Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Acta Neuropathol ; 148(1): 52, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39394356

RESUMO

Growing evidence supports that early- or middle-life traumatic brain injury (TBI) is a risk factor for developing Alzheimer's disease (AD) and AD-related dementia (ADRD). Nevertheless, the molecular mechanisms underlying TBI-induced AD-like pathology and cognitive deficits remain unclear. In this study, we found that a single TBI (induced by controlled cortical impact) reduced the expression of BCL2-associated athanogene 3 (BAG3) in neurons and oligodendrocytes, which is associated with decreased proteins related to the autophagy-lysosome pathway (ALP) and increased hyperphosphorylated tau (ptau) accumulation in excitatory neurons and oligodendrocytes, gliosis, synaptic dysfunction, and cognitive deficits in wild-type (WT) and human tau knock-in (hTKI) mice. These pathological changes were also found in human cases with a TBI history and exaggerated in human AD cases with TBI. The knockdown of BAG3 significantly inhibited autophagic flux, while overexpression of BAG3 significantly increased it in vitro. Specific overexpression of neuronal BAG3 in the hippocampus attenuated AD-like pathology and cognitive deficits induced by TBI in hTKI mice, which is associated with increased ALP-related proteins. Our data suggest that targeting neuronal BAG3 may be a therapeutic strategy for preventing or reducing AD-like pathology and cognitive deficits induced by TBI.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Autofagia , Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Lisossomos , Neurônios , Proteínas tau , Animais , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/complicações , Autofagia/fisiologia , Proteínas tau/metabolismo , Humanos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Fosforilação , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Lisossomos/metabolismo , Masculino , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sinapses/patologia , Sinapses/metabolismo , Feminino , Pessoa de Meia-Idade
2.
Int J Mol Sci ; 25(20)2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39457090

RESUMO

Bcl-2-associated athanogene 3 (BAG3) plays an important function in cellular protein quality control (PQC) maintaining proteome stability. Mutations in the BAG3 gene result in cardiomyopathies. Due to its roles in cardiomyopathies and the complexity of BAG3-protein interactions, it is important to understand these protein interactions given the importance of the multifunctional cochaperone BAG3 in cardiomyocytes, using an in vitro cardiomyocyte model. The experimental assay was conducted using high pressure liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the human AC16 cardiomyocyte cell line with BioID technology. Proteins with BAG3-interaction were identified in all the 28 hallmark gene sets enriched in idiopathic cardiomyopathies and/or ischemic disease. Among the 24 hallmark gene sets enriched in both idiopathic cardiomyopathies and ischemic disease, 15 gene sets had at least 3 proteins with BAG3-interaction. This study highlights BAG3 protein interactions, unveiling the key gene sets affected in cardiomyopathies, which help to explain the molecular mechanisms of the cardioprotective effects of BAG3. In addition, this study also highlighted the complexity of proteins with BAG3 interactions, implying unwanted effects of BAG3.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Cardiomiopatias , Miócitos Cardíacos , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/genética , Miócitos Cardíacos/metabolismo , Linhagem Celular , Mapas de Interação de Proteínas , Espectrometria de Massas em Tandem , Ligação Proteica
3.
Biochemistry (Mosc) ; 89(9): 1535-1545, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39418513

RESUMO

Bag3 (Bcl-2-associated athanogene 3) protein contains a number of functional domains and interacts with a wide range of different partner proteins, including small heat shock proteins (sHsps) and heat shock protein Hsp70. The ternary Bag3-sHsp-and Hsp70 complex binds denatured proteins and transports them to phagosomes, thus playing a key role in the chaperone-assisted selective autophagy (CASA). This complex also participates in the control of formation and disassembly of stress granules (granulostasis) and cytoskeleton regulation. As Bag3 and sHsps participate in multiple cellular processes, mutations in these proteins are often associated with neurodegenerative diseases and cardiomyopathy. The review discusses the role of sHsps in different processes regulated by Bag3.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Proteínas de Choque Térmico Pequenas , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Proteínas de Choque Térmico Pequenas/química , Proteínas de Choque Térmico Pequenas/genética , Animais , Autofagia , Doenças Neurodegenerativas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo
4.
EMBO Rep ; 25(10): 4488-4514, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39261742

RESUMO

Protein quality control serves as the primary defense mechanism for cells against proteotoxicity induced by proteasome dysfunction. While cells can limit the build-up of ubiquitinated misfolded proteins during proteasome inhibition, the precise mechanism is unclear. Here, we find that protein kinase Ca2+/Calmodulin (CaM)-dependent protein kinase II (CaMKII) maintains proteostasis during proteasome inhibition. We show that proteasome inhibition activates CaMKII, which phosphorylates B-cell lymphoma 2 (Bcl-2)-associated athanogene 3 (BAG3) at residues S173, S377, and S386. Phosphorylated BAG3 activates the heme-regulated inhibitor (HRI)- eukaryotic initiation factor-2α (eIF2α) signaling pathway, suppressing protein synthesis and the production of aggregated ubiquitinated misfolded proteins, ultimately mitigating the proteotoxic crisis. Inhibition of CaMKII exacerbates the accumulation of aggregated misfolded proteins and paraptosis induced by proteasome inhibitors. Based on these findings, we validate that combined targeting of proteasome and CaMKII accelerates tumor cell death and enhances the efficacy of proteasome inhibitors in tumor treatment. Our data unveil a new proteasomal inhibition-induced misfolded protein quality control mechanism and propose a novel therapeutic intervention for proteasome inhibitor-mediated tumor treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Complexo de Endopeptidases do Proteassoma , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Transdução de Sinais/efeitos dos fármacos , Feminino
5.
Cancer Biol Ther ; 25(1): 2396694, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215616

RESUMO

The incidence of intrahepatic cholangiocarcinoma (ICC) is steadily rising, and it is associated with a high mortality rate. Clinical samples were collected to detect the expression of HSPB8 and BAG3 in ICC tissues. ICC cells were cultured and transfected with plasmids that overexpressed or silenced specific genes to investigate the impact of gene expression alterations on cell function. qPCR and Western blot techniques were utilized to measure gene and protein expression levels. A wound healing assay was conducted to assess cell migration ability. The Transwell assay was used to assess cell invasion ability. Co-IP was used to verify the binding relationship between HSPB8 and BAG3. The effects of HSPB8 and BAG3 on lung metastasis of tumors in vivo were verified by constructing a metastatic tumor model. Through the above experiments, we discovered that the expressions of HSPB8 and BAG3 were up-regulated in ICC tissues and cells, and their expressions were positively correlated. The metastatic ability of ICC cells could be promoted or inhibited by upregulating or downregulating the expression of BAG3. Furthermore, the HSPB8-BAG3 chaperone complex resulted in the abnormal degradation of Filamin A by activating autophagy. Increased expression of Filamin A inhibits the migration and invasion of ICC cells. Overexpression of HSPB8 and BAG3 in vivo promoted the lung metastasis ability of ICC cells. The HSPB8-BAG3 chaperone complex promotes ICC cell migration and invasion by regulating CASA-mediated degradation of Filamin A, offering insights for enhancing ICC therapeutic strategies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Filaminas , Chaperonas Moleculares , Invasividade Neoplásica , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Humanos , Filaminas/metabolismo , Filaminas/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Animais , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Movimento Celular , Linhagem Celular Tumoral , Masculino , Feminino , Camundongos Nus , Regulação Neoplásica da Expressão Gênica
6.
Cell Biochem Biophys ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127862

RESUMO

Redundancy of cancer cells towards ROS-mediated apoptosis despite expressing proline-rich p66shc abundantly needs to be investigated properly. P66shc, an adapter protein, is indispensable both for initiating ROS-mediated apoptosis and subsequent ROS generation through Rac-1 activation. P66shc gets phosphorylated at Ser-36 that triggers its translocation to the mitochondria and subsequent release of Cytochrome c in response to oxidative stress. It also aids in Rac-1 dependent NADPH oxidase activation, leading to the generation of cytosolic ROS that can perform diverse functions depending on its concentration. This study has identified the multi-faceted anti-apoptotic protein BAG3 as an interacting partner of p66shc. BAG3 utilizes its WW domain to bind to the proline-rich motifs of p66shc. BAG3, through its WW domain, antagonizes p66shc mediated apoptosis, by inhibiting both the expression and phosphorylation of p66shc under normal and oxidative stress conditions. This results in significant protection against ROS-mediated apoptosis. BAG3-mediated reduction in p66shc expression increases cell proliferation and metastasis. The increase in cell proliferation is attributed to the impact of BAG3 on Rac-1 activation and ROS production under normal conditions. This study has unraveled an interactor of p66shc that enhances pro-survival role while simultaneously suppressing its apoptotic role.

7.
Cardiovasc Pathol ; 73: 107675, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39059779

RESUMO

Dilated cardiomyopathy (DCM) is defined as left ventricular enlargement accompanied by systolic dysfunction not explained by abnormal loading conditions or coronary heart disease. The DCM clinical spectrum is broad, ranging from subclinical to severe presentation with progression to end stage heart failure. To date, different genetic loci have been found to have moderate/definitive evidence for causality in DCM and pathogenic variants in the TTN gene represent the main genetic determinant. Here, we describe a family in which the co-occurrence of two genetic hits, one in the TTN and one in the BAG3 gene, was associated with heterogeneous clinical presentation ranging from subclinical phenotypes to acute cardiogenic shock mimicking fulminant myocarditis. We hypothesize that at least some specific BAG3 genotypes could be related to DCM presenting with acute heart failure and suggest that patients and relatives carrying BAG3 pathogenic variants should be addressed to a tertiary-level heart care center.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Cardiomiopatia Dilatada , Conectina , Predisposição Genética para Doença , Insuficiência Cardíaca , Fenótipo , Humanos , Cardiomiopatia Dilatada/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/diagnóstico , Masculino , Conectina/genética , Feminino , Linhagem , Pessoa de Meia-Idade , Doença Aguda , Adulto , Mutação
8.
J Mol Cell Cardiol ; 193: 53-66, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838815

RESUMO

The HSP70 co-chaperone BAG3 targets unfolded proteins to degradation via chaperone assisted selective autophagy (CASA), thereby playing pivotal roles in the proteostasis of adult cardiomyocytes (CMs). However, the complex functions of BAG3 for regulating autophagy in cardiac disease are not completely understood. Here, we demonstrate that conditional inactivation of Bag3 in murine CMs leads to age-dependent dysregulation of autophagy, associated with progressive cardiomyopathy. Surprisingly, Bag3-deficient CMs show increased canonical and non-canonical autophagic flux in the juvenile period when first signs of cardiac dysfunction appear, but reduced autophagy during later stages of the disease. Juvenile Bag3-deficient CMs are characterized by decreased levels of soluble proteins involved in synchronous contraction of the heart, including the gap junction protein Connexin 43 (CX43). Reiterative administration of chloroquine (CQ), an inhibitor of canonical and non-canonical autophagy, but not inactivation of Atg5, restores normal concentrations of soluble cardiac proteins in juvenile Bag3-deficient CMs without an increase of detergent-insoluble proteins, leading to complete recovery of early-stage cardiac dysfunction in Bag3-deficient mice. We conclude that loss of Bag3 in CMs leads to age-dependent differences in autophagy and cardiac dysfunction. Increased non-canonical autophagic flux in the juvenile period removes soluble proteins involved in cardiac contraction, leading to early-stage cardiomyopathy, which is prevented by reiterative CQ treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Autofagia , Cardiomiopatias , Miócitos Cardíacos , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/deficiência , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Cloroquina/farmacologia , Camundongos Knockout
10.
J Am Heart Assoc ; 13(10): e030467, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38761081

RESUMO

BACKGROUND: Many cardiomyopathy-associated FLNC pathogenic variants are heterozygous truncations, and FLNC pathogenic variants are associated with arrhythmias. Arrhythmia triggers in filaminopathy are incompletely understood. METHODS AND RESULTS: We describe an individual with biallelic FLNC pathogenic variants, p.Arg650X and c.970-4A>G, with peripartum cardiomyopathy and ventricular arrhythmias. We also describe clinical findings in probands with FLNC variants including Val2715fs87X, Glu2458Serfs71X, Phe106Leu, and c.970-4A>G with hypertrophic and dilated cardiomyopathy, atrial fibrillation, and ventricular tachycardia. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated. The FLNC truncation, Arg650X/c.970-4A>G, showed a marked reduction in filamin C protein consistent with biallelic loss of function mutations. To assess loss of filamin C, gene editing of a healthy control iPSC line was used to generate a homozygous FLNC disruption in the actin binding domain. Because filamin C has been linked to protein quality control, we assessed the necessity of filamin C in iPSC-CMs for response to the proteasome inhibitor bortezomib. After exposure to low-dose bortezomib, FLNC-null iPSC-CMs showed an increase in the chaperone proteins BAG3, HSP70 (heat shock protein 70), and HSPB8 (small heat shock protein B8) and in the autophagy marker LC3I/II. FLNC null iPSC-CMs had prolonged electric field potential, which was further prolonged in the presence of low-dose bortezomib. FLNC null engineered heart tissues had impaired function after low-dose bortezomib. CONCLUSIONS: FLNC pathogenic variants associate with a predisposition to arrhythmias, which can be modeled in iPSC-CMs. Reduction of filamin C prolonged field potential, a surrogate for action potential, and with bortezomib-induced proteasome inhibition, reduced filamin C led to greater arrhythmia potential and impaired function.


Assuntos
Filaminas , Proteostase , Filaminas/genética , Filaminas/metabolismo , Humanos , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/etiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Masculino , Adulto , Mutação , Bortezomib/farmacologia
11.
Cardiovasc Diabetol ; 23(1): 140, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664681

RESUMO

BACKGROUND: Diabetic vascular remodeling is the most important pathological basis of diabetic cardiovascular complications. The accumulation of advanced glycation end products (AGEs) caused by elevated blood glucose promotes the proliferation and migration of vascular smooth muscle cells (VSMCs), leading to arterial wall thickening and ultimately vascular remodeling. Therefore, the excessive proliferation and migration of VSMCs is considered as an important therapeutic target for vascular remodeling in diabetes mellitus. However, due to the lack of breakthrough in experiments, there is currently no effective treatment for the excessive proliferation and migration of VSMCs in diabetic patients. Bcl-2-associated athanogene 3 (BAG3) protein is a multifunctional protein highly expressed in skeletal muscle and myocardium. Previous research has confirmed that BAG3 can not only regulate cell survival and apoptosis, but also affect cell proliferation and migration. Since the excessive proliferation and migration of VSMCs is an important pathogenesis of vascular remodeling in diabetes, the role of BAG3 in the excessive proliferation and migration of VSMCs and its molecular mechanism deserve further investigation. METHODS: In this study, BAG3 gene was manipulated in smooth muscle to acquire SM22αCre; BAG3FL/FL mice and streptozotocin (STZ) was used to simulate diabetes. Expression of proteins and aortic thickness of mice were detected by immunofluorescence, ultrasound and hematoxylin-eosin (HE) staining. Using human aorta smooth muscle cell line (HASMC), cell viability was measured by CCK-8 and proliferation was measured by colony formation experiment. Migration was detected by transwell, scratch experiments and Phalloidin staining. Western Blot was used to detect protein expression and Co-Immunoprecipitation (Co-IP) was used to detect protein interaction. RESULTS: In diabetic vascular remodeling, AGEs could promote the interaction between BAG3 and signal transducer and activator of transcription 3 (STAT3), leading to the enhanced interaction between STAT3 and Janus kinase 2 (JAK2) and reduced interaction between STAT3 and extracellular signal-regulated kinase 1/2 (ERK1/2), resulting in accumulated p-STAT3(705) and reduced p-STAT3(727). Subsequently, the expression of matrix metallopeptidase 2 (MMP2) is upregulated, thus promoting the migration of VSMCs. CONCLUSIONS: BAG3 upregulates the expression of MMP2 by increasing p-STAT3(705) and decreasing p-STAT3(727) levels, thereby promoting vascular remodeling in diabetes. This provides a new orientation for the prevention and treatment of diabetic vascular remodeling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Movimento Celular , Proliferação de Células , Músculo Liso Vascular , Miócitos de Músculo Liso , Fator de Transcrição STAT3 , Transdução de Sinais , Remodelação Vascular , Fator de Transcrição STAT3/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Animais , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Fosforilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Angiopatias Diabéticas/fisiopatologia , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/genética , Masculino , Células Cultivadas , Camundongos Knockout , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Humanos , Camundongos Endogâmicos C57BL , Produtos Finais de Glicação Avançada/metabolismo
12.
Biofactors ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655699

RESUMO

The multidomain protein BAG3 exerts pleiotropic oncogenic functions in many tumor entities including glioblastoma (GBM). Here, we compared BAG3 protein-protein interactions in either adherently cultured or stem-like cultured U251 GBM cells. In line with BAG3's putative role in regulating stem-like properties, identified interactors in sphere-cultured cells included different stem cell markers (SOX2, OLIG2, and NES), while interactomes of adherent BAG3-proficient cells indicated a shift toward involvement of BAG3 in regulation of cilium assembly (ACTR3 and ARL3). Applying a set of BAG3 deletion constructs we could demonstrate that none of the domains except the WW domain are required for suppression of cilia formation by full-length BAG3 in U251 and U343 cells. In line with the established regulation of the Hippo pathway by this domain, we could show that the WW mutant fails to rescue YAP1 nuclear translocation. BAG3 depletion reduced activation of a YAP1/AURKA signaling pathway and induction of PLK1. Collectively, our findings point to a complex interaction network of BAG3 with several pathways regulating cilia homeostasis, involving processes related to ciliogenesis and cilium degradation.

13.
Alzheimers Dement ; 20(4): 2952-2967, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38470006

RESUMO

BACKGROUND: Impairment of the ubiquitin-proteasome system (UPS) has been implicated in abnormal protein accumulation in Alzheimer's disease. It remains unclear if genetic variation affects the intrinsic properties of neurons that render some individuals more vulnerable to UPS impairment. METHODS: Induced pluripotent stem cell (iPSC)-derived neurons were generated from over 50 genetically variant and highly characterized participants of cohorts of aging. Proteomic profiling, proteasome activity assays, and Western blotting were employed to examine neurons at baseline and in response to UPS perturbation. RESULTS: Neurons with lower basal UPS activity were more vulnerable to tau accumulation following mild UPS inhibition. Chronic reduction in proteasome activity in human neurons induced compensatory elevation of regulatory proteins involved in proteostasis and several proteasome subunits. DISCUSSION: These findings reveal that genetic variation influences basal UPS activity in human neurons and differentially sensitizes them to external factors perturbing the UPS, leading to the accumulation of aggregation-prone proteins such as tau. HIGHLIGHTS: Polygenic risk score for AD is associated with the ubiquitin-proteasome system (UPS) in neurons. Basal proteasome activity correlates with aggregation-prone protein levels in neurons. Genetic variation affects the response to proteasome inhibition in neurons. Neuronal proteasome perturbation induces an elevation in specific proteins involved in proteostasis. Low basal proteasome activity leads to enhanced tau accumulation with UPS challenge.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Proteostase , Proteômica , Neurônios/metabolismo
14.
Am J Physiol Heart Circ Physiol ; 326(5): H1124-H1130, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488519

RESUMO

The co-chaperone Bcl2-associated athanogene 3 (BAG3) is a central node in protein quality control in the heart. In humans and animal models, decreased BAG3 expression is associated with cardiac dysfunction and dilated cardiomyopathy. Although previous studies focused on BAG3 in cardiomyocytes, cardiac fibroblasts are also critical drivers of pathologic remodeling. Yet, the role of BAG3 in cardiac fibroblasts is almost completely unexplored. Here, we show that BAG3 is expressed in primary rat neonatal cardiac fibroblasts and preferentially localizes to mitochondria. Knockdown of BAG3 reduces mitophagy and enhances fibroblast activation, which is associated with fibrotic remodeling. Heat shock protein 70 (Hsp70) is a critical binding partner for BAG3 and inhibiting this interaction in fibroblasts using the drug JG-98 decreased autophagy, decreased mitofusin-2 expression, and disrupted mitochondrial morphology. Together, these data indicate that BAG3 is expressed in cardiac fibroblasts, where it facilitates mitophagy and promotes fibroblast quiescence. This suggests that depressed BAG3 levels in heart failure may exacerbate fibrotic pathology, thus contributing to myocardial dysfunction through sarcomere-independent pathways.NEW & NOTEWORTHY We report BAG3's localization to mitochondria and its role in mitophagy for the first time in primary ventricular cardiac fibroblasts. We have also collected the first evidence showing that loss of BAG3 increases cardiac fibroblast activation into myofibroblasts, which are major drivers of cardiac fibrosis and pathological remodeling during heart disease.


Assuntos
Cardiomiopatias , Mitofagia , Animais , Ratos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatias/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo
15.
Breast Cancer Res ; 26(1): 33, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409088

RESUMO

INTRODUCTION: Estrogen receptor (ER) positive patients compromise about 70% of breast cancers. Tamoxifen, an antagonist of ERα66 (the classic ER), is the most effective and the standard first-line drug. However, its efficacy is limited by the development of acquired resistance. METHODS: A specific inhibitor of Hsp70-Bim protein-protein interaction (PPI), S1g-2, together with an inhibitor of Hsp70-Bag3 PPI, MKT-077 and an ATP-competitive inhibitor VER155008, were used as chemical tools. Cell viability assays, co-immunoprecipitation and gene knockdown were used to investigate the role of Hsp70 in tamoxifen resistance. A xenograft model was established in which tamoxifen-resistant breast cancer (MCF-7/TAM-R) cells maintained in the presence of 5 µM tamoxifen were subcutaneously inoculated. The anti-tumor efficiency of S1g-2 was measured after a daily injection of 0.8 mg/kg for 14 days. RESULTS: It was revealed that Hsp70-Bim PPI protects ERα-positive breast cancer from tamoxifen-induced apoptosis through binding and stabilizing ERα36, rather than ERα66, resulting in sustained EGFR mRNA and protein expression. Disruption of Hsp70-Bim PPI and downregulation of ERα36 expression in tumor samples are consistent with the in vitro functions of S1g-2, resulting in about a three-fold reduction in tumor volume. CONCLUSIONS: The in vivo activity and safety of S1g-2 illustrated that it is a potential strategy for Hsp70-Bim disruption to overcome tamoxifen-resistant ER-positive breast cancer.


Assuntos
Neoplasias da Mama , Tamoxifeno , Humanos , Feminino , Tamoxifeno/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica
16.
Eur J Med Res ; 29(1): 93, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38297320

RESUMO

PURPOSE: BCL-2-associated athanogene 3 (BAG3) is an anti-apoptotic protein that plays an essential role in the onset and progression of multiple cancer types. However, the clinical significance of BAG3 in kidney renal clear cell carcinoma (KIRC) remains unclear. METHODS: Using Tumor IMmune Estimation Resource (TIMER), The Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) database, we explored the expression, prognostic value, and clinical correlations of BAG3 in KIRC. In addition, immunohistochemistry (IHC) of HKH cohort further validated the expression of BAG3 in KIRC and its impact on prognosis. Gene Set Cancer Analysis (GSCA) was utilized to scrutinize the prognostic value of BAG3 methylation. Gene Ontology (GO) term analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene set enrichment analysis (GSEA) were used to identify potential biological functions of BAG3 in KIRC. Single-sample gene set enrichment analysis (ssGSEA) was performed to confirm the correlation between BAG3 expression and immune cell infiltration. RESULTS: BAG3 mRNA expression and protein expression were significantly downregulated in KIRC tissues compared to normal kidney tissues, associated with adverse clinical-pathological factors and poor clinical prognosis. Multivariate Cox regression analysis indicated that low expression of BAG3 was an independent prognostic factor in KIRC patients. GSEA analysis showed that BAG3 is mainly involved in DNA methylation and the immune-related pathways in KIRC. In addition, the expression of BAG3 is closely related to immune cell infiltration and immune cell marker set. CONCLUSION: BAG3 might be a potential therapeutic target and valuable prognostic biomarker of KIRC and is closely related to immune cell infiltration.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Prognóstico , Carcinoma de Células Renais/genética , Rim , Metilação de DNA/genética , Neoplasias Renais/genética , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose
17.
Autophagy ; 20(3): 577-589, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37899687

RESUMO

Macroautophagy/autophagy receptors are essential for the recognition and clearance of specific cargos by selective autophagy, which is essential for maintaining MAPT proteostasis. Previous studies have implicated different autophagy receptors in directing distinct species of MAPT to autophagy, but the underlying mechanisms have not been fully investigated. Here we examine how the autophagy receptors NBR1 and SQSTM1 differentially associate with specific forms of MAPT. In primary neurons depletion of NBR1, unlike depletion of SQSTM1, significantly increased phosphorylated MAPT levels. The specificity of the interactions was confirmed using in vitro binding assays with purified proteins. We provide direct evidence that the co-chaperone BAG3 promotes the preferential association of NBR1 with monomeric MAPT and SQSTM1 with oligomeric MAPT. Using an in vitro affinity-isolation assay, we show that SQSTM1 only binds to monomeric MAPT when BAG3 is absent and fails to bind when BAG3 is present. The opposite is true of NBR1; its association with monomeric MAPT was dependent on the presence of BAG3. Interestingly, in Alzheimer disease brain the association of NBR1 with BAG3 was significantly decreased. In a mouse model, ablation of BAG3 in neural cells disrupted the association of NBR1 with phosphorylated MAPT and led to increased levels of phosphorylated and oligomeric MAPT. Overall, our results uncover a novel role for BAG3 in regulating the specificity of selective autophagy receptors in targeting different species of MAPT and provide compelling evidence that BAG3 plays a key role in maintaining MAPT proteostasis.Abbreviations: AD: Alzheimer disease; BAG3: BCL2-associated athanogene 3; BSA: bovine serum albumin; CERAD: Consortium to Establish a Registry for Alzheimer's Disease; ESCRT: endosomal sorting complexes required for transport; GST: glutathione S-transferases; MAPT: microtubule-associated protein tau; NBR1: NBR1, autophagy cargo receptor; NFT: neurofibrillary tangles; PMI: postmortem interval; SQSTM1: sequestosome 1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Doença de Alzheimer , Camundongos , Animais , Proteína Sequestossoma-1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Proteínas de Transporte/metabolismo
18.
J Neurol ; 271(2): 986-994, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37907725

RESUMO

OBJECTIVE: To describe a new phenotype associated with a novel variant in BAG3: autosomal dominant adult-onset distal hereditary motor neuronopathy. METHODS: This study enrolled eight affected individuals from a single family and included a comprehensive evaluation of the clinical phenotype, neurophysiologic testing, muscle MRI, muscle biopsy and western blot of BAG3 protein in skeletal muscle. Genetic workup included whole exome sequencing and segregation analysis of the detected variant in BAG3. RESULTS: Seven patients developed slowly progressive and symmetric distal weakness and atrophy of lower limb muscles, along with absent Achilles reflexes. The mean age of onset was 46 years. The neurophysiological examination was consistent with the diagnosis of distal motor neuronopathy. One 57-year-old female patient was minimally symptomatic. The pattern of inheritance was autosomal dominant, with one caveat: one female patient who was an obligate carrier of the variant died at the age of 73 years without exhibiting any muscle weakness. The muscle biopsies revealed neurogenic changes. A novel heterozygous truncating variant c.1513_1514insGGAC (p.Val505GlyfsTer6) in the gene BAG3 was identified in all affected family members. CONCLUSIONS: We report an autosomal dominant adult-onset distal hereditary motor neuronopathy with incomplete penetrance in women as a new phenotype related to a truncating variant in the BAG3 gene. Our findings expand the phenotypic spectrum of BAG3-related disorders, which previously included dilated cardiomyopathy, myofibrillar myopathy and adult-onset Charcot-Marie-Tooth type 2 neuropathy. Variants in BAG3 should be considered in the differential diagnosis of distal hereditary motor neuronopathies.


Assuntos
Doença de Charcot-Marie-Tooth , Atrofia Muscular Espinal , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Linhagem , Doença de Charcot-Marie-Tooth/genética , Fenótipo , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Atrofia Muscular Espinal/patologia , Mutação/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética
19.
J Am Heart Assoc ; 12(24): e029938, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38108245

RESUMO

BACKGROUND: Mutations to the co-chaperone protein BAG3 (B-cell lymphoma-2-associated athanogene-3) are a leading cause of dilated cardiomyopathy (DCM). These mutations often impact the C-terminal BAG domain (residues 420-499), which regulates heat shock protein 70-dependent protein turnover via autophagy. While mutations in other regions are less common, previous studies in patients with DCM found that co-occurrence of 2 BAG3 variants (P63A, P380S) led to worse prognosis. However, the underlying mechanism for dysfunction is not fully understood. METHODS AND RESULTS: In this study, we used proteomics, Western blots, and myofilament functional assays on left ventricular tissue from patients with nonfailing, DCM, and DCM with BAG363/380 to determine how these mutations impact protein quality control and cardiomyocyte contractile function. We found dysregulated autophagy and increased protein ubiquitination in patients with BAG363/380 compared with nonfailing and DCM, suggesting impaired protein turnover. Expression and myofilament localization of BAG3-binding proteins were also uniquely altered in the BAG3,63/380 including abolished localization of the small heat shock protein CRYAB (alpha-crystallin B chain) to the sarcomere. To determine whether these variants impacted sarcomere function, we used cardiomyocyte force-calcium assays and found reduced maximal calcium-activated force in DCM and BAG363/380. Interestingly, myofilament calcium sensitivity was increased in DCM but not with BAG363/380, which was not explained by differences in troponin I phosphorylation. CONCLUSIONS: Together, our data support that the disease-enhancing mechanism for BAG3 variants outside of the BAG domain is through disrupted protein turnover leading to compromised sarcomere function. These findings suggest a shared mechanism of disease among pathogenic BAG3 variants, regardless of location.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Humanos , Sarcômeros/genética , Sarcômeros/metabolismo , Cálcio/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Insuficiência Cardíaca/genética , Autofagia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
20.
BMC Nephrol ; 24(1): 324, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914990

RESUMO

BACKGROUND: Fabry disease (FD) is an X-linked, hereditary dysfunction of glycosphingolipid storage caused by mutations in the GLA gene encoding alpha-galactosidase A enzyme. In rare cases, FD may coexist with immunoglobulin A nephropathy (IgAN). We describe a case of concurrent FD, IgAN, and dilated cardiomyopathy-causing mutations in the TTN and BAG3 genes, which has not been reported previously. CASE PRESENTATION: A 60-year-old female patient was admitted with a one-week history of facial and lower-limb edema, two-year history of left ventricular hypertrophy and sinus bradycardia, and recurring numbness and pain in three lateral digits with bilateral thenar muscle atrophy. Renal biopsy revealed concurrent FD (confirmed via an alpha-galactosidase A enzyme assay, Lyso-GL-3 quantification, and GLA gene sequencing) and IgAN. Heterozygous mutations in the TTN (c.30,484 C > A;p.P10162T) and BAG3 (c.88 A > G;p.I30V) genes were observed. The patient reported that two of her brothers had undergone kidney transplantation; one died suddenly at 60 years of age, and the other required a cardiac pacemaker. The 35-year-old son of the patient was screened for the GLA gene mutation and found to be positive for the same mutation as the patient. The patient was administered oral losartan (50 mg/day). Enzyme replacement therapy was refused due to financial reasons. Her renal and cardiac functions were stable yet worth closely monitoring during follow-up. CONCLUSION: The family history of patients with concurrent heart and renal diseases should be assessed in detail. Genetic testing and histological examinations are essential for diagnosing FD with IgAN.


Assuntos
Doença de Fabry , Glomerulonefrite por IGA , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Doença de Fabry/complicações , Doença de Fabry/diagnóstico , Doença de Fabry/genética , alfa-Galactosidase/genética , Glomerulonefrite por IGA/complicações , Glomerulonefrite por IGA/diagnóstico , Glomerulonefrite por IGA/genética , Rim/patologia , Hipertrofia Ventricular Esquerda/etiologia , Mutação , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA