Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Alzheimers Dis Rep ; 8(1): 371-385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549638

RESUMO

Background: Amyloid-ß plaques (Aß) are associated with Alzheimer's disease (AD). Pooled assessment of amyloid reduction in transgenic AD mice is critical for expediting anti-amyloid AD therapeutic research. Objective: The mean threshold of Aß reduction necessary to achieve cognitive improvement was measured via pooled assessment (n = 594 mice) of Morris water maze (MWM) escape latency of transgenic AD mice treated with substances intended to reduce Aß via reduction of beta-secretase cleaving enzyme (BACE). Methods: Machine learning and statistical methods identified necessary amyloid reduction levels using mouse data (e.g., APP/PS1, LPS, Tg2576, 3xTg-AD, control, wild type, treated, untreated) curated from 22 published studies. Results: K-means clustering identified 4 clusters that primarily corresponded with level of Aß: untreated transgenic AD control mice, wild type mice, and two clusters of transgenic AD mice treated with BACE inhibitors that had either an average 25% "medium reduction" of Aß or 50% "high reduction" of Aß compared to untreated control. A 25% Aß reduction achieved a 28% cognitive improvement, and a 50% Aß reduction resulted in a significant 32% improvement compared to untreated transgenic mice (p < 0.05). Comparatively, wild type mice had a mean 41% MWM latency improvement over untreated transgenic mice (p < 0.05). BACE reduction had a lesser impact on the ratio of Aß42 to Aß40. Supervised learning with an 80% -20% train-test split confirmed Aß reduction was a key feature for predicting MWM escape latency (R2 = 0.8 to 0.95). Conclusions: Results suggest a 25% reduction in Aß as a meaningful treatment threshold for improving transgenic AD mouse cognition.

2.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569661

RESUMO

ß-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is considered a therapeutic target to combat Alzheimer's disease by reducing ß-amyloid in the brain. To date, all clinical trials involving the inhibition of BACE1 have been discontinued due to a lack of efficacy or undesirable side effects such as cognitive worsening. The latter could have been the result of the inhibition of BACE at the synapse where it is expressed in high amounts. We have previously shown that prolonged inhibition of BACE interferes with structural synaptic plasticity, most likely due to the diminished processing of the physiological BACE substrate Seizure protein 6 (Sez6) which is exclusively processed by BACE1 and is required for dendritic spine plasticity. Given that BACE1 has significant amino acid similarity with its homolog BACE2, the inhibition of BACE2 may cause some of the side effects, as most BACE inhibitors do not discriminate between the two. In this study, we used newly developed BACE inhibitors that have a different chemotype from previously developed inhibitors and a high selectivity for BACE1 over BACE2. By using longitudinal in vivo two-photon microscopy, we investigated the effect on dendritic spine dynamics of pyramidal layer V neurons in the somatosensory cortex in mice treated with highly selective BACE1 inhibitors. Treatment with those inhibitors showed a reduction in soluble Sez6 (sSez6) levels to 27% (elenbecestat, Biogen, Eisai Co., Ltd., Tokyo, Japan), 17% (Shionogi compound 1) and 39% (Shionogi compound 2), compared to animals fed with vehicle pellets. We observed a significant decrease in the number of dendritic spines with Shionogi compound 1 after 21 days of treatment but not with Shionogi compound 2 or with elenbecestat, which did not show cognitive worsening in clinical trials. In conclusion, highly selective BACE1 inhibitors do alter dendritic spine density similar to non-selective inhibitors if soluble (sSez6) levels drop too much. Low-dose BACE1 inhibition might be reasonable if dosing is carefully adjusted to the amount of Sez6 cleavage, which can be easily monitored during the first week of treatment.


Assuntos
Doença de Alzheimer , Ácido Aspártico Endopeptidases , Animais , Camundongos , Ácido Aspártico Endopeptidases/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Espinhas Dendríticas/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas do Tecido Nervoso/metabolismo
3.
Alzheimers Dement (N Y) ; 8(1): e12317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846156

RESUMO

Introduction: Alzheimer's disease (AD) is the most common form of dementia. Beta-secretase (BACE) inhibitors have been proposed as potential therapeutic interventions; however, initiating treatment once disease has significantly progressed has failed to effectively stop or treat disease. Whether BACE inhibition may have efficacy when administered prophylactically in the early stages of AD has been under-investigated. The present studies aimed to evaluate prophylactic treatment of the BACE inhibitor verubecestat in an AD mouse model using the National Institute on Aging (NIA) resources of the Model Organism Development for Late-Onset Alzheimer's Disease (MODEL-AD) Preclinical Testing Core (PTC) Drug Screening Pipeline. Methods: 5XFAD mice were administered verubecestat ad libitum in chow from 3 to 6 months of age, prior to the onset of significant disease pathology. Following treatment (6 months of age), in vivo imaging was conducted with 18F-florbetapir (AV-45/Amyvid) (18F-AV45) and 18-FDG (fluorodeoxyglucose)-PET (positron emission tomography)/MRI (magnetic resonance imaging), brain and plasma amyloid beta (Aß) were measured, and the clinical and behavioral characteristics of the mice were assessed and correlated with the pharmacokinetic data. Results: Prophylactic verubecestat treatment resulted in dose- and region-dependent attenuations of 18F-AV45 uptake in male and female 5XFAD mice. Plasma Aß40 and Aß42 were also dose-dependently attenuated with treatment. Across the dose range evaluated, side effects including coat color changes and motor alterations were reported, in the absence of cognitive improvement or changes in 18F-FDG uptake. Discussion: Prophylactic treatment with verubecestat resulted in attenuated amyloid plaque deposition when treatment was initiated prior to significant pathology in 5XFAD mice. At the same dose range effective at attenuating Aß levels, verubecestat produced side effects in the absence of improvements in cognitive function. Taken together these data demonstrate the rigorous translational approaches of the MODEL-AD PTC for interrogating potential therapeutics and provide insight into the limitations of verubecestat as a prophylactic intervention for early-stage AD.

4.
Neurobiol Dis ; 154: 105365, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33848635

RESUMO

The imbalance between production and clearance of amyloid ß (Aß) peptides and their resulting accumulation in the brain is an early and crucial step in the pathogenesis of Alzheimer's disease (AD). Therefore, Aß is strongly positioned as a promising and extensively validated therapeutic target for AD. Investigational disease-modifying approaches aiming at reducing cerebral Aß concentrations include prevention of de novo production of Aß through inhibition of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1), and clearance of Aß deposits via passive Aß immunotherapy. We have developed a novel, high affinity antibody against Aß peptides bearing a pyroglutamate residue at amino acid position 3 (3pE), an Aß species abundantly present in plaque deposits in AD brains. Here, we describe the preclinical characterization of this antibody, and demonstrate a significant reduction in amyloid burden in the absence of microhemorrhages in different mouse models with established plaque deposition. Moreover, we combined antibody treatment with chronic BACE1 inhibitor treatment and demonstrate significant clearance of pre-existing amyloid deposits in transgenic mouse brain, without induction of microhemorrhages and other histopathological findings. Together, these data confirm significant potential for the 3pE-specific antibody to be developed as a passive immunotherapy approach that balances efficacy and safety. Moreover, our studies suggest further enhanced treatment efficacy and favorable safety after combination of the 3pE-specific antibody with BACE1 inhibitor treatment.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/antagonistas & inibidores , Anticorpos Monoclonais/administração & dosagem , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Imunização Passiva/métodos , Fragmentos de Peptídeos/antagonistas & inibidores , Placa Amiloide/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/imunologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Ácido Aspártico Endopeptidases/imunologia , Ácido Aspártico Endopeptidases/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/imunologia , Placa Amiloide/metabolismo , Resultado do Tratamento
5.
Alzheimers Dement (N Y) ; 7(1): e12123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614894

RESUMO

INTRODUCTION: Lanabecestat, a beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) inhibitor, was investigated as a potential Alzheimer's disease (AD)-modifying treatment. As previously reported, amyloid beta (Aß) neuritic plaque burden reduction did not result in clinical benefit. Lanabecestat's effects on neuroimaging biomarkers and correlations between neuroimaging biomarkers and efficacy measures are reported. METHODS: AMARANTH and DAYBREAK-ALZ were 104- and 78-week, multicenter, randomized, double-blind, placebo-controlled studies of lanabecestat in early symptomatic AD (AMARANTH) and mild AD dementia (DAYBREAK-ALZ). Patients randomly (1:1:1) received placebo, lanabecestat 20 mg, or lanabecestat 50 mg daily (AMARANTH, n = 2218; DAYBREAK-ALZ, n = 1722). Florbetapir positron emission tomography (PET), fluorodeoxyglucose (FDG) PET, flortaucipir PET, and volumetric magnetic resonance imaging (MRI) were used to measure Aß neuritic plaque burden, cerebral metabolism, aggregated tau neurofibrillary tangles, and brain volume, respectively. Additionally, florbetapir perfusion scans were performed in DAYBREAK-ALZ. Efficacy measures included 13-item Alzheimer's Disease Assessment Scale-Cognitive Subscale, Alzheimer's Disease Cooperative Study Activities of Daily Living Inventory, Clinical Dementia Rating-Sum of Boxes, Functional Activities Questionnaire, and Mini-Mental State Examination. These studies stopped early due to futility. RESULTS: Despite previously observed annualized reduction in Aß neuritic plaque burden, there were no treatment differences in annualized change of aggregated tau neurofibrillary tangle burden (AMARANTH, n = 284; DAYBREAK-ALZ, n = 70), cerebral metabolism (AMARANTH, n = 260; DAYBREAK-ALZ, n = 38) and perfusion (DAYBREAK-ALZ, n = 213). Greater brain volume reduction (AMARANTH, n = 1697 [whole brain]; DAYBREAK-ALZ, n = 650 [whole brain]) occurred on lanabecestat compared to placebo. Higher baseline aggregated tau neurofibrillary tangle burden, lower cerebral metabolism, and lower brain volumes correlated with poorer baseline efficacy scores and greater clinical worsening. Lower baseline cerebral perfusion correlated with poorer baseline efficacy scores. Reduction in cerebral metabolism or whole brain volume correlated with clinical worsening, regardless of treatment assignment. DISCUSSION: Tau pathology and cerebral metabolism assessments showed no evidence of lanabecestat slowing pathophysiologic progression of AD. Lanabecestat exposure was associated with brain volume reductions. Correlations between imaging measures and cognitive assessments may aid future study design.

6.
J Alzheimers Dis ; 79(1): 275-287, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252075

RESUMO

BACKGROUND: We performed exploratory analyses of retinal thickness data from a clinical trial of the AßPP cleaving enzyme (BACE) inhibitor verubecestat in patients with Alzheimer's disease (AD). OBJECTIVE: To evaluate: 1) possible retinal thickness changes following BACE inhibition; and 2) possible association between retinal thickness and brain atrophy. METHODS: Retinal thickness was measured using spectral-domain optical coherence tomography in a 78-week randomized placebo-controlled trial of verubecestat in 1,785 patients with mild-to-moderate AD. Changes from baseline in retinal pigment epithelium, macular grid retinal nerve fiber layer, central subfield retinal thickness, and macular grid volume were evaluated for verubecestat versus placebo. Correlation analyses were performed to investigate the potential association between macular grid retinal nerve fiber layer and central subfield retinal thickness with brain volumetric magnetic resonance imaging (vMRI) data at baseline, as well as correlations for changes from baseline at Week 78 in patients receiving placebo. RESULTS: Verubecestat did not significantly alter retinal thickness during the trial compared with placebo. At baseline, mean macular grid retinal nerve fiber layer and central subfield retinal thickness were weakly but significantly correlated (Pearson's r values≤0.23, p-values < 0.01) with vMRI of several brain regions including whole brain, hippocampus, and thalamus. At Week 78, correlations between retinal thickness and brain vMRI changes from baseline in the placebo group were small and mostly not statistically significant. CONCLUSION: BACE inhibition by verubecestat was not associated with adverse effects on retinal thickness in patients with mild-to-moderate AD. Correlations between retinal thickness and brain volume were observed at baseline. TRIAL REGISTRATION: Clinicaltrials.gov NCT01739348 (registered December 3, 2012; https://clinicaltrials.gov/ct2/show/NCT01739348).


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Óxidos S-Cíclicos/uso terapêutico , Retina/diagnóstico por imagem , Tiadiazinas/uso terapêutico , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/fisiopatologia , Atrofia , Encéfalo/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Retina/patologia , Tomografia de Coerência Óptica
7.
Bioorg Med Chem Lett ; 30(8): 126999, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32089426

RESUMO

Since its discovery in 1999, BACE-1, a membrane anchored aspartyl protease expressed primarily in the CNS, has been the target of numerous medicinal chemistry research programs. These efforts have produced highly potent inhibitors with nanomolar affinity and ever-increasing structural complexity. However, only a handful of these molecules have been able to combine in vitro potency with CNS permeability and progressed to the clinic. Herein, we describe a set of novel piperidine-based inhibitors. This investigation culminated with the identification of 43, a highly potent (IC50: 1.5 nM), permeable BACE-1 inhibitor with a low susceptibility to Pgp-mediatedefflux.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Relação Estrutura-Atividade
8.
Alzheimers Res Ther ; 11(1): 68, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31387606

RESUMO

BACKGROUND: Verubecestat, a BACE1 inhibitor that reduces Aß levels in the cerebrospinal fluid of humans, was not effective in a phase 3 trial (EPOCH) of mild-to-moderate AD and was associated with adverse events. To assist in the development of BACE1 inhibitors, we report detailed safety findings from EPOCH. METHODS: EPOCH was a randomized, double-blind, placebo-controlled 78-week trial evaluating verubecestat 12 mg and 40 mg in participants with mild-to-moderate AD diagnosed clinically. The trial was terminated due to futility close to its scheduled completion. Of 1957 participants who were randomized and took treatment, 652 were assigned to verubecestat 12 mg, 652 to verubecestat 40 mg, and 653 to placebo. Adverse events and relevant laboratory, vital sign, and ECG findings were assessed. RESULTS: Verubecestat 12 mg and 40 mg were associated with an increase in the percentage of participants reporting adverse events versus placebo (89 and 92% vs. 82%), although relatively few participants discontinued treatment due to adverse events (8 and 9% vs. 6%). Adverse events that were increased versus placebo included falls and injuries, suicidal ideation, weight loss, sleep disturbance, rash, and hair color change. Most were mild to moderate in severity. Treatment differences in suicidal ideation emerged within the first 3 months but did not appear to increase after 6 months. In contrast, treatment differences in falls and injuries continued to increase over time. CONCLUSIONS: Verubecestat was associated with increased risk for several types of adverse events. Falls and injuries were notable for progressive increases over time. While the mechanisms underlying the increased adverse events are unclear, they may be due to BACE inhibition and should be considered in future clinical development programs of BACE1 inhibitors. TRIAL REGISTRATION: ClinicalTrials.gov NCT01739348 , registered on 29 November 2012.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Óxidos S-Cíclicos/uso terapêutico , Tiadiazinas/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/psicologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Óxidos S-Cíclicos/efeitos adversos , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Ideação Suicida , Tiadiazinas/efeitos adversos , Resultado do Tratamento
9.
Biol Psychiatry ; 84(7): 478-487, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29945719

RESUMO

Alzheimer's disease is the most prevalent neurodegenerative disorder among elderly persons. Overt accumulation and aggregation of the amyloid-ß peptide (Aß) is thought to be the initial causative factor for Alzheimer's disease. Aß is produced by sequential proteolytic cleavage of the amyloid precursor protein. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the initial and rate-limiting protease for the generation of Aß. Therefore, inhibiting BACE1 is considered one of the most promising therapeutic approaches for potential treatment of Alzheimer's disease. Currently, several drugs blocking this enzyme (BACE inhibitors) are being evaluated in clinical trials. However, high-dosage BACE-inhibitor treatment interferes with structural and functional synaptic plasticity in mice. These adverse side effects may mask the therapeutic benefit of lowering the Aß concentration. In this review, we focus on the consequences of BACE inhibition-mediated synaptic deficits and the potential clinical implications.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Espinhas Dendríticas/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Inibidores de Proteases/efeitos adversos , Animais , Humanos , Camundongos
10.
Bioorg Med Chem Lett ; 28(6): 1111-1115, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29426770

RESUMO

The diastereoselective synthesis and structure activity relationship (SAR) of a series of fused cyclopropyl-3-amino-2,4-oxazine (2-oxa-4-azabicyclo[4.1.0]hept-3-en-3-amine)-containing BACE inhibitors is described. Through these efforts compound 2 was identified as a potent (cell IC50 = 15 nM) BACE inhibitor with acceptable ADME properties. When tested in vivo, compound 2 demonstrated a significant reduction of brain and cerebral spinal fluid (CSF) Aß40 levels (46% and 66%, respectively) in a rat pharmacodynamic study and thus represents a suitable starting point for the further development of in vivo efficacious compounds for the treatment of Alzheimer's disease.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Compostos Aza/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Inibidores Enzimáticos/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Compostos Aza/síntese química , Compostos Aza/química , Compostos Bicíclicos com Pontes/síntese química , Compostos Bicíclicos com Pontes/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Relação Estrutura-Atividade
11.
J Prev Alzheimers Dis ; 4(4): 242-246, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29181489

RESUMO

Alzheimer's disease pathology begins decades before the onset of clinical symptoms. This provides an opportunity for interventional clinical trials to potentially delay or prevent the onset of cognitive impairment or dementia. CNP520 (a beta-site-amyloid precursor protein-cleaving enzyme inhibitor) is in clinical development for the treatment of preclinical Alzheimer's disease under the Alzheimer's Prevention Initiative Generation Program. The Alzheimer's Prevention Initiative is a public-private partnership intended to accelerate the evaluation of Alzheimer's disease prevention therapies. The Generation Program comprises two pivotal phase II/III studies with similar designs to assess the efficacy and safety of investigational treatments in a cognitively unimpaired population at increased risk for developing Alzheimer's disease based on age and apolipoprotein E (APOE) genotype (i.e., presence of the APOE ε4 allele). The program has been designed to maximize benefit to Alzheimer's disease research. Generation Study 1 (NCT02565511) and Generation Study 2 (NCT03131453) are currently enrolling; their key features are presented here.


Assuntos
Doença de Alzheimer/prevenção & controle , Inibidores Enzimáticos/uso terapêutico , Oxazinas/uso terapêutico , Fatores Etários , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Apolipoproteína E4/genética , Suscetibilidade a Doenças , Humanos , Seleção de Pacientes , Parcerias Público-Privadas
12.
J Nucl Med ; 58(12): 1977-1983, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28611242

RESUMO

In this study, we investigated the effects of chronic administration of an inhibitor of the ß-site amyloid precursor protein-cleaving enzyme 1 (BACE1) on Alzheimer-related pathology by multitracer PET imaging in transgenic APPPS1-21 (TG) mice. Methods: Wild-type (WT) and TG mice received vehicle or BACE inhibitor (60 mg/kg) starting at 7 wk of age. Outcome measures of brain metabolism, neuroinflammation, and amyloid-ß pathology were obtained through small-animal PET imaging with 18F-FDG, 18F-peripheral benzodiazepine receptor (18F-PBR), and 18F-florbetapir (18F-AV45), respectively. Baseline scans were acquired at 6-7 wk of age and follow-up scans at 4, 7, and 12 mo. 18F-AV45 uptake was measured at 8 and 13 mo of age. After the final scans, histologic measures of amyloid-ß (4G8), microglia (ionized calcium binding adaptor molecule 1), astrocytes (glial fibrillary acidic protein), and neuronal nuclei were performed. Results: TG mice demonstrated significant age-associated increases in 18F-AV45 uptake. An effect of treatment was observed in the cortex (P = 0.0014), hippocampus (P = 0.0005), and thalamus (P < 0.0001). Histology confirmed reduction of amyloid-ß pathology in TG-BACE mice. Regardless of treatment, TG mice demonstrated significantly lower 18F-FDG uptake than WT mice in the thalamus (P = 0.0004) and hippocampus (P = 0.0332). Neuronal nucleus staining was lower in both TG groups in the thalamus and cortex. 18F-PBR111 detected a significant age-related increase in TG mice (P < 0.0001) but did not detect the treatment-induced reduction in activated microglia as demonstrated by histology. Conclusion: Although 18F-FDG, 18F-PBR111, and 18F-AV45 all detected pathologic alterations between TG and WT mice, only 18F-AV45 could detect an effect of BACE inhibitor treatment. However, changes in WT binding of 18F-AV45 undermine the specificity of this effect.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Envelhecimento , Doença de Alzheimer/patologia , Neuropatias Amiloides/patologia , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Química Encefálica , Inibidores Enzimáticos/uso terapêutico , Etilenoglicóis , Fluordesoxiglucose F18 , Humanos , Inflamação/patologia , Camundongos , Camundongos Transgênicos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Resultado do Tratamento
13.
Bioorg Med Chem ; 23(13): 3260-8, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26001341

RESUMO

The BACE1 enzyme is a key target for Alzheimer's disease. During our BACE1 research efforts, fragment screening revealed that bicyclic thiazine 3 had low millimolar activity against BACE1. Analysis of the co-crystal structure of 3 suggested that potency could be increased through extension toward the S3 pocket and through conformational constraint of the thiazine core. Pursuit of S3-binding groups produced low micromolar inhibitor 6, which informed the S3-design for constrained analogs 7 and 8, themselves prepared via independent, multi-step synthetic routes. Biological characterization of BACE inhibitors 6-8 is described.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Compostos Bicíclicos com Pontes/síntese química , Inibidores de Proteases/síntese química , Tiazinas/síntese química , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/isolamento & purificação , Animais , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/isolamento & purificação , Química Encefálica , Compostos Bicíclicos com Pontes/química , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Camundongos , Conformação Molecular , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Estereoisomerismo , Tiazinas/química
14.
J Neurochem ; 132(4): 477-86, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25156639

RESUMO

Aggregation of amyloid beta (Aß) peptides and the subsequent neural plaque formation is a central aspect of Alzheimer's disease. Various strategies to reduce Aß load in the brain are therefore intensely pursued. It has been hypothesized that reducing Aß peptides in the periphery, that is in organs outside the brain, would be a way to diminish Aß levels and plaque load in the brain. In this report, we put this peripheral sink hypothesis to test by investigating how selective inhibition of Aß production in the periphery using a ß-secretase (BACE)1 inhibitor or reduced BACE1 gene dosage affects Aß load in the brain. Selective inhibition of peripheral BACE1 activity in wild-type mice or mice over-expressing amyloid precursor protein (APPswe transgenic mice; Tg2576) reduced Aß levels in the periphery but not in the brain, not even after chronic treatment over several months. In contrast, a BACE1 inhibitor with improved brain disposition reduced Aß levels in both brain and periphery already after acute dosing. Mice heterozygous for BACE1, displayed a 62% reduction in plasma Aß40, whereas brain Aß40 was only lowered by 11%. These data suggest that reduction of Aß in the periphery is not sufficient to reduce brain Aß levels and that BACE1 is not the rate-limiting enzyme for Aß processing in the brain. This provides evidence against the peripheral sink hypothesis and suggests that a decrease in Aß via BACE1 inhibition would need to be carried out in the brain. Aggregation of amyloid beta (Aß) peptides in the brain is a central aspect of Alzheimer's disease. In this study, we demonstrate that inhibition of Aß formation by BACE1 inhibitors needs to be carried out in the brain and that reduction of Aß in the periphery is not sufficient to reduce brain Aß levels. This information is useful for developing future Aß-targeting therapies for Alzheimer's disease.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/biossíntese , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/enzimologia , Animais , Encéfalo/efeitos dos fármacos , Células CACO-2 , Cricetinae , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
15.
J Neurosci ; 34(24): 8336-46, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24920637

RESUMO

BACE, a ß-secretase, is an attractive potential disease-modifying therapeutic strategy for Alzheimer's disease (AD) as it results directly in the decrease of amyloid precursor protein (APP) processing through the ß-secretase pathway and a lowering of CNS amyloid-ß (Aß) levels. The interaction of the ß-secretase and α-secretase pathway-mediated processing of APP in the rhesus monkey (nonhuman primate; NHP) CNS is not understood. We hypothesized that CNS inhibition of BACE would result in decreased newly generated Aß and soluble APPß (sAPPß), with increased newly generated sAPPα. A stable isotope labeling kinetics experiment in NHPs was performed with a (13)C6-leucine infusion protocol to evaluate effects of BACE inhibition on CNS APP processing by measuring the kinetics of sAPPα, sAPPß, and Aß in CSF. Each NHP received a low, medium, or high dose of MBI-5 (BACE inhibitor) or vehicle in a four-way crossover design. CSF sAPPα, sAPPß, and Aß were measured by ELISA and newly incorporated label following immunoprecipitation and liquid chromatography-mass spectrometry. Concentrations, kinetics, and amount of newly generated APP fragments were calculated. sAPPß and sAPPα kinetics were similar, but both significantly slower than Aß. BACE inhibition resulted in decreased labeled sAPPß and Aß in CSF, without observable changes in labeled CSF sAPPα. ELISA concentrations of sAPPß and Aß both decreased and sAPPα increased. sAPPα increased by ELISA, with no difference by labeled sAPPα kinetics indicating increases in product may be due to APP shunting from the ß-secretase to the α-secretase pathway. These results provide a quantitative understanding of pharmacodynamic effects of BACE inhibition on NHP CNS, which can inform about target development.


Assuntos
Secretases da Proteína Precursora do Amiloide/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Precursor de Proteína beta-Amiloide/líquido cefalorraquidiano , Sistema Nervoso Central/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Isótopos de Carbono/metabolismo , Linhagem Celular Tumoral , Sistema Nervoso Central/efeitos dos fármacos , Estudos Cross-Over , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Imunoprecipitação , Leucina/metabolismo , Macaca mulatta , Espectrometria de Massas , Neuroblastoma , Fragmentos de Peptídeos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA