Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39078330

RESUMO

There is a critical need for novel approaches to translate cell therapy and regenerative medicine to clinical practice. Magnetic cell targeting with site specificity has started to open avenues in these fields as a potential therapeutic platform. Magnetic targeting is gaining popularity in the field of biomedicine due to its ability to concentrate and retain at a target site while minimizing deleterious effects at off-target sites. It is regarded as a relatively straightforward and safe approach for a wide range of therapeutic applications. This review discusses the latest advancements and approaches in magnetic cell targeting using endocytosed and surface-bound magnetic nanoparticles as well as in vivo tracking using magnetic resonance imaging (MRI). The most common form of magnetic nanoparticles is superparamagnetic iron oxide nanoparticles (SPION). The biodegradable and biocompatible properties of these magnetically responsive particles and capacity for rapid endocytosis into cells make them a breakthrough in targeted therapy. This review further discusses specific applications of magnetic targeting approaches in cardiovascular tissue engineering including myocardial regeneration, therapeutic angiogenesis, and endothelialization of implantable cardiovascular devices.

2.
Int J Pharm ; 660: 124332, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866085

RESUMO

Surface functionalization of nano drug carriers allows for precise delivery of therapeutic molecules to the target site. This technique involves attaching targeting molecules to the nanoparticle surface, facilitating selective interaction. In this study, we engineered virus-like particles (VLPs) to enhance their targeting capabilities. Azide groups incorporated on the lipid membranes of VLPs enabled bioorthogonal click reactions for conjugation with cycloalkyne-bearing molecules, providing efficient conjugation with high specificity. HIV-1 Gag VLPs were chosen due to their envelope, which allows host membrane component incorporation, and the Gag protein, which serves as a recognition motif for human T cells. This combination, along with antibody-mediated targeting, addresses the limitations of intracellular delivery to T cells, which typically exhibit low uptake of exogenous materials. The selective uptake of azide VLPs by CD3-positive T cells was evaluated in a co-culture system. Even without antibody conjugation, VLP uptake was enhanced in T cells, indicating their intrinsic targeting potential. Antibody conjugation further amplified this effect, demonstrating the synergistic benefits of the combined targeting approach. Our study shows that recombinant production of azide functionalized VLPs results in engineered nanoparticles that can be easily modified using bioorthogonal click reactions, providing high specificity and versatility for conjugation with various molecules, making it applicable to a wide range of biological products.


Assuntos
Azidas , Química Click , Linfócitos T , Humanos , Azidas/química , Linfócitos T/imunologia , Nanopartículas/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana , HIV-1 , Técnicas de Cocultura , Sistemas de Liberação de Medicamentos , Propriedades de Superfície
3.
Adv Sci (Weinh) ; 11(21): e2308763, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552157

RESUMO

The CRISPR/Cas system has been introduced as an innovative tool for therapy, however achieving specific delivery to the target has been a major challenge. Here, an antibody-CRISPR/Cas conjugate platform that enables specific delivery and target gene editing in HER2-positive cancer is introduced. The CRISPR/Cas system by replacing specific residues of Cas9 with an unnatural amino acid is engineered, that can be complexed with a nanocarrier and bioorthogonally functionalized with a monoclonal antibody targeting HER2. The resultant antibody-conjugated CRISPR/Cas nanocomplexes can be specifically delivered and induce gene editing in HER2-positive cancer cells in vitro. It is demonstrated that the in vivo delivery of the antibody-CRISPR/Cas nanocomplexes can effectively disrupt the plk1 gene in HER2-positive ovarian cancer, resulting in substantial suppression of tumor growth. The current study presents a useful therapeutic platform for antibody-mediated delivery of CRISPR/Cas for the treatment of various cancers and genetic diseases.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Humanos , Camundongos , Animais , Feminino , Linhagem Celular Tumoral , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Anticorpos Monoclonais/genética , Neoplasias/terapia , Neoplasias/genética , Receptor ErbB-2/genética
4.
Front Bioeng Biotechnol ; 12: 1338029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357709

RESUMO

Repairing defects in alveolar bone is essential for regenerating periodontal tissue, but it is a formidable challenge. One promising therapeutic approach involves using a strategy that specifically recruits periodontal ligament cells (PDLCs) with high regenerative potential to achieve in situ regeneration of alveolar bone. In this study, we have created a new type of microsphere conjugated with an antibody to target p75 neurotrophin receptor (p75NTR), which is made of nano-hydroxyapatite (nHA) and chitosan (CS). The goal of this design is to attract p75NTR+hPDLCs selectively and promote osteogenesis. In vitro experiments demonstrated that the antibody-conjugated microspheres attracted significantly more PDLCs compared to non-conjugated microspheres. Incorporating nHA not only enhances cell adhesion and proliferation on the surface of the microsphere but also augments its osteoinductive properties. Microspheres effectively recruited p75NTR+ cells at bone defect sites in SD rats, as observed through immunofluorescent staining of p75NTR antibodies. This p75NTR antibody-conjugated nHA/CS microsphere presents a promising approach for selectively recruiting cells and repairing bone defects.

5.
Mol Pharm ; 21(1): 4-17, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117251

RESUMO

Antibody-targeted lipid nanoparticles (Ab-LNPs) are rapidly gaining traction as multifaceted platforms in precision medicine, adept at delivering a diverse array of therapeutic agents, including nucleic acids and small molecules. This review provides an incisive overview of the latest developments in the field of Ab-LNP technology, with a special emphasis on pivotal design aspects such as antibody engineering, bioconjugation strategies, and advanced formulation techniques. Furthermore, it addresses critical chemistry, manufacturing, and controls (CMC) considerations and thoroughly examines the in vivo dynamics of Ab-LNPs, underscoring their promising potential for clinical application. By seamlessly blending scientific advancements with practical industrial perspectives, this review casts a spotlight on the burgeoning role of Ab-LNPs as an innovative and potent tool in the realm of targeted drug delivery.


Assuntos
Lipossomos , Nanopartículas , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Anticorpos , RNA Interferente Pequeno
6.
Life Sci ; 334: 122226, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918627

RESUMO

AIMS: Development and characterization of LAM and DTG loaded liposomes conjugated anti-CD4 antibody and peptide dendrimer (PD2) to improve the therapeutic efficacy and to achieve targeted treatment for HIV infection. MAIN METHODS: A 2-level full factorial design was used to optimize the preparation of dual drug loaded liposomes. Optimized dual drug loaded ligand conjugated liposomes were assessed for their cytotoxicity and cell internalization on TZM-bl cells. Anti-HIV efficiency of the dual drug loaded liposomes were screened for their inhibitory potential in TZM-bl cells and the activities were confirmed using Peripheral Blood Mononuclear Cells (PBMCs). KEY FINDINGS: The particle size of the optimized dual drug-loaded liposomes was 133.7 ± 4.04 nm, and the spherical morphology of the liposomes was confirmed by TEM analysis. The entrapment efficiency was 34 ± 4.9 % and 54 ± 1.8 % for LAM and DTG, respectively, and a slower in vitro release of LAM and DTG was observed when entrapped into liposomes. The cytotoxicity of the dual drug loaded liposomes was similar to the cytotoxicity of free drug solutions. Conjugation of anti-CD4 antibody and PD2 did not significantly influence the cytotoxicity but it enhanced the uptake of liposomes into the cells. Conjugated dual drug loaded liposomes exhibited better HIV inhibition with lower IC50 values (0.0003 ± 0.0002 µg/mL) compared to their free drug solutions (0.002 ± 0.001 µg/mL). The liposomal formulations have shown similar activities in both screening and confirmatory cell-based assays. SIGNIFICANCE: The results demonstrated the cell targeting ability of dual drug loaded liposomes conjugated with anti-CD4 antibody and peptide dendrimer. Conjugated liposomes also improved anti-HIV efficiency of LAM and DTG.


Assuntos
Dendrímeros , Infecções por HIV , Humanos , Lipossomos/química , Infecções por HIV/tratamento farmacológico , Composição de Medicamentos , Leucócitos Mononucleares , Peptídeos
7.
ACS Appl Mater Interfaces ; 15(38): 45498-45505, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37704020

RESUMO

Droplet-based microfluidics is leading the development of miniaturized, rapid, and sensitive version of enzyme-linked immunosorbent assays (ELISAs), a central method for protein detection. These assays involve the use of a functionalized surface able to selectively capture the desired analyte. Using the droplet's oil water interface as a capture surface requires designing custom-perfluorinated fluorosurfactants bearing azide-containing polar groups, which spontaneously react when forming the droplet with strain-alkyne-functionalized antibodies solubilized in the aqueous phase. In this article, we present our research on the influence of the structure of surfactant's hydrophilic heads on the efficiency of SPAAC functionalization and on the effect of this antibody grafting process on droplet stability. We have shown that while short linkers lead to high grafting efficiency, long linkers lead to high stability, and that an intermediate size is required to balance both parameters. In the described family of surfactants, the optimal structure proved to be a PEG4 linker connecting a polar di-azide head and a per-fluoropolyether tail (Krytox). We also found that grafting an increasing amount of antibody, thus increasing interface coverage, increases droplet stability. It thus appears that such a bi-partite system with a reactive fluoro-surfactant in the oil phase and reactive antibody counterpart in the aqueous phase gives access in situ to novel surfactant construct providing unexplored interface structures and droplet functionality.


Assuntos
Microfluídica , Água , Água/química , Azidas/química , Tensoativos/química , Anticorpos
8.
Chembiochem ; 24(18): e202300356, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37548625

RESUMO

We describe the synthesis and application of a selection of trifunctional reagents for the dual-modality modification of native, solvent accessible disulfide bonds in trastuzumab. The reagents were developed from the dibromomaleimide (DBM) platform with two orthogonal clickable functional groups built around a lysine core. We also describe the development of an aryl diselenide additive which enables antibody disulfide reduction in 4 minutes and a rapid overall reduction-bridging-double click sequence.


Assuntos
Imunoconjugados , Lisina , Indicadores e Reagentes , Anticorpos/química , Imunoconjugados/química , Dissulfetos/química
9.
Biosens Bioelectron ; 237: 115511, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429147

RESUMO

Scientific interest in the investigation and application of multifunctional nanomaterials in medical diagnostics has been increasing. The employment of magnetocatalytic immunoconjugates as both analyte-capturing agents and enzyme-like catalytic labels may enable rapid preconcentration and determination of relevant antigens. In this work, we synthesized and comprehensively characterized two types of noble metal-decorated magnetic nanocubes (MDMCs) which were subsequently applied in the one-step, sandwich nanozyme-linked immunosorbent assay (NLISA). Magnetic cores allow for rapid separation from complex samples of biological origin. The catalytically active shell composed of Au-decorated Pt or Ru can effectively mimic the activity of horseradish peroxididase, retaining at the same time the ability to form stable bioconstructs through self-assembly of thiolated ligands. As a result, hybrid multifunctional nanoparticles were synthesized and used to detect C-reactive protein (CRP) in serum samples. We have also paid considerable attention to the mechanistic studies of the formation of sandwich immunocomplexes with nanoparticle labels by means of immunoenzymatic methods and surface plasmon resonance. Analytical parameters of the Pt-MDMCs-labeled NLISA (detection limit LOD = 0.336 ng mL-1, recovery = 98.0%, linear response window covering two logarithmic units) turned out to be superior to the classical, one-step ELISA based on a horseradish peroxidase. In addition, our method offers further possibility of sensitivity adjustment by changing the parameters of magnetic preconcentration, together with good long-term stability of MDMCs conjugates and their good resistance to common interferences. We believe that the proposed simple synthetic protocol will guide a new approach to applying metal-decorated magnetic nanozymes as versatile and multifunctional labels for application in subsequent pre-analytical analyte concentration and immunoassays towards clinical applications.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Proteína C-Reativa , Colorimetria , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Ouro , Fenômenos Magnéticos
10.
Mol Pharm ; 20(6): 3073-3087, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37218930

RESUMO

Covalent conjugation of a biologically stable polymer to a therapeutic protein, e.g., an antibody, holds many benefits such as prolonged plasma exposure of the protein and improved tumor uptake. Generation of defined conjugates is advantageous in many applications, and a range of site-selective conjugation methods have been reported. Many current coupling methods lead to dispersity in coupling efficiencies with subsequent conjugates of less-well-defined structure, which impacts reproducibility of manufacture and ultimately may impact successful translation to treat or image diseases. We explored designing stable, reactive groups for polymer conjugation reactions that would lead to conjugates through the simplest and most abundant residue on most proteins, the lysine residue, yielding conjugates in high purity and demonstrating retention of mAb efficacy through surface plasmon resonance (SPR), cell targeting, and in vivo tumor targeting. We utilized squaric acid diesters as coupling agents for selective amidation of lysine residues and were able to selectively conjugate one, or two, high-molecular-weight polymers to a therapeutically relevant antibody, 528mAb, that subsequently retained full binding specificity. Water-soluble copolymers of N-(2-hydroxypropyl) methacrylamide (HPMA) and N-isopropylacrylamide (NIPAM) were prepared by Reversible Addition-Fragmentation chain-Transfer (RAFT) polymerization and we demonstrated that a dual-dye-labeled antibody-RAFT conjugate (528mAb-RAFT) exhibited effective tumor targeting in model breast cancer xenografts in mice. The combination of the precise and selective squaric acid ester conjugation method, with the use of RAFT polymers, leads to a promising strategic partnership for improved therapeutic protein-polymer conjugates having a very-well-defined structure.


Assuntos
Neoplasias , Polímeros , Humanos , Animais , Camundongos , Polímeros/química , Lisina , Reprodutibilidade dos Testes , Anticorpos , Proteínas/química
11.
Molecules ; 28(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36770585

RESUMO

As antibody-drug conjugates have become a very important modality for cancer therapy, many site-specific conjugation approaches have been developed for generating homogenous molecules. The selective antibody coupling is achieved through antibody engineering by introducing specific amino acid or unnatural amino acid residues, peptides, and glycans. In addition to the use of synthetic cytotoxins, these novel methods have been applied for the conjugation of other payloads, including non-cytotoxic compounds, proteins/peptides, glycans, lipids, and nucleic acids. The non-cytotoxic compounds include polyethylene glycol, antibiotics, protein degraders (PROTAC and LYTAC), immunomodulating agents, enzyme inhibitors and protein ligands. Different small proteins or peptides have been selectively conjugated through unnatural amino acid using click chemistry, engineered C-terminal formylglycine for oxime or click chemistry, or specific ligation or transpeptidation with or without enzymes. Although the antibody protamine peptide fusions have been extensively used for siRNA coupling during early studies, direct conjugations through engineered cysteine or lysine residues have been demonstrated later. These site-specific antibody conjugates containing these payloads other than cytotoxic compounds can be used in proof-of-concept studies and in developing new therapeutics for unmet medical needs.


Assuntos
Antineoplásicos , Imunoconjugados , Citotoxinas , Anticorpos/química , Imunoconjugados/química , Proteínas , Peptídeos/química , Aminoácidos , Polissacarídeos
12.
Small Methods ; 7(4): e2201452, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808832

RESUMO

The performance of fluorescence immunostaining is physically limited by the brightness of organic dyes, whereas fluorescence labeling with multiple dyes per antibody can lead to dye self-quenching. The present work reports a methodology of antibody labeling by biotinylated zwitterionic dye-loaded polymeric nanoparticles (NPs). A rationally designed hydrophobic polymer, poly(ethyl methacrylate) bearing charged, zwitterionic and biotin groups (PEMA-ZI-biotin), enables preparation of small (14 nm) and bright fluorescent biotinylated NPs loaded with large quantities of cationic rhodamine dye with bulky hydrophobic counterion (fluorinated tetraphenylborate). The biotin exposure at the particle surface is confirmed by Förster resonance energy transfer with dye-streptavidin conjugate. Single-particle microscopy validates specific binding to biotinylated surfaces, with particle brightness 21-fold higher than quantum dot-585 (QD-585) at 550 nm excitation. The nanoimmunostaining method, which couples biotinylated antibody (cetuximab) with bright biotinylated zwitterionic NPs through streptavidin, significantly improves fluorescence imaging of target epidermal growth factor receptors (EGFR) on the cell surface compared to a dye-based labeling. Importantly, cetuximab labeled with PEMA-ZI-biotin NPs can differentiate cells with distinct expression levels of EGFR cancer marker. The developed nanoprobes can greatly amplify the signal from labeled antibodies, and thus become a useful tool in the high-sensitivity detection of disease biomarkers.


Assuntos
Corantes Fluorescentes , Nanopartículas , Corantes Fluorescentes/química , Biotina/química , Biotina/metabolismo , Estreptavidina/química , Estreptavidina/metabolismo , Cetuximab , Nanopartículas/química , Polímeros/química
13.
Adv Sci (Weinh) ; 10(9): e2206546, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36698301

RESUMO

Antibody-nanoparticle conjugates are promising candidates for precision medicine. However, developing a controllable method for conjugating antibodies to nanoparticles without compromising the antibody activity represents a critical challenge. Here, a facile and generalizable film-coating method is presented using zeolitic imidazole framework-8 (ZIF-8) to immobilize antibodies on various nanoparticles in a favorable orientation for enhanced cell targeting. Different model and therapeutic antibodies (e.g., Herceptin) are assembled on nanoparticles via a biomineralized film-coating method and exhibited high antibody loading and targeting efficiencies. Importantly, the antibodies selectively bind to ZIF-8 via their Fc regions, which favorably exposes the functional Fab regions to the biological target, thus improving the cell targeting ability of antibody-coated nanoparticles. In combination, molecular dynamics simulations and experimental studies on antibody immobilization, orientation efficiency, and biofunctionality collectively demonstrate that this versatile site-specific antibody conjugation method provides effective control over antibody orientation and leads to improved cell targeting for a variety of nanoparticles.


Assuntos
Nanopartículas Metálicas , Especificidade de Anticorpos , Sistemas de Liberação de Medicamentos , Estruturas Metalorgânicas/química , Nanopartículas Metálicas/química
14.
Methods Mol Biol ; 2593: 113-126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36513927

RESUMO

Spatial proteomics has recently garnered significant interest, as it offers to provide unprecedented insight into biological processes in both health and disease, by connecting protein expression patterns from the subcellular level to the tissue or even organism level. These high-content approaches generally rely on a high degree of multiplexing, whereby multiple proteins can be detected simultaneously. The most versatile multiplexing approaches utilize antibodies to confer specificity for various intracellular proteins of interest. Therefore, these methods must be able to differentiate many antibodies at once. In this chapter, we describe a simple and rapid approach to labeling antibodies with distinct epitope tags in a site-specific manner. This allows multiple antibodies, even from the same host species, to be uniquely identified and detected and offers a simple approach for spatial proteomic applications.


Assuntos
Anticorpos , Proteômica , Epitopos/metabolismo , Anticorpos Fosfo-Específicos , Anticorpos/metabolismo , Proteínas
15.
Methods Mol Biol ; 2510: 77-98, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35776321

RESUMO

The murine anti-human P2X7 receptor monoclonal antibody (mAb) (clone L4) has been used to study the expression and function of the P2X7 receptor on primary leukocytes, keratinocytes, osteoblasts and neuronal cells, as well as various cell lines. This antibody has also been used to characterize polymorphic variants and isoforms of the P2RX7 gene and P2X7 site-directed mutations, and to identify molecules coassociated with P2X7 in the plasma membrane. This chapter describes the maintenance and cryopreservation of the L4 hybridoma cell line, as well as the generation of tissue culture supernatant containing the anti-human P2X7 mAb, and its subsequent purification by Protein A chromatography and conjugation to DyLight™ 488. Moreover, this chapter describes flow cytometric assays to assess the blocking activity and binding of the anti-human P2X7 mAb against P2X7 on human RPMI 8226 multiple myeloma cells.


Assuntos
Receptores Purinérgicos P2X7 , Proteína Estafilocócica A , Animais , Anticorpos Monoclonais , Células Cultivadas , Hibridomas , Camundongos , Receptores Purinérgicos P2X7/genética
16.
Methods Mol Biol ; 2463: 67-80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35344168

RESUMO

Recent advances in multimodal approaches toward single-cell analyses present valuable data points that can complement standard flow cytometry data. In particular, the overlay of cell-surface proteome data with gene expression analysis presents a necessary advancement, particularly in the field of immunology. Here we describe a copper-free click chemistry method for the generation of antibody-oligonucleotide complexes and present the steps for its employment in the context of the 10× genomics droplet-based single-cell RNA-seq workflow, providing a method for coupling proteomic and transcriptomic analyses in an efficient and cost-effect manner.


Assuntos
Oligonucleotídeos , Proteômica , Anticorpos , Química Click/métodos , Oligonucleotídeos/genética , RNA-Seq
17.
Biotechnol J ; 17(6): e2100213, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35174641

RESUMO

BACKGROUND AND AIM: Single-cell RNA sequencing (scRNA-seq) is a powerful method utilising transcriptomic data for detailed characterisation of heterogeneous cell populations. The use of oligonucleotide-labelled antibodies for targeted proteomics addresses the shortcomings of the scRNA-seq-only based approach by improving detection of low expressing targets. However, optimisation of large antibody panels is challenging and depends on the availability of co-functioning oligonucleotide-labelled antibodies. MAIN METHODS AND RESULTS: We present here a simple adjustable oligonucleotide-antibody conjugation method which enables a desired level of oligo-conjugation per antibody. The mean labelling in the produced antibody batches varied from 1 to 6 oligos per antibody. In the scRNA-seq multimodal experiment, the highest sensitivity was seen with moderate antibody labelling as the high activation and/or labelling was detrimental to antibody performance. The conjugates were also tested for compatibility with the fixation and freeze storage protocols. The oligo-antibody signal was stable in fixed cells indicating the feasibility of a stain, fix, store, and analyse later type of workflow for multimodal scRNA-seq. CONCLUSIONS AND IMPLICATIONS: Optimised oligo-labelling will improve detection of weak protein targets in scRNA-seq multimodal experiments and reduce sequencing costs due to a more balanced amplification of different antibody signals in CITE-seq libraries. Furthermore, the use of a pre-stain, fix, run later protocol will allow for flexibility, facilitate sample pooling, and ease logistics in scRNA-seq multimodal experiments.


Assuntos
Análise de Célula Única , Transcriptoma , Anticorpos/genética , Perfilação da Expressão Gênica , Oligonucleotídeos/genética , Proteômica , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
18.
Anal Chim Acta ; 1189: 338907, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34815045

RESUMO

The immunosensor has been proven a versatile tool to detect various analytes, such as food contaminants, pathogenic bacteria, antibiotics and biomarkers related to cancer. To fabricate robust and reproducible immunosensors with high sensitivity, the covalent immobilization of immunoglobulins (IgGs) in a site-specific manner contributes to better performance. Instead of the random IgG orientations result from the direct yet non-selective immobilization techniques, this review for the first time introduces the advances of stepwise yet site-selective conjugation strategies to give better biosensing efficiency. Noncovalently adsorbing IgGs is the first but decisive step to interact specifically with the Fc fragment, then following covalent conjugate can fix this uniform and antigens-favorable orientation irreversibly. In this review, we first categorized this stepwise strategy into two parts based on the different noncovalent interactions, namely adhesive layer-mediated interaction onto homofunctional support and layer-free interaction onto heterofunctional support (which displays several different functionalities on its surface that are capable to interact with IgGs). Further, the influence of ligands characteristics (synthesis strategies, spacer requirements and matrices selection) on the heterofunctional support has also been discussed. Finally, conclusions and future perspectives for the real-world application of stepwise covalent conjugation are discussed. This review provides more insights into the fabrication of high-efficiency immunosensor, and special attention has been devoted to the well-orientation of full-length IgGs onto the sensing platform.


Assuntos
Anticorpos Imobilizados , Técnicas Biossensoriais , Anticorpos , Imunoensaio , Fragmentos Fc das Imunoglobulinas
19.
Methods Mol Biol ; 2424: 59-94, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34918287

RESUMO

Mass cytometry aka Cytometry by Time-Of-Flight (CyTOF) is one of several recently developed multiparametric single-cell technologies designed to address cellular heterogeneity within healthy and diseased tissue. Mass cytometry is an adaptation of flow cytometry in which antibodies are labeled with stable heavy metal isotopes and the readout is by time-of-flight mass spectrometry. With minimal spillover between channels, mass cytometry enables readouts of up to 60 parameters per single cell. Critically, mass cytometry can identify minority cell populations that are lost in bulk tissue analysis. Mass cytometry has been used to great effect for the study of immune cells. We have extended its use to examine single cells within disaggregated solid tissues, specifically freshly resected tubo-ovarian high-grade serous tumors. Here we detail our protocols designed to ensure the production of high-quality single-cell datasets. The methodology can be modified to accommodate the study of other solid tissues.


Assuntos
Neoplasias Ovarianas , Anticorpos , Feminino , Citometria de Fluxo , Humanos , Isótopos , Espectrometria de Massas , Análise de Célula Única
20.
Bioimpacts ; 11(4): 237-244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631485

RESUMO

Introduction: Further development of magnetic-based detection techniques could be of significant use in increasing the sensitivity of detection and quantification of hepatitis B virus (HBV) infection. The present work addresses the fabrication and characterization of a new bio-nano composite based on the immobilization of goat anti-HBsAg antibody on modified core-shell magnetic nanoparticles (NPs) by (3-aminopropyl) triethoxysilane (APTES), named Fe3O4@SiO2/NH2, and magnetic NPs modified by chitosan (Fe3O4@CS). Methods: At the first step, Fe3O4 was modified with the silica and APTES (Fe3O4@SiO2/NH2) and chitosan (Fe3O4@CS) separately. The goat anti-HBsAg antibody was activated by two different protocols: Sodium periodate and EDC-NHS. Then the resulted composites were conjugated with activated goat anti-HBsAg IgG. An external magnet collected Bio-super magnetic NPs (BSMNPs) and the remained solution was analyzed by the Bradford method to check the amount of attached antibody to the surface of BSMNPs. Results: The findings indicated that activation of antibodies by sodium periodate method 15-17 µg antibody immobilized on 1 mg of super magnetic nanoparticles (SMNPs). However, in the EDC-NHS method, 8-10 µg of antibody was conjugated with 1 mg of SMNPs. The resulting bio-magnetic NPs were applied for interaction with the HBsAg target using enzyme-linked immunosorbent assay (ELISA). About 1 µg antigen attached to 1 mg SMNPs, which demonstrated that the fabricated materials are applicable in the detection scope of HBsAg. Conclusion: In the present study, we developed new antibody-conjugated magnetic NPs for the detection of HBsAg using an efficient conjugation strategy. The results demonstrated that the binding capacity of Fe3O4@SiO2/NH2 was comparable with commercially available products. Our designed method for conjugating anti-HBsAg antibody to a magnetic nanoparticle opens the way to produce a high capacity of magnetic NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA