Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941066

RESUMO

Brain-specific angiogenesis inhibitor 1 (BAI1) belongs to the adhesion G-protein-coupled receptors, which exhibit large multi-domain extracellular N termini that mediate cell-cell and cell-matrix interactions. To explore the existence of BAI1 isoforms, we queried genomic datasets for markers of active chromatin and new transcript variants in the ADGRB1 (adhesion G-protein-coupled receptor B1) gene. Two major types of mRNAs were identified in human/mouse brain, those with a start codon in exon 2 encoding a full-length protein of a predicted size of 173.5/173.3 kDa and shorter transcripts starting from alternative exons at the intron 17/exon 18 boundary with new or exon 19 start codons, predicting two shorter isoforms of 76.9/76.4 and 70.8/70.5 kDa, respectively. Immunoblots on wild-type and Adgrb1 exon 2-deleted mice, reverse transcription PCR, and promoter-luciferase reporter assay confirmed that the shorter isoforms originate from an alternative promoter in intron 17. The shorter BAI1 isoforms lack most of the N terminus and are very close in structure to the truncated BAI1 isoform generated through GPS processing from the full-length receptor. The cleaved BAI1 isoform has a 19 amino acid extracellular stalk that may serve as a receptor agonist, while the alternative transcripts generate BAI1 isoforms with extracellular N termini of 5 or 60 amino acids. Further studies are warranted to compare the functions of these isoforms and examine the distinct roles they play in different tissues and cell types.

2.
Brain Res ; 1839: 149007, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763505

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disease. Previous studies have identified the critical role of astrocytes in the progression of AD. The focus of this study revolves around clarifying the regulatory mechanism of the STAT3/EZH2/BAI1 axis in astrocytes in AD. We successfully developed a rat model of AD, and measured the learning and cognitive ability of the rats by Morris water maze experiment. HE and Nissl's staining were used for histomorphological identification of the rat hippocampus. Meanwhile, immunofluorescence and immunohistochemistry were used to detect astrocyte activation and brain-specific angiogenesis inhibitor-1 (BAI1) expression in rat hippocampal tissue, respectively. The role of STAT3/EZH2/BAI1 regulating axis in astrocyte activation and neuronal cell apoptosis was verified by establishing the co-culture system of astrocytes and neuronal cells in vitro. Western Blot (WB) was used to detect the expression of associated proteins, and enzyme-linked immunosorbent assay (ELISA) was used to detect astrocyte neurotrophic factor secretion. Hochest/PI staining and flow cytometry were used to observe neuronal apoptosis. Compared with the sham group, AD rats showed significantly decreased cognitive and learning abilities, noticeable hippocampal tissue damage, and significantly low levels of BAI1 expression. In in vitro models, BAI1 was found to inhibit astrocyte activation and enhance the secretion of neurotrophins, resulting in decrease of neurone apoptosis. The regulation of BAI1 by the STAT3/EZH2 axis was shown to affect astrocyte activation and neuronal cell apoptosis. In conclusion, this study represents the pioneering discovery that regulated by the STAT3/EZH2 axis, BAI1 suppresses astrocyte activation, thus reducing neuronal apoptosis.


Assuntos
Doença de Alzheimer , Apoptose , Astrócitos , Proteína Potenciadora do Homólogo 2 de Zeste , Hipocampo , Neurônios , Ratos Sprague-Dawley , Fator de Transcrição STAT3 , Animais , Astrócitos/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Apoptose/fisiologia , Fator de Transcrição STAT3/metabolismo , Ratos , Neurônios/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Masculino , Modelos Animais de Doenças , Proteínas Angiogênicas/metabolismo , Aprendizagem em Labirinto/fisiologia , Técnicas de Cocultura , Transdução de Sinais/fisiologia
3.
Cells ; 12(13)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37443759

RESUMO

Herein, we review a unique and versatile lineage composed of Myo/Nog cells that may be beneficial or detrimental depending on their environment and nature of the pathological stimuli they are exposed to. While we will focus on the lens, related Myo/Nog cell behaviors and functions in other tissues are integrated into the narrative of our research that spans over three decades, examines multiple species and progresses from early stages of embryonic development to aging adults. Myo/Nog cells were discovered in the embryonic epiblast by their co-expression of the skeletal muscle-specific transcription factor MyoD, the bone morphogenetic protein inhibitor Noggin and brain-specific angiogenesis inhibitor 1. They were tracked from the epiblast into the developing lens, revealing heterogeneity of cell types within this structure. Depletion of Myo/Nog cells in the epiblast results in eye malformations arising from the absence of Noggin. In the adult lens, Myo/Nog cells are the source of myofibroblasts whose contractions produce wrinkles in the capsule. Eliminating this population within the rabbit lens during cataract surgery reduces posterior capsule opacification to below clinically significant levels. Parallels are drawn between the therapeutic potential of targeting Myo/Nog cells to prevent fibrotic disease in the lens and other ocular tissues.


Assuntos
Opacificação da Cápsula , Cristalino , Animais , Coelhos , Cristalino/metabolismo , Opacificação da Cápsula/metabolismo , Músculo Esquelético/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulação da Expressão Gênica
4.
Cell ; 185(26): 4887-4903.e17, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36563662

RESUMO

Our bodies turn over billions of cells daily via apoptosis and are in turn cleared by phagocytes via the process of "efferocytosis." Defects in efferocytosis are now linked to various inflammatory diseases. Here, we designed a strategy to boost efferocytosis, denoted "chimeric receptor for efferocytosis" (CHEF). We fused a specific signaling domain within the cytoplasmic adapter protein ELMO1 to the extracellular phosphatidylserine recognition domains of the efferocytic receptors BAI1 or TIM4, generating BELMO and TELMO, respectively. CHEF-expressing phagocytes display a striking increase in efferocytosis. In mouse models of inflammation, BELMO expression attenuates colitis, hepatotoxicity, and nephrotoxicity. In mechanistic studies, BELMO increases ER-resident enzymes and chaperones to overcome protein-folding-associated toxicity, which was further validated in a model of ER-stress-induced renal ischemia-reperfusion injury. Finally, TELMO introduction after onset of kidney injury significantly reduced fibrosis. Collectively, these data advance a concept of chimeric efferocytic receptors to boost efferocytosis and dampen inflammation.


Assuntos
Macrófagos , Fagocitose , Animais , Camundongos , Macrófagos/metabolismo , Inflamação/metabolismo , Fagócitos/metabolismo , Proteínas de Transporte/metabolismo , Apoptose , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
5.
Exp Neurol ; 351: 113994, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35114205

RESUMO

The adhesion G protein-coupled receptor BAI1/ADGRB1 plays an important role in suppressing angiogenesis, mediating phagocytosis, and acting as a brain tumor suppressor. BAI1 is also a critical regulator of dendritic spine and excitatory synapse development and interacts with several autism-relevant proteins. However, little is known about the relationship between altered BAI1 function and clinically relevant phenotypes. Therefore, we studied the effect of reduced expression of full length Bai1 on behavior, seizure susceptibility, and brain morphology in Adgrb1 mutant mice. We compared homozygous (Adgrb1-/-), heterozygous (Adgrb1+/-), and wild-type (WT) littermates using a battery of tests to assess social behavior, anxiety, repetitive behavior, locomotor function, and seizure susceptibility. We found that Adgrb1-/- mice showed significant social behavior deficits and increased vulnerability to seizures. Adgrb1-/- mice also showed delayed growth and reduced brain weight. Furthermore, reduced neuron density and increased apoptosis during brain development were observed in the hippocampus of Adgrb1-/- mice, while levels of astrogliosis and microgliosis were comparable to WT littermates. These results show that reduced levels of full length Bai1 is associated with a broader range of clinically relevant phenotypes than previously reported.


Assuntos
Proteínas Angiogênicas/metabolismo , Receptores Acoplados a Proteínas G , Proteínas Angiogênicas/genética , Animais , Encéfalo/metabolismo , Hipocampo/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/genética , Convulsões/genética , Convulsões/metabolismo
6.
Front Neurosci ; 15: 780707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34949984

RESUMO

Focal brain injury in the form of a needlestick (NS) results in cell death and induces a self-protective response flanking the lesion. Myo/Nog cells are identified by their expression of bone morphogenetic protein inhibitor Noggin, brain-specific angiogenesis inhibitor 1 (BAI1) and the skeletal muscle specific transcription factor MyoD. Myo/Nog cells limit cell death in two forms of retinopathy. In this study, we examined the acute response of Myo/Nog cells to a NS lesion that extended from the rat posterior parietal cortex to the hippocampus. Myo/Nog cells were identified with antibodies to Noggin and BAI1. These cells were the primary source of both molecules in the uninjured and injured brain. One day after the NS, the normally small population of Myo/Nog cells expanded approximately eightfold within a 1 mm area surrounding the lesion. Myo/Nog cells were reduced by approximately 50% along the lesion with an injection of the BAI1 monoclonal antibody and complement. The number of dying cells, identified by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), was unchanged at this early time point in response to the decrease in Myo/Nog cells. However, increasing the number of Myo/Nog cells within the lesion by injecting BAI1-positive (+) cells isolated from the brains of other animals, significantly reduced cell death and increased the number of NeuN+ neurons compared to brains injected with phosphate buffered saline or exogenous BAI1-negative cells. These findings demonstrate that Myo/Nog cells rapidly react to injury within the brain and increasing their number within the lesion is neuroprotective.

7.
Anticancer Res ; 41(9): 4463-4470, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34475070

RESUMO

BACKGROUND/AIM: The treatment of advanced clear cell renal cell carcinoma (ccRCC) is based on stratification of patients according to prognosis (favorable, intermediate, and poor). The aim of the study was to improve prognostication by biomarkers involved in angiogenesis. PATIENTS AND METHODS: The study group consisted of 20 patients who underwent surgery for ccRCC. Gene expression analysis was peformed on a set of matched (primary tumor, metastasis, n=20+20) FFPE tissue samples. An additional analysis was done on expression data of 606 patients obtained from the TCGA Kidney Clear Cell Carcinoma (KIRC) database. Quantitative estimation of mRNA of selected genes (TaqMan human Angiogenesis Array, 97 genes) was performed by a real-time RT-PCR method with TaqMan® arrays. RESULTS: Using the Cox regression model, 4 genes (PDGFB, FGF4, EPHB2 and BAI1) were identified whose expression was related to progression-free interval (PFI). Further analysis using the Kaplan Meier method conclusively revealed the relationship of BAI1 expression to prognosis (both datasets). Patients with higher BAI1 expression had significantly shorter PFI and overall survival. CONCLUSION: We showed that tumor tissue BAI1 expression level is a prognostic marker in ccRCC. Therefore, this gene might be involved in a prognostic panel to improve scoring systems on which the management of metastatic ccRCC patients is based.


Assuntos
Proteínas Angiogênicas/genética , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Perfilação da Expressão Gênica/métodos , Neoplasias Renais/genética , Receptores Acoplados a Proteínas G/genética , Regulação para Cima , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/cirurgia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/mortalidade , Neoplasias Renais/cirurgia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Análise de Regressão , Análise de Sobrevida
8.
Cancers (Basel) ; 13(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34298774

RESUMO

Brain-specific angiogenesis inhibitor 1 (BAI1/ADGRB1) is an adhesion G protein-coupled receptor that has been found to play key roles in phagocytosis, inflammation, synaptogenesis, the inhibition of angiogenesis, and myoblast fusion. As the name suggests, it is primarily expressed in the brain, with a high expression in the normal adult and developing brain. Additionally, its expression is reduced in brain cancers, such as glioblastoma (GBM) and peripheral cancers, suggesting that BAI1 is a tumor suppressor gene. Several investigators have demonstrated that the restoration of BAI1 expression in cancer cells results in reduced tumor growth and angiogenesis. Its expression has also been shown to be inversely correlated with tumor progression, neovascularization, and peri-tumoral brain edema. One method of restoring BAI1 expression is by using oncolytic virus (OV) therapy, a strategy which has been tested in various tumor models. Oncolytic herpes simplex viruses engineered to express the secreted fragment of BAI1, called Vasculostatin (Vstat120), have shown potent anti-tumor and anti-angiogenic effects in multiple tumor models. Combining Vstat120-expressing oHSVs with other chemotherapeutic agents has also shown to increase the overall anti-tumor efficacy in both in vitro and in vivo models. In the current review, we describe the structure and function of BAI1 and summarize its application in the context of cancer treatment.

9.
Exp Cell Res ; 399(1): 112435, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33340495

RESUMO

LncRNA embryonic stem cells expressed 1 (Lncenc1), named after its high expression in naïve embryonic stem cells (nESCs), has been rarely studied in almost all pathological processes. Evidences suggest that Lncenc1 is likely to work in the form of RNA-protein complex. Here, we found that Lncenc1 in dorsal root ganglion (DRG) was significantly upregulated in response to mouse nerve injury caused by partial sciatic nerve ligation (pSNL). Overexpression of Lncenc1 mediated by adenoviral expression vector promoted the activation of microglia and the production of inflammatory cytokines including TNF-α, IL-1ß and MCP-1. In contrast, knockdown of Lncenc1 suppressed activation of microglia and production of inflammatory cytokines. In the mechanism exploration, we found that Lncenc1 could bind with the RNA binding protein (RBP) enhancer of zeste homologue 2 (EZH2), an identified contributor in microglial activation and neuropathic pain. Lncenc1 interacted with EZH2 and downregulated the expression of brain-specific angiogenesis inhibitor 1 (BAI1). Either inhibition of EZH2 or overexpression of BAI1 could reverse the effects of Lncenc1 overexpression on microglial activation and neuroinflammation. Finally, the Lncenc1-siRNA was intrathecally injected into pSNL mice, and its effects on neuropathic pain were evaluated. Knockdown of Lncenc1 attenuated the development and maintenance of mechanical and thermal hyperalgesia of pSNL mice, accompanied by an increase in BAI1 expression and decrease in inflammatory cytokines. In conclusion, Lncenc1 contributes to neuropathic pain by interacting with EZH2 and downregulating the BAI1 gene in mouse microglia.


Assuntos
Proteínas Angiogênicas/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Microglia/metabolismo , Neuralgia , RNA Longo não Codificante/fisiologia , Proteínas Angiogênicas/metabolismo , Animais , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Neuralgia/genética , Neuralgia/metabolismo , Neuralgia/patologia , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia
10.
Angiogenesis ; 23(3): 325-338, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32020421

RESUMO

Breast cancer is one of the most common cancers worldwide with a rising incidence, and is the leading cause of cancer-related death among females. Angiogenesis plays an important role in breast cancer growth and metastasis. In this study, we identify decylubiquinone (DUb), a coenzyme Q10 analog, as a promising anti-breast cancer agent through suppressing tumor-induced angiogenesis. We screened a library comprising FDA-approved drugs and found that DUb significantly inhibits blood vessel formation using in vivo chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models. DUb was further identified to inhibit angiogenesis in the rat aortic ring and Matrigel plug assay. Moreover, DUb was found to suppress breast cancer growth and metastasis in the MMTV-PyMT transgenic mouse and human xenograft tumor models. To explore whether the anticancer efficacy of DUb was directly corrected with tumor-induced angiogenesis, the MDA-MB-231 breast cancer assay on the CAM was performed. Interestingly, DUb significantly inhibits the angiogenesis of breast cancer on the CAM. Brain angiogenesis inhibitor 1 (BAI1), a member of the G protein-coupled receptor (GPCR) adhesion subfamily, has an important effect on the inhibition of angiogenesis. Further studies demonstrate that DUb suppresses the formation of tubular structures by regulating the reactive oxygen species (ROS)/p53/BAI1 signaling pathway. These results uncover a novel finding that DUb has the potential to be an effective agent for the treatment of breast cancer by inhibiting tumor-induced angiogenesis.


Assuntos
Neoplasias da Mama , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Ubiquinona/análogos & derivados , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Embrião de Galinha , Feminino , Humanos , Células MCF-7 , Metástase Neoplásica , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Ubiquinona/farmacologia
11.
J Cell Biochem ; 121(3): 2318-2329, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31692031

RESUMO

Heat shock proteins (HSPs) were known as the molecular chaperones, which play a pivotal role in the protein quality control system, ensuring correct folding of proteins, and facilitating the correct refolding of damaged proteins via the transient interaction with their substrate proteins. They also practice in the regulation of cell cycles and are involved in apoptosis. We found that HspB2 was almost completely silent in pancreatic cancer and few studies investigated the role of HspB2 in cancer cells, particularly in pancreatic cancer. Here, we reported that HspB2 effectively inhibited cell proliferation in Panc-1 cells. Specifically, we demonstrated that HspB2 could combine mut-p53 and change the DNA binding site of mutant p53, subsequently upregulated the expression of RPRM, BAI-1, and TSAP6 which were the downstream genes of wt-p53, participate in mediating downstream responses to p53, including inhibiting cell proliferation and angiogenesis. The main aim of this study is to investigate the relationship between HspB2 and p53, and provide a novel treatment strategy for pancreatic cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP27/metabolismo , Neoplasias Pancreáticas/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Choque Térmico HSP27/genética , Humanos , Invasividade Neoplásica , Oxirredutases/genética , Oxirredutases/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
12.
J Neurosci ; 38(39): 8388-8406, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30120207

RESUMO

Excitatory synapses are specialized cell-cell contacts located on actin-rich dendritic spines that mediate information flow and storage in the brain. The postsynaptic adhesion-G protein-coupled receptor (A-GPCR) BAI1 is a critical regulator of excitatory synaptogenesis, which functions in part by recruiting the Par3-Tiam1 polarity complex to spines, inducing local Rac1 GTPase activation and actin cytoskeletal remodeling. However, a detailed mechanistic understanding of how BAI1 controls synapse and spine development remains elusive. Here, we confirm that BAI1 is required in vivo for hippocampal spine development, and we identify three distinct signaling mechanisms mediating BAI1's prosynaptogenic functions. Using in utero electroporation to sparsely knock down BAI1 expression in hippocampal pyramidal neurons, we show that BAI1 cell-autonomously promotes spinogenesis in the developing mouse brain. BAI1 appears to function as a receptor at synapses, as its extracellular N-terminal segment is required for both its prospinogenic and prosynaptogenic functions. Moreover, BAI1 activation with a Stachel-derived peptide, which mimics a tethered agonist motif found in A-GPCRs, drives synaptic Rac1 activation and subsequent spine and synapse development. We also reveal, for the first time, a trans-synaptic function for BAI1, demonstrating in a mixed-culture assay that BAI1 induces the clustering of presynaptic vesicular glutamate transporter 1 (vGluT1) in contacting axons, indicative of presynaptic differentiation. Finally, we show that BAI1 forms a receptor complex with the synaptogenic cell-adhesion molecule Neuroligin-1 (NRLN1) and mediates NRLN1-dependent spine growth and synapse development. Together, these findings establish BAI1 as an essential postsynaptic A-GPCR that regulates excitatory synaptogenesis by coordinating bidirectional trans-synaptic signaling in cooperation with NRLN1.SIGNIFICANCE STATEMENT Adhesion-G protein-coupled receptors are cell-adhesion receptors with important roles in nervous system development, function, and neuropsychiatric disorders. The postsynaptic adhesion-G protein-coupled receptor BAI1 is a critical regulator of dendritic spine and excitatory synapse development. However, the mechanism by which BAI1 controls these functions remains unclear. Our study identifies three distinct signaling paradigms for BAI1, demonstrating that it mediates forward, reverse, and lateral signaling in spines. Activation of BAI1 by a Stachel-dependent mechanism induces local Rac1 activation and subsequent spinogenesis/synaptogenesis. BAI1 also signals trans-synaptically to promote presynaptic differentiation. Furthermore, BAI1 interacts with the postsynaptic cell-adhesion molecule Neuroligin-1 (NRLN1) and facilitates NRLN1-dependent spine growth and excitatory synaptogenesis. Thus, our findings establish BAI1 as a functional synaptogenic receptor that promotes presynaptic and postsynaptic development in cooperation with synaptic organizer NRLN1.


Assuntos
Espinhas Dendríticas/fisiologia , Hipocampo/fisiologia , Plasticidade Neuronal , Células Piramidais/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/fisiologia , Células Cultivadas , Feminino , Masculino , Ratos Long-Evans , Proteína Vesicular 1 de Transporte de Glutamato/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia
13.
Cancer Cell ; 33(6): 1004-1016.e5, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29894688

RESUMO

Adhesion G protein-coupled receptors (ADGRs) encompass 33 human transmembrane proteins with long N termini involved in cell-cell and cell-matrix interactions. We show the ADGRB1 gene, which encodes Brain-specific angiogenesis inhibitor 1 (BAI1), is epigenetically silenced in medulloblastomas (MBs) through a methyl-CpG binding protein MBD2-dependent mechanism. Knockout of Adgrb1 in mice augments proliferation of cerebellar granule neuron precursors, and leads to accelerated tumor growth in the Ptch1+/- transgenic MB mouse model. BAI1 prevents Mdm2-mediated p53 polyubiquitination, and its loss substantially reduces p53 levels. Reactivation of BAI1/p53 signaling axis by a brain-permeable MBD2 pathway inhibitor suppresses MB growth in vivo. Altogether, our data define BAI1's physiological role in tumorigenesis and directly couple an ADGR to cancer formation.


Assuntos
Proteínas Angiogênicas/metabolismo , Neoplasias Cerebelares/metabolismo , Meduloblastoma/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Angiogênicas/genética , Animais , Linhagem Celular Tumoral , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Células HCT116 , Humanos , Estimativa de Kaplan-Meier , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Proteínas Proto-Oncogênicas c-mdm2/genética , Interferência de RNA , Receptores Acoplados a Proteínas G , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Immunol Rev ; 269(1): 44-59, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26683144

RESUMO

Phosphatidylserine recognition receptors are a highly diverse set of receptors grouped by their ability to recognize the 'eat-me' signal phosphatidylserine on apoptotic cells. Most of the phosphatidylserine recognition receptors dampen inflammation by inducing the production of anti-inflammatory mediators during the phagocytosis of apoptotic corpses. However, many phosphatidylserine receptors are also capable of recognizing other ligands, with some receptors being categorized as scavenger receptors. It is now appreciated that these receptors can elicit different downstream events for particular ligands. Therefore, how phosphatidylserine recognition receptors mediate specific signals during recognition of apoptotic cells versus other ligands, and how this might help regulate the inflammatory state of a tissue is an important question that is not fully understood. Here, we revisit the work on signaling downstream of the phosphatidylserine recognition receptor BAI1, and evaluate how these and other signaling modules mediate signaling downstream from other receptors, including Stabilin-2, MerTK, and αvß5. We also propose the concept that phosphatidylserine recognition receptors could be viewed as a subset of scavenger receptors that are capable of eliciting anti-inflammatory responses to apoptotic cells.


Assuntos
Proteínas Angiogênicas/metabolismo , Apoptose , Receptores de Reconhecimento de Padrão/metabolismo , Receptores Depuradores/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Humanos , Fagocitose , Fosfatidilserinas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Acoplados a Proteínas G , Receptores de Vitronectina/metabolismo , Transdução de Sinais , c-Mer Tirosina Quinase
16.
Immunobiology ; 218(11): 1354-60, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23932496

RESUMO

The thymus provides the microenvironment in which thymocytes develop into mature T-cells, and interactions with thymic stromal cells are thought to provide the necessary signals for thymocyte maturation. Recognition of self-MHC by T-cells is a basic requirement for mature T-cell functions, and those thymocytes that do not recognize or respond too strongly to the peptide-loaded self-MHC molecules found in the thymus undergo apoptosis. As a result, 95% of the thymocytes produced will die and be subsequently cleared by macrophages. This review describes a complex crosstalk between developing thymocytes and engulfing macrophages which is mediated by retinoids produced by engulfing macrophages. The interaction results in the harmonization of the rate of cell death of dying double positive cells with their clearance and replacement, and in promotion of the differentiation of the selected cells in the thymus.


Assuntos
Apoptose/imunologia , Macrófagos/imunologia , Fagocitose/imunologia , Retinoides/metabolismo , Timócitos/metabolismo , Diferenciação Celular/imunologia , Humanos , Macrófagos/metabolismo , Timo/citologia , Timo/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA