Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731825

RESUMO

Aminopyrazoles represent interesting structures in medicinal chemistry, and several derivatives showed biological activity in different therapeutic areas. Previously reported 5-aminopyrazolyl acylhydrazones and amides showed relevant antioxidant and anti-inflammatory activities. To further extend the structure-activity relationships in this class of derivatives, a novel series of pyrazolyl acylhydrazones and amides was designed and prepared through a divergent approach. The novel compounds shared the phenylamino pyrazole nucleus that was differently decorated at positions 1, 3, and 4. The antiproliferative, antiaggregating, and antioxidant properties of the obtained derivatives 10-22 were evaluated in in vitro assays. Derivative 11a showed relevant antitumor properties against selected tumor cell lines (namely, HeLa, MCF7, SKOV3, and SKMEL28) with micromolar IC50 values. In the platelet assay, selected pyrazoles showed higher antioxidant and ROS formation inhibition activity than the reference drugs acetylsalicylic acid and N-acetylcysteine. Furthermore, in vitro radical scavenging screening confirmed the good antioxidant properties of acylhydrazone molecules. Overall, the collected data allowed us to extend the structure-activity relationships of the previously reported compounds and confirmed the pharmaceutical attractiveness of this class of aminopyrazole derivatives.


Assuntos
Amidas , Antineoplásicos , Antioxidantes , Proliferação de Células , Hidrazonas , Pirazóis , Humanos , Pirazóis/química , Pirazóis/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Antioxidantes/farmacologia , Antioxidantes/química , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Amidas/química , Amidas/farmacologia , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Células MCF-7 , Células HeLa
2.
Eur J Med Chem ; 263: 115794, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37984295

RESUMO

The synthesis and evaluation of small-molecule inhibitors of tubulin polymerization remains a promising approach for the development of new therapeutic agents for cancer treatment. The natural products colchicine and combretastatin A-4 (CA4) inspired significant drug discovery campaigns targeting the colchicine site located on the beta-subunit of the tubulin heterodimer, but so far these efforts have not yielded an approved drug for cancer treatment in human patients. Interest in the colchicine site was enhanced by the discovery that a subset of colchicine site agents demonstrated dual functionality as both potent antiproliferative agents and effective vascular disrupting agents (VDAs). Our previous studies led to the discovery and development of a 2-aryl-3-aroyl-indole analogue (OXi8006) that inhibited tubulin polymerization and demonstrated low nM IC50 values against a variety of human cancer cell lines. A water-soluble phosphate prodrug salt (OXi8007), synthesized from OXi8006, displayed promising vascular disrupting activity in mouse models of cancer. To further extend structure-activity relationship correlations, a series of 6-aryl-3-aroyl-indole analogues was synthesized and evaluated for their inhibition of tubulin polymerization and cytotoxicity against human cancer cell lines. Several structurally diverse molecules in this small library were strong inhibitors of tubulin polymerization and of MCF-7 and MDA-MB-231 human breast cancer cells. One of the most promising analogues (KGP591) caused significant G2/M arrest of MDA-MB-231 cells, disrupted microtubule structure and cell morphology in MDA-MB-231 cells, and demonstrated significant inhibition of MDA-MB-231 cell migration in a wound healing (scratch) assay. A phosphate prodrug salt, KGP618, synthesized from its parent phenolic precursor, KGP591, demonstrated significant reduction in bioluminescence signal when evaluated in vivo against an orthotopic model of kidney cancer (RENCA-luc) in BALB/c mice, indicative of VDA efficacy. The most active compounds from this series offer promise as anticancer therapeutic agents.


Assuntos
Antineoplásicos , Pró-Fármacos , Camundongos , Animais , Humanos , Tubulina (Proteína)/metabolismo , Pró-Fármacos/farmacologia , Polimerização , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Relação Estrutura-Atividade , Antineoplásicos/química , Colchicina/farmacologia , Moduladores de Tubulina/química , Indóis/química , Fosfatos/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
3.
Future Med Chem ; 15(23): 2143-2148, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37933597

RESUMO

Plain language summary Pyrazolo[3,4-d]pyrimidines are chemical compounds possessing remarkable versatility and significance in both biological and chemical contexts. These compounds are composed of specific arrangements of atoms, forming a unique ring structure, which is able to form bonds in a similar way as purines do. In the realm of chemistry, pyrazolo[3,4-d]pyrimidines showcase impressive flexibility due to their ability to easily react with various molecules, opening avenues for the creation of novel compounds with diverse properties for potential applications in medicinal chemistry. In a biological context, pyrazolo[3,4-d]pyrimidines play a crucial role due to their interaction with proteins such as enzymes. In fact, these compounds can impact various biological processes, including cancer cell proliferation, oxidative stress and inflammation. This has led to investigations into their potential as therapeutic agents: by designing pyrazolo[3,4-d]pyrimidines with specific biological targets in mind, new drugs can be developed for the effective treatment of a range of medical conditions. Finally, novel administration tools (e.g., nanomaterials and functionalized liposomes) are being studied as effective ways to overcome the main unwanted characteristics of pyrazolo[3,4-d]pyrimidines (scarce solubility and off-target side effects), thereby increasing their efficacy and specificity toward cell targets. In conclusion, pyrazolo[3,4-d]pyrimidines are fascinating molecules with a dual role in chemistry and biology. Their adaptability in chemical reactions makes them valuable building blocks for designing new compounds with diverse applications. Additionally, their interaction with biological molecules holds promise for the development of innovative medicines. Ongoing research into the properties and behaviors of these compounds could lead to significant advancements in both scientific fields.


Pyrazolo[3,4-d]pyrimidines are chemical compounds possessing remarkable versatility and significance in both biological and chemical contexts. These compounds are composed of specific arrangements of atoms, forming a unique ring structure, which is able to form bonds in a similar way as purines do. In the realm of chemistry, pyrazolo[3,4-d]pyrimidines showcase impressive flexibility due to their ability to easily react with various molecules, opening avenues for the creation of novel compounds with diverse properties for potential applications in medicinal chemistry. In a biological context, pyrazolo[3,4-d]pyrimidines play a crucial role due to their interaction with proteins such as enzymes. In fact, these compounds can impact various biological processes, including cancer cell proliferation, oxidative stress and inflammation. This has led to investigations into their potential as therapeutic agents: by designing pyrazolo[3,4-d]pyrimidines with specific biological targets in mind, new drugs can be developed for the effective treatment of a range of medical conditions. Finally, novel administration tools (e.g., nanomaterials and functionalized liposomes) are being studied as effective ways to overcome the main unwanted characteristics of pyrazolo[3,4-d]pyrimidines (scarce solubility and off-target side effects), thereby increasing their efficacy and specificity toward cell targets. In conclusion, pyrazolo[3,4-d]pyrimidines are fascinating molecules with a dual role in chemistry and biology. Their adaptability in chemical reactions makes them valuable building blocks for designing new compounds with diverse applications. Additionally, their interaction with biological molecules holds promise for the development of innovative medicines. Ongoing research into the properties and behaviors of these compounds could lead to significant advancements in both scientific fields.


Assuntos
Neoplasias , Pirimidinas , Humanos , Pirimidinas/farmacologia , Pirimidinas/química , Solubilidade , Neoplasias/tratamento farmacológico , Lipossomos , Proliferação de Células , Relação Estrutura-Atividade
4.
Eur J Med Chem ; 262: 115881, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37883897

RESUMO

A series of novel dihydroquinolin-4(1H)-one derivatives targeting colchicine binding site on tubulin were designed, synthesized and evaluated as anticancer agents. The most potent compound 6t showed remarkable antiproliferative activities against four cancer cell lines with IC50 values among 0.003-0.024 µM and tubulin polymerization inhibitory activity (IC50 = 3.06 µM). Further mechanism studies revealed that compound 6t could induce K562 cells apoptosis and arrest at the G2/M phase. Meanwhile, 6t significantly inhibited migration and invasion of MDA-MB-231 cells, and disrupted the angiogenesis in human umbilical vein endothelial cells (HUVECs) in vitro. In addition, compound 6t inhibited tumor growth in H22 allograft tumor model with a tumor growth inhibition (TGI) rate of 63.3 % (i.v., 20 mg/kg per day) without obvious toxicity. Collectively, these results indicated that compound 6t was a novel tubulin polymerization inhibitor with potent anticancer properties in vitro and in vivo.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Humanos , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Antineoplásicos/química , Polimerização
5.
Antioxidants (Basel) ; 12(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37759969

RESUMO

The introduction of selenium (Se) into organic scaffolds has been demonstrated to be a promising framework in the field of medicinal chemistry. A novel design of nonsteroidal anti-inflammatory drug (NSAID) derivatives based on a bioisosteric replacement via the incorporation of Se as diacyl diselenide is reported. The antioxidant activity was assessed using the DPPH radical scavenging assay. The new Se-NSAID derivatives bearing this unique combination showed antioxidant activity in a time- and dose-dependent manner, and also displayed different antiproliferative profiles in a panel of eight cancer cell lines as determined by the MTT assay. Ibuprofen derivative 5 was not only the most antioxidant agent, but also selectively induced toxicity in all the cancer cell lines tested (IC50 < 10 µM) while sparing nonmalignant cells, and induced apoptosis partially without enhancing the caspase 3/7 activity. Furthermore, NSAID derivative 5 significantly suppressed tumor growth in a subcutaneous colon cancer xenograft mouse model (10 mg/kg, TGI = 72%, and T/C = 38%) without exhibiting any apparent toxicity. To our knowledge, this work constitutes the first report on in vitro and in vivo anticancer activity of an unprecedented Se-NSAID hybrid derivative and its rational use for developing precursors for bioisosteric selenocompounds with appealing therapeutic applications.

6.
Chemistry ; 29(49): e202300813, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37332065

RESUMO

With the aim to combine more than one biologically-active component in a single molecule, derivatives of ispinesib and its (S) analogue were prepared that featured ferrocenyl moieties or bulky organic substituents. Inspired by the strong kinesin spindle protein (KSP) inhibitory activity of ispinesib, the compounds were investigated for their antiproliferative activity. Among these compounds, several derivatives demonstrated significantly higher antiproliferative activity than ispinesib with nanomolar IC50 values against cell lines. Further evaluation indicated that the antiproliferative activity is not directly correlated with their KSP inhibitory activity while docking suggested that several of the derivatives may bind in a manner similar to ispinesib. In order to investigate the mode of action further, cell cycle analysis and reactive oxygen species formation were investigated. The improved antiproliferative activity of the most active compounds may be assigned to synergic effects of various factors such as KSP inhibitory activity due to the ispinesib core and ability to generate ROS and induce mitotic arrest.


Assuntos
Antineoplásicos , Cinesinas , Metalocenos , Linhagem Celular , Antineoplásicos/farmacologia
7.
Heliyon ; 9(2): e13111, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36747540

RESUMO

Small, strained ring molecules of phenylcyclopropane carboxamide have rigid, defined conformations and unique electronic properties. For these reasons many groups, seek to use these subunits to form biologically active compounds. Herein we report a generally applicable approach for preparing a small cyclopropane ring containing 1-phenylcyclopropane carboxamide derivatives to a wide range of the different aromatic compounds by α-alkylation of 2-phenyl acetonitrile derivatives with 1, 2-dibromo ethane in good yields followed by the conversion of cyano group to acid group by the reaction with concentrated hydrochloric acid. This obtained acid derivative undergoes acid amine coupling with various Methyl 2-(aminophenoxy)acetate to form 1-Phenylcyclopropane Carboxamide. These compounds possess distinct effective inhibition on the proliferation of U937, pro-monocytic, human myeloid leukaemia cell line while these compounds did not show cytotoxic activity on these cells. The structure-activity relationships of these compounds are discussed.

8.
Mini Rev Med Chem ; 23(18): 1818-1837, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36786147

RESUMO

Flavonoids are natural polyphenolic compounds and constitute a major class of plant secondary metabolites. To date, structures of more than 10,000 different flavonoids have been elucidated, and most of them are present in cells and tissues of plant parts. Flavonoids have been reported to exert multiple physiological activities and are also consumed as dietary supplements. Flavonoids have been extensively explored as anticancer, anti-inflammatory, antidiabetic, antirheumatic, antioxidant, antimalarial, neuroprotective, cardioprotective, anti-angiogenic, and antiproliferative agents. Most of the flavonoids are biosynthesized in plants via the phenylpropanoid pathway. However, they are associated with some limitations. Chemical synthesis is an alternative strategy to improve the yield and obtain purified products but is hampered by drawbacks, such as intolerance to stressful lab conditions. Pharmacokinetics is the rate-limiting step defining the bioavailability and metabolism of flavonoids, though greatly influenced by their chemical structure. However, nanoformulation is an emerging technique to improve biopharmaceutical fate and achieve target drug delivery. Thus, much attention should be given to identifying other possible chemical approaches for synthesizing flavonoids and improving their pharmacokinetic profiling, hence potentiating their efficacy in clinic.


Assuntos
Antineoplásicos , Flavonoides , Flavonoides/farmacologia , Flavonoides/química , Sistemas de Liberação de Medicamentos , Antioxidantes/farmacologia , Antioxidantes/química , Suplementos Nutricionais , Plantas
9.
Arch Pharm (Weinheim) ; 356(3): e2200465, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36403198

RESUMO

As dual EGFR and VEGFR-2 inhibitors, 22 innovative thiazolidine-2,4-diones were modeled, constructed, and measured for their anticancer performance versus four human neoplasms HCT-116, MCF-7, A549, and HepG2. Molecular docking and MD simulation were performed to inspect the binding technique of the proffered congeners with the EGFR and VEGFR-2 receptors. Evidence realized thanks to the docking inquests was vastly consistent together with that detected through the biological screening. Structures 14a and 14g emerged as the most active compounds toward HCT116 (IC50 = 6.01 and 7.44 µM), MCF-7 (IC50 = 5.77 and 7.23 µM), A549 (IC50 = 5.35 and 5.47 µM) and HepG2 (IC50 = 3.55 and 3.85 µM) tumefaction cells. Compounds 14a and 14g exhibited higher events than sorafenib (IC50 = 5.05, 5.58, 4.04, and 4.00 µM) against HepG2 instead subordinate incidents concerning A549, MCF-7, and HCT116, parallelly. Nevertheless, these compounds signified weightier performance than erlotinib (IC50 = 13.91, 8.20, 5.49, 7.73, and µM), with respect to the four cell lines. Compounds having the best activity against the four cell lines, 12a-f, 13a-d, and 14a-g were chosen to appraise their in vitro VEGFR-2 and EGFRT790M inhibiting activities. The best results were for compounds 14a and 14g compared to sorafenib and erlotinib, respectively, with IC50 values of 0.74 and 0.78 µM and 0.12 and 0.14 µM, respectively. Moreover, 13d, 14a, and 14g showed an adequate in silico calculated ADMET profile. The current investigation presents novel candidates for future optimization to construct mightier and eclectic binary VEGFR-2/EGFRT790M restrainers with higher antitumor effects.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Sorafenibe/farmacologia , Relação Estrutura-Atividade , Cloridrato de Erlotinib/farmacologia , Receptores ErbB/metabolismo , Antineoplásicos/química , Tiazolidinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Proliferação de Células , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Ensaios de Seleção de Medicamentos Antitumorais , Mutação , Estrutura Molecular , Desenho de Fármacos
10.
Mol Divers ; 27(5): 2133-2146, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36272042

RESUMO

Two new 4-methylcoumarin derivatives (3a-f and 4a-f) were designed, synthesized, and evaluated for their cytotoxic activity. Different spectroscopic methods and elemental analyses confirmed all the synthesized derivatives' characterization. All the prepared compounds were biologically screened against four cancer cell lines (hepatocellular carcinoma HepG-2, colon cancer cell lines HCT-116, breast cancer cell lines MCF-7, and prostate cancer cell lines PC3). The in vitro antiproliferative activity of the target analogues 4b, 4c, 4f, 3b, and 3d against the MCF-7 cancer cell line was significant, with IC50 values of 3.98, 7.80, 10.94, 17.7, and 24.07 µM, respectively. Furthermore, the potent cytotoxic oxime derivative 4b was evaluated for cell cycle analysis showing a significant substantial disruption in cell cycle profile and cell cycle arrest at the S phase boundary with a time-dependent rise in a pre-G cell population, as well as a 22-fold increase in MCF-7 apoptosis compared to control cells. Accordingly, the Bax/Bcl-2 ratio, a critical ratio in controlling cell sensitivity to apoptosis, increased upon treatment with the oxime analog 4b. A docking investigation was conducted within the BcL-2 binding site to explore and anticipate the binding modes of the synthesized compounds. Thus, synthesizing these novel coumarin/nitric oxide hybrids may aid in developing promising antiproliferative agents.


Assuntos
Antineoplásicos , Doadores de Óxido Nítrico , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Doadores de Óxido Nítrico/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Células MCF-7 , Oximas , Apoptose , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral
11.
Molecules ; 27(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500517

RESUMO

Two biologically active adamantane-linked hydrazine-1-carbothioamide derivatives, namely 2-(adamantane-1-carbonyl)-N-(tert-butyl)hydrazine-1-carbothioamide) 1 and 2-(adamantane-1-carbonyl)-N-cyclohexylhydrazine-1-carbothioamide 2, have been synthesized. X-ray analysis was conducted to study the effect of the t-butyl and cyclohexyl moieties on the intermolecular interactions and conformation of the molecules in the solid state. X-ray analysis reveals that compound 1 exhibits folded conformation, whereas compound 2 adopts extended conformation. The Hirshfeld surface analysis indicates that the contributions of the major intercontacts involved in the stabilization of the crystal structures do not change much as a result of the t-butyl and cyclohexyl moieties. However, the presence and absence of these contacts is revealed by the 2D-fingerprint plots. The CLP-Pixel method was used to identify the energetically significant molecular dimers. These dimers are stabilized by different types of intermolecular interactions such as N-H···S, N-H···O, C-H···S, C-H···O, H-H bonding and C-H···π interactions. The strength of these interactions was quantified by using the QTAIM approach. The results suggest that N-H···O interaction is found to be stronger among other interactions. The in vitro assay suggests that both compounds 1 and 2 exhibit urease inhibition potential, and these compounds also display moderate antiproliferative activities. Molecular docking analysis shows the key interaction between urease enzyme and title compounds.


Assuntos
Adamantano , Ligação de Hidrogênio , Adamantano/farmacologia , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Raios X , Urease
12.
Molecules ; 27(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144515

RESUMO

Cancer remains one of the diseases with the highest worldwide incidence. Several cytotoxic approaches have been used over the years to overcome this public health threat, such as chemotherapy, radiotherapy, and photodynamic therapy (PDT). Cyanine dyes are a class of compounds that have been extensively studied as PDT sensitisers; nevertheless, their antiproliferative potential in the absence of a light source has been scarcely explored. Herein, the synthesis of eighteen symmetric mono-, tri-, and heptamethine cyanine dyes and their evaluation as potential anticancer agents is described. The influences of the heterocyclic nature, counterion, and methine chain length on the antiproliferative effects and selectivities were analysed, and relevant structure-activity relationship data were gathered. The impact of light on the cytotoxic activity of the most promising dye was also assessed and discussed. Most of the monomethine and trimethine cyanine dyes under study demonstrated a high antiproliferative effect on human tumour cell lines of colorectal (Caco-2), breast (MCF-7), and prostate (PC-3) cancer at the initial screening (10 µM). However, concentration-viability curves showed higher potency and selectivity for the Caco-2 cell line. A monomethine cyanine dye derived from benzoxazole was the most promising compound (IC50 for Caco-2 = 0.67 µM and a selectivity index of 20.9 for Caco-2 versus normal human dermal fibroblasts (NHDF)) and led to Caco-2 cell cycle arrest at the G0/G1 phase. Complementary in silico studies predicted good intestinal absorption and oral bioavailability for this cyanine dye.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Quinolinas , Antineoplásicos/farmacologia , Benzoxazóis , Células CACO-2 , Corantes Fluorescentes , Humanos
13.
ChemMedChem ; 17(14): e202200162, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35491398

RESUMO

Spirooxindole-1,3-oxazines are a small and structurally unique class of spirooxindole alkaloids. To date, only four of these compounds have been isolated from natural sources, and their biological properties remained unknown thus far. Dioxyreserpine is a synthetic spirooxindole-1,3-oxazine, that can readily be prepared from the Rauvolfia alkaloid (-)-reserpine by catalytic photooxygenation. While dioxyreserpine itself was now identified as a moderately effective antitumoral agent, structurally modified analogs of it emerged as a new class of highly potent and selective growth inhibitors of various human cancers, including pancreatic cancers. Systematic structural optimization ultimately led to an inhibitor displaying low-micromolar IC50 -values against six cancer cell lines as well as selective apoptosis induction in vitro.


Assuntos
Alcaloides , Antineoplásicos , Alcaloides/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Oxazinas/química , Oxazinas/farmacologia , Relação Estrutura-Atividade
14.
Molecules ; 27(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35209105

RESUMO

Being aware of the enormous biological potential of organoselenium and polyphenolic compounds, we have accomplished the preparation of novel hybrids, combining both pharmacophores in order to obtain new antioxidant and antiproliferative agents. Three different families have been accessed in a straightforward and chemoselective fashion: carbohydrate-containing N-acylisoselenoureas, N-arylisoselenocarbamates and N-arylselenocarbamates. The nature of the organoselenium framework, number and position of phenolic hydroxyl groups and substituents on the aromatic scaffolds afforded valuable structure-activity relationships for the biological assays accomplished: antioxidant properties (antiradical activity, DNA-protective effects, Glutathione peroxidase (GPx) mimicry) and antiproliferative activity. Regarding the antioxidant activity, selenocarbamates 24-27 behaved as excellent mimetics of GPx in the substoichiometric elimination of H2O2 as a Reactive Oxygen Species (ROS) model. Isoselenocarbamates and particularly their selenocarbamate isomers exhibited potent antiproliferative activity against non-small lung cell lines (A549, SW1573) in the low micromolar range, with similar potency to that shown by the chemotherapeutic agent cisplatin (cis-diaminodichloroplatin, CDDP) and occasionally with more potency than etoposide (VP-16).


Assuntos
Desenvolvimento de Medicamentos , Compostos Organosselênicos/química , Fenóis/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Radicais Livres/antagonistas & inibidores , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
15.
ChemMedChem ; 17(5): e202100670, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34994095

RESUMO

A series of highly functionalized pyrazole derivatives has been prepared by a one-pot, versatile and regioselective procedure. Pyrazoles 1-29 were tested in cell-based assay to assess their antiproliferative activity against a panel of tumour cells. Additionally, the cytotoxicity of prepared compounds was evaluated against normal human fibroblasts. The antiproliferative activity of the synthesized molecules emerged to be affected by the nature of the substituents of the pyrazole scaffold and derivatives 21-23 proved to inhibit the growth of melanoma and cervical cancer cells. Compound 23 was identified as the most active derivative and docking simulations predicted its ability to interact with estrogen receptors.


Assuntos
Antineoplásicos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Pirazóis/farmacologia , Relação Estrutura-Atividade
16.
Eur J Med Chem ; 228: 113980, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34847410

RESUMO

The necessity for developing novel cytostatic agents with improved activities and reduced side-effects to tackle cancer prompted us to investigate mitochondria-targeted compounds, an approach that is gaining attention for the selective transportation of cytotoxic agents. We envisioned the possibility of conjugating a phenethyl alcohol motif, decorated with a series of phenol-based substituents on the aryl moiety, with a triphenyl phosphonium scaffold (a mitochondria-directed vector), through a hydrocarbon chain of different lengths. Thus, such compounds that incorporate the phenethyl skeleton can be considered as masked phenolic compounds derived from relevant natural counterparts found in olive tree (e.g. tyrosol, hydroxytyrosol). Title compounds exhibited very strong in vitro antiproliferative activities against the panel of six human tumor cell lines tested, with GI50 values ranging from the nanomolar (0.026 ± 0.010 µM for 36) to the submicromolar range in most of the cases; this represents an improvement of up to 350-fold compared to classical chemotherapeutic agents, like 5-fluorouracil or cisplatin. Interestingly, decrease in the linker length led to an increase of GI50 values against non-tumor cells, thus allowing a remarkable improvement of selectivity (SI up to 269). The very promising antiproliferative activities prompted us to further investigate their behaviour against multidrug resistant cell lines (MDR). The results indicated a reduced sensitivity of the multidrug resistant cells to compounds, probably due to P-gp-mediated efflux of these antiproliferative agents. Interestingly, activities were completely restored to the same levels by co-administration of tariquidar, a well-known inhibitor of P-gp. Flow cytometry analysis on sensitive cell lines revealed a decrease in the percentage of cells in G1 phase accompanied by increase in S and G2/M phases. In addition, a significant increase in subG1 area, was observed. These results are compatible with the necrotic and apoptotic cell death detected in the Annexin V assay, and with the depolarization of the mitochondria membrane. Thus, the new mitochondriotropic agents reported herein can be considered as promising antiproliferative agents, endowed with remarkable potency and selectivity, including MDR cells, upon co-administration with a pump-efflux inhibitor.


Assuntos
Antineoplásicos/farmacologia , Etanol/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Etanol/análogos & derivados , Etanol/química , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade
17.
Arch Pharm (Weinheim) ; 355(1): e2100316, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34668210

RESUMO

The aim of this study was to explore the mechanisms of action of alsevirone in prostate cancer (PC) in vitro and in vivo: CYP17A1 inhibition, cytotoxic, apoptotic, and antitumor effects in comparison with abiraterone. The CYP17A1-inhibitory activity was investigated in rat testicular microsomes using high-performance liquid chromatography. Testosterone levels were evaluated using enzyme-linked immunoassay. IC50 values were calculated for PC3, DU-145, LNCaP, and 22Rv1 cells using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test. The antitumor effect in vivo was studied in DU-145 and 22Rv1 subcutaneous xenografts in Balb/c nude mice. Alsevirone reduced the CYP17A1-inhibitory activity by 98% ± 0.2%. A statistically significant reduction in the testosterone concentration in murine blood was recorded after the 7th administration of 300 mg/kg alsevirone at 0.31 ± 0.03 ng/ml (p < .001) versus 0.98 ± 0.22 ng/ml (p = .392) after abiraterone administration and 1.52 ± 0.49 ng/ml in control animals. Alsevirone was more cytotoxic than abiraterone in DU-145, LNCaP, and 22Rv1 cells, with IC50 values of 23.80 ± 1.18 versus 151.43 ± 23.70 µM, 22.87 ± 0.54 versus 28.80 ± 1.61 µM, and 35.86 ± 5.63 versus 109.87 ± 35.15 µM, respectively. Alsevirone and abiraterone significantly increased annexin V-positive, caspase 3/7-positive, and activated Bcl-2-positive cells. In 22Rv1 xenografts, alsevirone 300 mg/kg × 10/24 h per os inhibited tumor growth: on Day 9 of treatment, tumor growth inhibition = 59% (p = .022). Thus, alsevirone demonstrated significant antitumor activity associated with CYP17A1 inhibition, apoptosis in PC cells, and testosterone reduction.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Norpregnadienos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Norpregnadienos/administração & dosagem , Células PC-3 , Ratos , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Testosterona/sangue , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Enzyme Inhib Med Chem ; 37(1): 168-177, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894971

RESUMO

We have carried out the design, synthesis, and evaluation of a small library of 2-aminobenzoxazole-appended coumarins as novel inhibitors of tumour-related CAs IX and XII. Substituents on C-3 and/or C-4 positions of the coumarin scaffold, and on the benzoxazole moiety, together with the length of the linker connecting both units were modified to obtain useful structure-activity relationships. CA inhibition studies revealed a good selectivity towards tumour-associated CAs IX and XII (Ki within the mid-nanomolar range in most of the cases) in comparison with CAs I, II, IV, and VII (Ki > 10 µM); CA IX was found to be slightly more sensitive towards structural changes. Docking calculations suggested that the coumarin scaffold might act as a prodrug, binding to the CAs in its hydrolysed form, which is in turn obtained due to the esterase activity of CAs. An increase of the tether length and of the substituents steric hindrance was found to be detrimental to in vitro antiproliferative activities. Incorporation of a chlorine atom on C-3 of the coumarin moiety achieved the strongest antiproliferative agent, with activities within the low micromolar range for the panel of tumour cell lines tested.


Assuntos
Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Cumarínicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzoxazóis/síntese química , Benzoxazóis/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
19.
Chem Biodivers ; 18(12): e2100687, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34726832

RESUMO

Toxoplasmosis post serious threaten to human health, leading to severely eye and brain disease, especially for immunocompromised patients and pregnant women. The multiple side effects and long dosing period of current main treatment regiments calls for high effective and low toxicity anti-toxoplasmosis drugs. Herein, we report our efforts to synthesize a series of 2-(piperazin-1-yl)quinazolin-4(3H)-one derivatives and investigate their activity against Toxoplasma gondii tachyzoites in vitro based on cell phenotype screening. Among the 26 compounds, 8w and 8x with diaryl ether moiety at the side chain of piperazine exhibited good efficacy to inhibit T. gondii, with IC50 values of 4 µM and 3 µM, respectively. Structure-activity relationship (SAR) studies implies that hydrophobic aryl at the side chain would be preferred for improvement of activity. Molecular docking study reveals these two compounds appeared high affinity to TgCDPK1 by interaction with the hydrophobic pocket of ATP-binding cleft.


Assuntos
Antiprotozoários/farmacologia , Quinazolinonas/farmacologia , Toxoplasma/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Quinazolinonas/síntese química , Quinazolinonas/química
20.
Plants (Basel) ; 10(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34451604

RESUMO

Cancer is the world's second leading cause of death, accounting for nearly 10 million deaths and 19.3 million new cases in 2020. Curcumin analogs are gaining popularity as anticancer agents currently. We reported herein the isolation, molecular engineering, molecular docking, antiproliferative, and anti-epidermal growth factor receptor (anti-EGFR) activities of curcumin analogs. Three curcumin analogs were prepared and docked against the epidermal growth factor receptor (EGFR), revealing efficient binding. Antiproliferative activity against 60 NCI cancer cell lines was assessed using National Cancer Institute (NCI US) protocols. The compound 3b,c demonstrated promising antiproliferative activity in single dose (at 10 µM) as well as five dose (0.01, 0.10, 1.00, 10, and 100 µM). Compound 3c inhibited leukemia cancer panel better than other cancer panels with growth inhibition of 50% (GI50) values ranging from 1.48 to 2.73 µM, and the most promising inhibition with GI50 of 1.25 µM was observed against leukemia cell line SR, while the least inhibition was found against non-small lung cancer cell line NCI-H226 with GI50 value of 7.29 µM. Compounds 3b,c demonstrated superior antiproliferative activity than curcumin and gefitinib. In molecular docking, compound 3c had the most significant interaction with four H-bonds and three π-π stacking, and compound 3c was found to moderately inhibit EGFR. The curcumin analogs discovered in this study have the potential to accelerate the anticancer drug discovery program.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA