Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.539
Filtrar
1.
Biomed Chromatogr ; : e5975, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105236

RESUMO

In this research, the study utilized the root, leaf, and petiole parts of in vitro grown Salvia hispanica plants as explants. Following UV-C treatment applied to developing callus, methanol extracts were obtained and analyzed using liquid chromatography-mass spectrometry (LC/MS) to investigate their anticancer properties. First, the seeds of S. hispanica were soaked in commercial bleach for 6 min to ensure surface sterilization. The most effective antimicrobial activity on Gram-negative bacteria, with a zone diameter (11 ± 0.82 mm), was noticed in callus extracts obtained from the petiole explant in the second protocol against Klebsiella pneumoniae EMCS bacteria. Anticancer activities on SH-SY5Y human neuroblastoma cells were investigated by using 1000, 500, 250, 125, 62.5, 31.25, 15.62, and 78.12 µg/mL doses of the extracts, and the most effective cytotoxic activity was determined at the 1000 µg/mL dose of the extracts obtained from both protocols. The extracts were determined to inhibit hCAI, hCAII, AChE, and BChE enzymes. The content of 53 different phytochemical components of the extracts was analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Rosmarinic acid, quinic acid, and caffeic acid were found in the highest concentration. The comprehensive LC-MS/MS analysis of S. hispanica extracts revealed a diverse array of phytochemical compounds, highlighting its potential for therapeutic applications.

2.
Cureus ; 16(7): e63930, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39109124

RESUMO

Aim This study aims to investigate the antibacterial, antifungal, and phytochemical properties of methanolic tuber extracts from Terminalia chebula. Additionally, the study seeks to assess the in vitro anticancer effects of these extracts on an oral cancer cell line, as well as their antioxidant and anti-inflammatory activities. Materials and methods The research involves examining the antibacterial and antifungal properties of methanolic tuber extracts from Terminalia chebula. The phytochemical composition will be analyzed using standard techniques. The in vitro anticancer effects will be tested on an oral cancer cell line, while antioxidant and anti-inflammatory activities will be evaluated through appropriate assays. Results The study demonstrated that Terminalia chebula methanolic tuber extracts exhibit cytotoxic effects on the oral cancer cell line (KB-1), reducing cell viability as evidenced by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. A concentration of 30 µg/mL induced notable morphological changes observed under an inverted fluorescence microscope. Antioxidant assays showed a maximum absorption of 85.3% with 50 µL of the extract, while anti-inflammatory tests revealed a 76.0% absorption. Antimicrobial activity, assessed via agar-well diffusion, indicated significant antibacterial effects, especially against Streptococcus mutans and Candida albicans at higher concentrations. The findings suggest promising therapeutic potential for Terminalia chebula extracts. Conclusion Terminalia chebula tuber extracts may treat diseases caused by studied organisms. The study suggests that methanolic extracts from Terminalia chebula tubers have potential commercial value due to their anti-inflammatory, antioxidant, and cytotoxic properties. The extracts induced apoptosis in an oral cancer cell line at 30 µg/mL after 24 hours. Further research is needed to understand the active components and underlying molecular mechanisms.

3.
Bioorg Chem ; 151: 107688, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39106712

RESUMO

Ergosterol peroxide (EP) isolated from the edible medicinal fungus Pleurotus ferulae has a wide range of anti-tumor activity, but poor water solubility and low bioavailability limit further application. In this study, EP was structurally modified using triphenylphosphine (TPP+), which combines mitochondrial targeting, amphiphilicity, and cytotoxicity. A series of TPP+-conjugated ergosterol peroxide derivatives (TEn) with different length linker arms were synthesized. The structure-activity relationship showed that the anticancer activity of TEn gradually decreased with the elongation of the linker arm. The compound TE3 has the optimal and broadest spectrum of antitumor effects. It mainly through targeting mitochondria, inducing ROS production, disrupting mitochondrial function, and activating mitochondria apoptosis pathway to exert anti-cervical cancer activity. Among them, TPP+ only acted as a mitochondrial targeting group, while EP containing peroxide bridge structure served as an active group to induce ROS. In vivo experiments have shown that TE3 has better anti-cervical cancer activity and safety than the first-line anticancer drug cisplatin, and can activate the immune response in mice. Although TE3 exhibits some acute toxicity, it is not significant at therapeutic doses. Therefore, TE3 has the potential for further development as an anti-cervical cancer drug.

4.
Eur J Med Chem ; 277: 116726, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39116535

RESUMO

Structural modification based on natural privileged scaffolds has proven to be an attractive approach to generate potential antitumor candidates with high potency and specific targeting. As a continuation of our efforts to identify potent PARP-1 inhibitors, natural 3-arylcoumarin scaffold was served as the starting point for the construction of novel structural unit for PARP-1 inhibition. Herein, a series of novel 8-carbamyl-3-arylcoumarin derivatives were designed and synthesized. The antiproliferative activities of target compounds against four BRCA-mutated cancer cells (SUM149PT, HCC1937, MDA-MB-436 and Capan-1) were evaluated. Among them, compound 9b exhibited excellent antiproliferative effects against SUM149PT, HCC1937 and Capan-1 cells with IC50 values of 0.62, 1.91 and 4.26 µM, respectively. Moreover, 9b could significantly inhibit the intracellular PARP-1/2 activity in SUM149PT cells with IC50 values of 2.53 nM and 6.45 nM, respectively. Further mechanism studies revealed that 9b could aggravate DNA double-strand breaks, increase ROS production, decrease mitochondrial membrane potential, arrest cell cycle at G2/M phase and ultimately induce apoptosis in SUM149PT cells. In addition, molecular docking study demonstrated that the binding mode of 9b with PARP-1 was similar to that of niraparib, forming multiple hydrogen bond interactions with the active site of PARP-1. Taken together, these findings suggest that 8-carbamyl-3-arylcoumarin scaffold could serve as an effective structural unit for PARP-1 inhibition and offer a valuable paradigm for the structural modification of natural products.

5.
Eur J Pharmacol ; : 176885, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128803

RESUMO

The distinct chemical structure of thiourea derivatives provides them with an advantage in selectively targeting cancer cells. In our previous study, we selected the most potent compounds, 2 and 8, with 3,4-dichloro- and 3-trifluoromethylphenyl substituents, respectively, across colorectal (SW480 and SW620), prostate (PC3), and leukemia (K-562) cancer cell lines, as well as non-tumor HaCaT cells. Our research has demonstrated their anticancer potential by targeting key molecular pathways involved in cancer progression, including caspase 3/7 activation, NF-κB (Nuclear Factor Kappa-light-chain-enhancer of activated B cells) activation decrease, VEGF (Vascular Endothelial Growth Factor) secretion, ROS (Reactive Oxygen Species) production, and metabolite profile alterations. Notably, these processes exhibited no significant alterations in HaCaT cells. The effectiveness of the studied compounds was also tested on spheroids (3D culture). Both derivatives 2 and 8 increased caspase activity, decreased ROS production and NF-κB activation, and suppressed the release of VEGF in cancer cells. Metabolomic analysis revealed intriguing shifts in cancer cell metabolic profiles, particularly in lipids and pyrimidines metabolism. Assessment of cell viability in 3D spheroids showed that SW620 cells exhibited better sensitivity to compound 2 than 8. In summary, structural modifications of the thiourea terminal components, particularly dihalogenophenyl derivative 2 and para-substituted analog 8, demonstrate their potential as anticancer agents while preserving safety for normal cells.

6.
Future Med Chem ; : 1-4, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119691
7.
BMC Chem ; 18(1): 146, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113157

RESUMO

In this study, two new molecules were synthesized from the reaction of 2-methyl-1H-benzo[d]imidazole with aryl halides in the presence of a strong base. The structures newly of synthesized 1,2-disubstituted benzimidazole compounds were characterized using spectroscopic techniques (FT-IR, 1HNMR, 13CNMR) and chromatographic technique (LC/MS). For discovering an effective anticancer drug, the developed heterocyclic compounds were screened against three different human cancer cell lines (A549, DLD-1, and L929). The results demonstrated that of IC50 values of compound 2a were higher as compared to cisplatin for the A549 and DLD-1 cell lines. The frontier molecular orbital (FMO), and molecular electrostatic potential map (MEP) analyses were studied by using DFT (density functional theory) calculations at B3LYP/6-31G** level of theory. The molecular docking studies of the synthesized compound with lung cancer protein, PDB ID: 1M17, and colon cancer antigen proteins, PDB ID: 2HQ6 were performed to compare with experimental and theoretical data. Compound 2a had shown the best binding affinity with -6.6 kcal/mol. It was observed that the theoretical and experimental studies carried out supported each other.

8.
J Maxillofac Oral Surg ; 23(4): 935-952, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39118929

RESUMO

Introduction: Annona muricata contains acetogenins, which have shown promising anticancer activity against various cell lines. This study aims to evaluate and compare the anticancer activity of the crude extract of Annona muricata and its nano formulation on Squamous Cell Carcinoma-25 (SCC-25) oral cancer cell lines. Methods: The crude extract of Annona muricata was prepared using standard extraction techniques, while its nano formulation was synthesized through nanoparticle fabrication methods. Authenticated SCC-25 cell lines were obtained from ATCC and cultured and treated with varying concentrations of both the crude extract and nano formulation. Cell viability assays, apoptosis assays, Cell Cycle assay, ROS, and MMP analysis techniques were employed to assess the anticancer activity and mechanism of action. Results: In the MTT assay, the Annona formulation treated cells exhibited lower IC50 values compared to the crude extract treated SCC-25 cell lines. In the cell cycle assay, the Annona crude extract induced higher cell cycle arrest in the G1 phase in SCC-25 cell lines compared to the control. The nano formulation of Annona demonstrated significantly higher cell cycle arrest in G1 phase compared to both the control and the Annona crude extract-treated SCC-25 cell lines. The crude extract showed less apoptotic activity in apoptosis assay when compared to control, whereas the Annona formulation exhibited higher late apoptosis compared to the control, indicating the potential anticancer properties of Annona. The mean fluorescent intensity test of SCC-25 oral cancer cells treated with Annona crude extract and Annona formulation showed a significant loss of Mitochondrial membrane potential compared to the control. The percentage of MMP was lower in Annona-treated cells, while the Annona formulation treated cells showed similar results to the control. The mean fluorescent intensity of ROS in SCC-25 oral cancer cells treated with Annona crude extract and Annona formulation showed significantly lower Reactive oxygen species production compared to the control. The percentage of ROS was lower in Annona treated cells compared to the formulation, but the Annona formulation-treated cells showed lower values than the control. Conclusion: In conclusion, both the crude extract and nano formulation of Annona muricata possess potent anticancer activity against SCC-25 oral cancer cell lines. However, the nano formulation exhibited superior efficacy, suggesting its potential for further development as a therapeutic agent for oral cancer treatment.

9.
Drug Dev Ind Pharm ; : 1-13, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39093556

RESUMO

OBJECTIVE: Preparation and characterization of nano-emulsion formulations for Asparagus densiflorus aerial and root parts extracts. SIGNIFICANCE: Genus Asparagus is known for its antimicrobial and anticancer activities, however, freeze dried powder of aqueous - alcoholic extract prepared in this study, exhibited a limited water solubility, limiting its therapeutic application. Thus, encapsulation of its phytochemicals into nano-emulsion is proposed as a solution to improve water solubility, and facilitate its clinical translation. METHODS: the composition of extracts for both aerial and root parts of Asparagus densiflorus was identified by HPLC and LC-MS analysis. Nano-emulsion was prepared via homogenization where a mixture of Castor oil: phosphate buffered saline (10 mM, pH 7.4): Tween 80: PEG 600 in a ratio of 10: 5: 2.5: 2.5, respectively. Nano-emulsion formulations were characterized for particle size, polydispersity index (PDI), zeta potential, TEM, viscosity and pH. Then, the antibacterial and anticancer activities of nano-emulsion formulations versus their pure plant counterparts was assessed. RESULTS: The analysis of extracts identified several flavonoids, phenolics, and saponins which were reported to have antimicrobial and anticancer activities. Nano-emulsion formulations were monodispersed with droplet sizes ranging from 80.27 ± 2.05 to 111.16 ± 1.97 nm, and polydispersity index ≤0.3. Nano-emulsion formulations enhanced significantly the antibacterial (multidrug resistant bacteria causing skin and dental soft tissues infections) and anticancer (HuH7, HEPG2, H460 and HCT116) activities compared to their pure plant extract counterparts. CONCLUSION: Employing a nano-delivery system as a carrier for phytochemicals might be an effective strategy to enhance their pharmacological activity, overcome their limitations, and ultimately increase their potential for clinical applications.

10.
Arch Pharm (Weinheim) ; : e2400403, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101844

RESUMO

Different vanillin-based aldehydes were used to synthesize novel tetrahydropyrimidines (THPMs) via conventional Biginelli reaction. The THPMs were tested against human normal cells (MRC-5) and cancer cell lines (HeLa, K562, and MDA-MB-231). With IC50 values of 10.65, 10.70, and 12.76 µM, compounds 4g, 4h, and 4i exerted the strongest cytotoxic effects against K562 cells. The best activity was achieved for 4g on MDA-MB-231 cells (IC50 = 9.20 ± 0.14 µM). The effects of compounds 4g, 4h, and 4i on the cell-cycle phase distribution of K562 cells were analyzed. Principal component analysis was carried out for the chemometrics analysis to comprehend the relationship between the anticancer activity of the THPMs, pharmacokinetic properties, and partition coefficients, as well as the relationship between the chromatographic behavior and retention parameters. The highest retention rates are found for molecules 4g, 4h, and 4i, which have the longest carbon chains, indicating that the length of the alkyl chain positively affects the molecule's anticancer activity but only if the number of carbon atoms is not higher than seven. Additionally, molecular docking analysis was performed to determine the preferred binding modes of the investigated ligands (4g, 4h, and 4i) with a DNA dodecamer and bovine serum albumin.

11.
Eur J Med Chem ; 276: 116727, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39094428

RESUMO

A novel series of substituted thiazolo[5,4-b]pyridine analogues were rationally designed and synthesized via a multi-step synthetic pathway, including Suzuki cross-coupling reaction. The anticancer activity of all forty-five synthesized derivatives was evaluated against HCC827, H1975, and A549 cancer cell lines utilizing the standard MTT assay. A significant number of the thiazolo[5,4-b]pyridine derivatives exhibited potent anticancer activity. Notably, compounds 10b, 10c, 10h, 10i, and 10k emerged as the most promising anticancer agents. The lead compound, N-(3-(6-(2-aminopyrimidin-5-yl)thiazolo[5,4-b]pyridin-2-yl)-2-methylphenyl)-2,5-difluorobenzenesulfonamide (10k), displayed remarkable potency with IC50 values of 0.010 µM, 0.08 µM, and 0.82 µM against the HCC827, NCI-H1975 and A-549 cancer cell lines, respectively, which were comparable to the clinically approved drug Osimertinib. Importantly, the potent derivatives 10b, 10c, 10h, 10i, and 10k exhibited selective cytotoxicity towards cancer cells and showing no toxicity against the normal BEAS-2B cell line at concentrations exceeding 35 µM. Mechanistic studies revealed that the active compound 10k acts as an EGFR-TK autophosphorylation inhibitor in HCC827 cells. Furthermore, apoptosis assays demonstrated that compound 10k induced substantial early apoptosis (31.9 %) and late apoptosis (8.8 %) in cancer cells, in contrast to the control condition exhibiting only 2.0 % early and 1.6 % late apoptosis. Molecular docking simulations of the synthesized compounds revealed that they formed essential hinge interactions and established hydrogen bonding with Cys797, indicating potential target engagement. These findings highlight the potential of the synthesized thiazolo [(Woodburn, 1999; Zigrossi et al., 2022) 5,45,4-b]pyridine derivatives as promising anticancer agents, warranting further investigation for the development of novel targeted therapies against non-small cell lung cancer.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Neoplasias Pulmonares , Mutação , Inibidores de Proteínas Quinases , Piridinas , Humanos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Receptores ErbB/genética , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Relação Estrutura-Atividade , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese química , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Estrutura Molecular , Tiazóis/farmacologia , Tiazóis/química , Tiazóis/síntese química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular
12.
J Biol Inorg Chem ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123093

RESUMO

The medicinal properties of transition metal complexes are greatly influenced by the nature and physico-chemical features of the ligand present in the complex structure. Due to the unique biological properties of the organoselenium compounds reflected in the variety of pharmacological activities (such as antioxidative, antiviral, antimicrobial and anticancer), the last years have brought increased interest for their use as a ligands compounds in the design and syntheses of range of transition metal-based coordination compounds that have been explored as antitumor and antimicrobial agents. Our aim in this review is to provide the overview of an recent development of the transition metal complexes bearing organoselenium ligands in the structure that could be promising choice for the treatment of various diseases, particularly cancer and infective diseases. For this purpose, the complexes of Co, Ni, Cu, Zn, Ru, Pd, Pt, Au and Sn as the most explored examples will be included and discussed.

13.
Molecules ; 29(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124937

RESUMO

Natural compounds, including diterpenoids, play a critical role in various biological processes and are recognized as valuable components in cancer treatment. Isocyanides multicomponent reactions (IsMCRs) are one of the effective methods to obtain adducts at the carboxyl group with a peptide-like substituent. In this study, dehydroabietic acid and levopimaric acid diene adducts as the starting scaffolds were modified by the multicomponent Passerini (P-3CR) and Ugi (U-4CR) reactions to afford α-acyloxycarboxamides and α-acylaminocarboxamides. A group of twenty novel diterpene hybrids was subjected to NCI in vitro assessment, and a consistent structure-activity relationship was established. Eleven of the synthesized derivatives inhibited the growth of cancer cells of 4 to 39 cell lines in one dose assay, and the most active were derivatives 3d, 9d, and 10d holding a fragment of 1a,4a-dehydroquinopimaric acid. They were selected for a five-dose analysis and demonstrated a significant antiproliferative effect towards human cancer cell lines. The outstanding cytotoxic activity was observed for the P-3CR product 3d with growth inhibitory at submicromolar and micromolar concentrations (GI50 = 0.42-3 µM) against the most sensitive cell lines. The U-4CR products 9d and 10d showed selective activity against all leukemia cell lines with GI50 in the range of 1-17 µM and selectivity indexes of 5.49 and 4.72, respectively. Matrix COMPARE analysis using the GI50 vector showed a moderate positive correlation of compound 3d with standard anticancer agents that can influence kinase receptors and epidermal growth factor receptors (EGFRs). The ADMET analysis acknowledges the favorable prognosis using compounds as potential anticancer agents. The obtained results indicate that these new hybrids could be useful for the further development of anticancer drugs, and 1a,4a-dehydroquinopimaric acid derivatives could be recommended for in-depth studies and the synthesis of new antitumor analogs on their basis.


Assuntos
Abietanos , Antineoplásicos , Proliferação de Células , Humanos , Abietanos/química , Abietanos/farmacologia , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/síntese química , Estrutura Molecular , Sobrevivência Celular/efeitos dos fármacos
14.
Front Microbiol ; 15: 1419917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091304

RESUMO

The prevalent life-threatening microbial and cancer diseases and lack of effective pharmaceutical therapies created the need for new molecules with antimicrobial and anticancer potential. Bee venom (BV) was collected from honeybee workers, and melittin (NM) was extracted from BV and analyzed by urea-polyacrylamide gel electrophoresis (urea-PAGE). The isolated melittin was hydrolyzed with alcalase into new bioactive peptides and evaluated for their antimicrobial and anticancer activity. Gel filtration chromatography fractionated melittin hydrolysate (HM) into three significant fractions (F1, F2, and F3), that were characterized by electrospray ionization mass spectrometry (ESI-MS) and evaluated for their antimicrobial, anti-biofilm, antitumor, and anti-migration activities. All the tested peptides showed antimicrobial and anti-biofilm activities against Gram-positive and Gram-negative bacteria. Melittin and its fractions significantly inhibited the proliferation of two types of cancer cells (Huh-7 and HCT 116). Yet, melittin and its fractions did not affect the viability of normal human lung Wi-38 cells. The IC50 and selectivity index data evidenced the superiority of melittin peptide fractions over intact melittin. Melittin enzymatic hydrolysate is a promising novel product with high potential as an antibacterial and anticancer agent.

15.
PeerJ ; 12: e17637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966207

RESUMO

Background: Prostate cancer (PCa) is one of the causes of death in men worldwide. Although treatment strategies have been developed, the recurrence of the disease and consequential side effects remain an essential concern. Diospyros rhodocalyx Kurz, a traditional Thai medicine, exhibits diverse therapeutic properties, including anti-cancer activity. However, its anti-cancer activity against prostate cancer has not been thoroughly explored. This study aims to evaluate the anti-cancer activity and underlying mechanisms of the ethyl acetate extract of D. rhodocalyx Kurz (EADR) related to apoptosis induction in the LNCaP human prostate cancer cell line. Methods: Ethyl acetate was employed to extract the dried bark of D. rhodocalyx Kurz. The cytotoxicity of EADR on both LNCaP and WPMY-1 cells (normal human prostatic myofibroblast cell line) was evaluated using MTS assay. The effect of EADR on the cell cycle, apoptosis induction, and alteration in mitochondrial membrane potential (MMP) was assessed by the staining with propidium iodide (PI), Annexin V-FITC/PI, and JC-1 dye, respectively. Subsequent analysis was conducted using flow cytometry. The expression of cleaved caspase-3, BAX, and Bcl-2 was examined by Western blotting. The phytochemical profiling of the EADR was performed using gas chromatography-mass spectrometry (GC-MS). Results: EADR exhibited a dose-dependent manner cytotoxic effect on LNCaP cells, with IC50 values of 15.43 and 12.35 µg/mL after 24 and 48 h, respectively. Although it also exhibited a cytotoxic effect on WPMY-1 cells, the effect was comparatively lower, with the IC50 values of 34.61 and 19.93 µg/mL after 24 and 48 h of exposure, respectively. Cell cycle analysis demonstrated that EADR did not induce cell cycle arrest in either LNCaP or WPMY-1 cells. However, it significantly increased the sub-G1 population in LNCaP cells, indicating a potential induction of apoptosis. The Annexin V-FITC/PI staining indicated that EADR significantly induced apoptosis in LNCaP cells. Subsequent investigation into the underlying mechanism of EADR-induced apoptosis revealed a reduction in MMP as evidenced by JC-1 staining. Moreover, Western blotting demonstrated that EADR treatment resulted in the upregulation of BAX, downregulation of BCL-2, and elevation of caspase-3 cleavage in LNCaP cells. Notably, the epilupeol was a prominent compound in EADR as identified by GC-MS. Conclusion: The EADR exhibits anti-cancer activity against the LNCaP human prostate cancer cell line by inducing cytotoxicity and apoptosis. Our findings suggest that EADR promotes apoptosis by upregulating pro-apoptotic BAX, whereas downregulation of anti-apoptotic Bcl-2 results in the reduction of MMP and the activation of caspase-3. Of particular interest is the presence of epilupeol, a major compound identified in EADR, which may hold promise as a candidate for the development of therapeutic agents for prostate cancer.


Assuntos
Apoptose , Caspase 3 , Diospyros , Extratos Vegetais , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína X Associada a bcl-2 , Humanos , Masculino , Apoptose/efeitos dos fármacos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Diospyros/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia
16.
Curr Pharm Des ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38963114

RESUMO

INTRODUCTION: Luteolin (LUT), a naturally occurring flavonoid found in vegetables, fruits, and herbal medicines, has been extensively studied for its pharmacological activities, including anti-proliferative and anticancer effects on various cancer lines. It also exhibits potent antioxidant properties and pro-apoptotic activities against human cancers. However, its therapeutic potential is hindered by its poor solubility in water (5 µg/ml at 45°C) and low bioavailability. This research on the development of luteolin-loaded nanocarrier aims to overcome these limitations, thereby opening up new possibilities in cancer treatment. METHODS: This paper covers several nanoformulations studied to increase the solubility and bioavailability of LUT. The physicochemical characteristics of the nanoformulation that influence luteolin's solubility and bioavailability have been the subject of more in-depth investigation. Furthermore, it examines how LUT's anti-inflammatory and antioxidant properties aid in lessening the side effects of chemotherapy. RESULTS: Most nanoformulations, including phytosomes, lipid nanoparticles, liposomes, protein nanoparticles, polymer micelles, nanoemulsions, and metal nanoparticles, have shown promising results in improving the solubility and bioavailability of LUT. This is a significant step forward in enhancing the therapeutic potential of LUT in cancer treatment. Furthermore, the study found that LUT's ability to scavenge free radicals can significantly reduce the side effects of cancer treatment, further highlighting its potential to improve patient outcomes. CONCLUSION: Nanoformulations, because of their unique surface and physiochemical properties, improve the solubility and bioavailability of LUT. However, poor in-vitro and in-vivo correlation and scalability of nanoformulations need to be addressed to achieve good clinical performance of LUT in oncology.

17.
Nat Prod Res ; : 1-6, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034455

RESUMO

The present investigation examines the anticancer characteristics of phytochemicals derived from Memecylon lushingtonii Gamble (MLG) leaves, concentrating on their efficiency against breast cancer cell lines. Utilising column chromatography, we recovered four different fractions from the methanol extract of MLG leaves. The fourth fraction, rich in bioactive chemicals, displayed substantial cytotoxicity in MTT experiments against MCF-7 cells, indicating powerful anticancer potential. Further investigations revealed a varied array of phytochemicals, including phenols and flavonoids, recognised for their medicinal properties. This discovery emphasises the promise of MLG leaf extracts as a source of anticancer drugs and establishes the framework for further investigations into their mechanisms of action.

18.
Nat Prod Res ; : 1-7, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004890

RESUMO

This study involved the synthesis of a series of novel cannabidiol (CBD) aromatic ester derivatives, including CBD-8,12-diaromaticester derivatives (compounds 2a-2t) and CBD-8,12-diacetyl-21-aromaticester derivatives (compound 5a-5c). The antiproliferative activities of these compounds against human liver cancer cell lines HePG2 and HeP3B as well as human pancreatic cancer cell lines ASPC-1 and BXPC-3 were evaluated in vitro using the CCK-8 assay. The results indicated that compound 2f exhibited an IC50 value of 2.75 µM against HePG2, which is 5.32-fold higher than that of CBD. Additionally, compounds 2b and 5b demonstrated varying degrees of improved anticancer activity (IC50 5.95-9.21 µM) against HePG2.

19.
ACS Appl Bio Mater ; 7(7): 4795-4803, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38958186

RESUMO

Metallic nanoparticles are promising candidates for anticancer therapies. Among the different metallic systems studied, copper is an affordable and biologically available metal with a high redox potential. Copper-based nanoparticles are widely used in anticancer studies owing to their ability to react with intracellular glutathione (GSH) to induce a Fenton-like reaction. However, considering the high metastatic potential and versatility of the tumor microenvironment, modalities with a single therapeutic agent may not be effective. Hence, to enhance the efficiency of chemotherapeutic drugs, repurposing them or conjugating them with other modalities is essential. Omeprazole is an FDA-approved proton pump inhibitor used in clinics for the treatment of ulcers. Omeprazole has also been studied for its ability to sensitize cancer cells to chemotherapy and induce apoptosis. Herein, we report a nanosystem comprising of copper nanoparticles encapsulating omeprazole (CuOzL) against B16 melanoma cells. The developed nanoformulation exerted significant synergistic anticancer activity when compared with either copper nanoparticles or omeprazole alone by inducing cell death through excessive ROS generation and subsequent mitochondrial damage.


Assuntos
Antineoplásicos , Cobre , Ensaios de Seleção de Medicamentos Antitumorais , Nanopartículas Metálicas , Mitocôndrias , Omeprazol , Tamanho da Partícula , Cobre/química , Cobre/farmacologia , Omeprazol/química , Omeprazol/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanopartículas Metálicas/química , Camundongos , Animais , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Teste de Materiais , Espécies Reativas de Oxigênio/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/patologia , Linhagem Celular Tumoral
20.
Molecules ; 29(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998972

RESUMO

Heterocyclic compounds, particularly those containing azole rings, have shown extensive biological activity, including anticancer, antibacterial, and antifungal properties. Among these, the imidazole ring stands out due to its diverse therapeutic potential. In the presented study, we designed and synthesized a series of imidazole derivatives to identify compounds with high biological potential. We focused on two groups: thiosemicarbazide derivatives and hydrazone derivatives. We synthesized these compounds using conventional methods and confirmed their structures via nuclear magnetic resonance spectroscopy (NMR), MS, and elemental analysis, and then assessed their antibacterial and antifungal activities in vitro using the broth microdilution method against Gram-positive and Gram-negative bacteria, as well as Candida spp. strains. Our results showed that thiosemicarbazide derivatives exhibited varied activity against Gram-positive bacteria, with MIC values ranging from 31.25 to 1000 µg/mL. The hydrazone derivatives, however, did not display significant antibacterial activity. These findings suggest that structural modifications can significantly influence the antimicrobial efficacy of imidazole derivatives, highlighting the potential of thiosemicarbazide derivatives as promising candidates for further development in antibacterial therapies. Additionally, the cytotoxic activity against four cancer cell lines was evaluated. Two derivatives of hydrazide-hydrazone showed moderate anticancer activity.


Assuntos
Antibacterianos , Antifúngicos , Antineoplásicos , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Humanos , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Bactérias Gram-Positivas/efeitos dos fármacos , Nitroimidazóis/farmacologia , Nitroimidazóis/química , Nitroimidazóis/síntese química , Linhagem Celular Tumoral , Bactérias Gram-Negativas/efeitos dos fármacos , Relação Estrutura-Atividade , Semicarbazidas/química , Semicarbazidas/farmacologia , Semicarbazidas/síntese química , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Candida/efeitos dos fármacos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA