XIAP protein levels in clinical samples from patients with EOC. Using clinical and miRNA expression data of more than 200 ovarian cancer patients treated with platinum-based chemotherapy from The Cancer Genome Atlas (TCGA) database, we found ovarian cancer patients with higher expression levels of miR-142-5p had longer median progression-free survival as compared to patients with lower miR-142-5p levels. We demonstrated that miR-142-5p also targeted four other anti-apoptotic genes, baculoviral IAP repeat-containing 3 (BIRC3), B-cell lymphoma-2 (BCL2), BCL2 like 2 (BCL2L2), and myeloid cell leukemia sequence 1 (MCL1) specifically. Transcriptome sequencing shed light on the essential apoptosis-related pathway in which miR-142-5p may be involved. To conclude, our findings illustrate that miR-142-5p sensitizes ovarian cancer cells to cisplatin-induced apoptosis by targeting multiple anti-apoptotic genes including XIAP, and may also suggest the therapeutic potential of miR-142-5p in ovarian cancer treatment.


Assuntos
Antineoplásicos/metabolismo , Apoptose/fisiologia , Cisplatino/metabolismo , Marcação de Genes/métodos , MicroRNAs/metabolismo , Neoplasias Ovarianas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Humanos , MicroRNAs/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
15.
Zhongguo Xi Bao Sheng Wu Xue Xue Bao ; 41(8): 1477-1489, 2019 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34249113

RESUMO

Apoptosis is an important biological process that plays a key role in the regulation of cell fate and homeostasis. The B-cell lymphoma-2 (Bcl-2) family proteins are important regulators of the apoptotic pathway, and their dysfunction is associated with a variety of diseases, including cancer, neurodegenerative and autoimmune diseases. In the past decade, a large number of research work on the physiological functions and atomic structures of Bcl-2 family proteins have been reported, which has deepened our understanding of the molecular mechanism and pathological significance of Bcl-2 family proteins. Recently, new drugs targeting different Bcl-2 proteins have been developed and used in clinics or tested in clinical trials. However, the complexity and diversity in functions and structures of Bcl-2 family have left many unsolved problems. This article summarizes current knowledge of the structure and function of Bcl-2 family proteins and discusses the pharmacological significance of Bcl-2 proteins as effective therapeutic targets.

16.
J Biomol Struct Dyn ; 36(10): 2654-2667, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28793831

RESUMO

The Bcl-2 family proteins are the central regulators of apoptosis. Due to its predominant role in cancer progression, the Bcl-2 family proteins act as attractive therapeutic targets. Recently, molecular series of Benzothiazole Hydrazone (BH) inhibitors that exhibits drug-likeness characteristics, which selectively targets Bcl-xL have been reported. In the present study, docking was used to explore the plausible binding mode of the highly active BH inhibitor with Bcl-xL; and Molecular Dynamics (MD) simulation was applied to investigate the stability of predicted conformation over time. Furthermore, the molecular properties of the series of BH inhibitors were extensively investigated by pharmacophore based 3D-QSAR model. The docking correctly predicted the binding mode of the inhibitor inside the Bcl-xL hydrophobic groove, whereas the MD-based free energy calculation exhibited the binding strength of the complex over the time period. Furthermore, the residue decomposition analysis revealed the major energy contributing residues - F105, L108, L130, N136, and R139 - involved in complex stability. Additionally, a six-featured pharmacophore model - AAADHR.89 - was developed using the series of BH inhibitors that exhibited high survival score. The statistically significant 3D-QSAR model exhibited high correlation co-efficient (R2 = .9666) and cross validation co-efficient (Q2 = .9015) values obtained from PLS regression analysis. The results obtained from the current investigation might provide valuable insights for rational drug design of Bcl-xL inhibitor synthesis.


Assuntos
Apoptose , Benzotiazóis/química , Benzotiazóis/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Proteína bcl-X/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Elétrons , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Análise dos Mínimos Quadrados , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes , Termodinâmica
17.
Cancer Genet ; 214-215: 26-31, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28595732

RESUMO

An 82-year-old woman presented with generalized lymphadenopathy and skin involvement. Lymph node biopsy revealed diffuse large B-cell lymphoma with a high proliferation index. G-banding and fluorescence in situ hybridization showed a hypertetraploid karyotype with two copies of t(8;22)(q24;q11), generating the fusion of MYC and the immunoglobulin λ chain gene (IGL), and two copies of the novel immunoglobulin heavy chain gene (IGH) translocation, t(14;15)(q32;q24). A long-distance inverse polymerase chain reaction (PCR) using nested primer combinations designed for each constant gene of IGH showed that Cγ4 was juxtaposed to the downstream sequence of the BCL2A1 (BCL2-related protein A1) gene through the Sγ4 switch region. As a result of t(14;15)(q32;q24), BCL2A1 and IGH Sγ4-Cγ4 were aligned in the same transcriptional orientation at a distance of 64 kb. Reverse transcriptase-mediated PCR showed high BCL2A1 mRNA levels in a lymphoma specimen. Since BCL2A1, mapped at 15q24.3 or 15q25.1, encodes a protein that is an anti-apoptotic member of the BCL2 protein family, we herein described the novel double-hit, t(8;22)(q24;q11)/MYC-IGL and t(14;15)(q32;q24)/IGH-BCL2A1, in which BCL2A1 is considered to play a role equivalent to that of BCL2 in the most frequent double-hit, MYC/BCL2.


Assuntos
Cadeias Pesadas de Imunoglobulinas/genética , Cadeias lambda de Imunoglobulina/genética , Linfoma Difuso de Grandes Células B/genética , Antígenos de Histocompatibilidade Menor/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Translocação Genética , Idoso de 80 Anos ou mais , Cromossomos Humanos Par 14 , Cromossomos Humanos Par 15 , Cromossomos Humanos Par 22 , Cromossomos Humanos Par 8 , Feminino , Humanos , Hibridização in Situ Fluorescente , Cariótipo
18.
Open Biol ; 7(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28469007

RESUMO

Golgi anti-apoptotic protein (GAAP), also known as transmembrane Bax inhibitor-1 motif-containing 4 (TMBIM4) or Lifeguard 4 (Lfg4), shares remarkable amino acid conservation with orthologues throughout eukaryotes, prokaryotes and some orthopoxviruses, suggesting a highly conserved function. GAAPs regulate Ca2+ levels and fluxes from the Golgi and endoplasmic reticulum, confer resistance to a broad range of apoptotic stimuli, promote cell adhesion and migration via the activation of store-operated Ca2+ entry, are essential for the viability of human cells, and affect orthopoxvirus virulence. GAAPs are oligomeric, multi-transmembrane proteins that are resident in Golgi membranes and form cation-selective ion channels that may explain the multiple functions of these proteins. Residues contributing to the ion-conducting pore have been defined and provide the first clues about the mechanistic link between these very different functions of GAAP. Although GAAPs are naturally oligomeric, they can also function as monomers, a feature that distinguishes them from other virus-encoded ion channels that must oligomerize for function. This review summarizes the known functions of GAAPs and discusses their potential importance in disease.


Assuntos
Cálcio/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Animais , Apoptose , Camelus , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Neoplasias/patologia
19.
Oncotarget ; 8(18): 29823-29832, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28415735

RESUMO

In this study, we investigated anti-tumor activity and associated molecular mechanism of action of Salicylate ●Phenanthroline Copper (II) Complex in triple-negative breast cancer. Salicylate ●Phenanthroline Copper (II) Complex inhibited the growth of four breast cancer cell lines (MCF-7, T47D, MDA-MB-231 and BT-20) and induced apoptosis in a concentration-dependent manner. The effect was more profound in MDA-MB-231 and BT-20 triple-negative breast cancer cell lines. Western blot showed that the expression of the apoptosis-related protein Bcl-2, Bcl-xl and survivin was significantly reduced in MDA-MB-231 after treatment with Salicylate ●Phenanthroline Copper (II) Complex. In vivo, Salicylate ●Phenanthroline Copper (II) Complex administration significantly attenuated tumor growth of MDA-MB-231 xenografts, and the expression levels of Bcl-2, Bcl-xL and survivin were reduced as measured by immunohistochemical staining. These data suggest that Salicylate ●Phenanthroline Copper (II) Complex is a promising novel therapeutic drug for triple-negative breast cancer and warrants further study.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Fenantrolinas/farmacologia , Salicilatos/farmacologia , Animais , Antineoplásicos/química , Apoptose/genética , Biomarcadores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Compostos Organometálicos/química , Fenantrolinas/química , Salicilatos/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Oncol Lett ; 13(4): 2791-2798, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28454468

RESUMO

Tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) are promising candidates for cancer treatment due to their ability to induce apoptosis through death receptor stimulation. However, their usage may be limited due to the resistance of cancer cells to TNF-α- and TRAIL-induced apoptosis. Currently, there is interest in screening for natural products that can sensitize cancer cells to TNF-α- and TRAIL-induced apoptosis for their use in combination with TNF-α or TRAIL. It was previously reported that the bark extract of Thevetia peruviana showed a reversal effect on TRAIL-resistance in human gastric adenocarcinoma cell lines. In the present study, the effects of the ethanolic extract of T. peruviana flowers on TNF-α- and TRAIL-induced apoptosis of human cervical cancer HeLa cells were investigated in vitro by determining cell viability and apoptosis using a WST-1 cell proliferation assay and immunoblot analysis, respectively. The ethanolic extract of T. peruviana flowers promoted TNF-α and TRAIL-mediated cell death through the activation of the caspase cascade, poly(ADP-ribose) polymerase and BH3-interacting domain death agonist cleavage. Combined treatment using the extract plus TNF-α resulted in downregulation of anti-apoptotic protein, including myeloid cell leukemia sequence-1, B-cell lymphoma-extra large (Bcl-XL), X-linked inhibitor of apoptosis protein and survivin, while the combined treatment with TRAIL downregulated Bcl-XL. Thus, the ethanolic extract of T. peruviana flowers has potential in sensitizing the TNF-α- and TRAIL-induced apoptosis of HeLa cells via the intrinsic and extrinsic pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA