Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Reprod Sci ; 30(1): 309-325, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835902

RESUMO

To systematically explore the association of single nucleotide polymorphisms (SNPs) of maternal BHMT and BHMT2 genes with the risk of congenital heart disease (CHD) and its three subtypes including atrial septal defect (ASD), ventricular septal defect (VSD), and patent ductus arteriosus (PDA) in offspring. A hospital-based case-control study involving 683 mothers of CHD children and 740 controls was performed. Necessary exposure information was captured through epidemiological investigation. Totally twelve SNPs of maternal BHMT and BHMT2 genes were detected and analyzed systematically. The study showed that maternal BHMT gene polymorphisms at rs1316753 (CG vs. CC: OR = 1.96 [95% CI 1.41-2.71]; GG vs. CC: OR = 1.99 [95% CI 1.32-3.00]; dominant model: OR = 1.97 [95% CI 1.44-2.68]) and rs1915706 (TC vs. TT: OR = 1.93 [95% CI 1.44-2.59]; CC vs. TT: OR = 2.55 [95% CI 1.38-4.72]; additive model: OR = 1.77 [95% CI 1.40-2.24]) were significantly associated with increased risk of total CHD in offspring. And two haplotypes were observed to be significantly associated with risk of total CHD, including C-C haplotype involving rs1915706 and rs3829809 in BHMT gene (OR = 1.30 [95% CI 1.07-1.58]) and C-A-A-C haplotype involving rs642431, rs592052, rs626105, and rs682985 in BHMT2 gene (OR = 0.71 [95% CI 0.58-0.88]). Besides, a three-locus model involving rs1316753 (BHMT), rs1915706 (BHMT), and rs642431 (BHMT2) was identified through gene-gene interaction analyses (P < 0.01). As for three subtypes including ASD, VSD, and PDA, significant SNPs and haplotypes were also identified. The results indicated that maternal BHMT gene polymorphisms at rs1316753 and rs1915706 are significantly associated with increased risk of total CHD and its three subtypes in offspring. Besides, significant interactions between different SNPs do exist on risk of CHD. Nevertheless, studies with larger sample size in different ethnic populations and involving more SNPs in more genes are expected to further define the genetic contribution underlying CHD and its subtypes.


Assuntos
Betaína-Homocisteína S-Metiltransferase , Cardiopatias Congênitas , Criança , Humanos , Betaína-Homocisteína S-Metiltransferase/genética , Estudos de Casos e Controles , Haplótipos , Cardiopatias Congênitas/genética , Polimorfismo de Nucleotídeo Único
2.
Front Cell Dev Biol ; 9: 741710, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869329

RESUMO

Metabolic associated fatty liver disease (MAFLD) is associated with obesity, type 2 diabetes mellitus, and other metabolic syndromes. Farnesoid X receptor (FXR, NR1H4) plays a prominent role in hepatic lipid metabolism. This study combined the expression of liver genes in FXR knockout (KO) mice and MAFLD patients to identify new pathogenic pathways for MAFLD based on genome-wide transcriptional profiling. In addition, the roles of new target genes in the MAFLD pathogenic pathway were also explored. Two groups of differentially expressed genes were obtained from FXR-KO mice and MAFLD patients by transcriptional analysis of liver tissue samples. The similarities and differences between the two groups of differentially expressed genes were analyzed to identify novel pathogenic pathways and target genes. After the integration analysis of differentially expressed genes, we identified 134 overlapping genes, many of which have been reported to play an important role in lipid metabolism. Our unique analysis method of comparing differential gene expression between FXR-KO mice and patients with MAFLD is useful to identify target genes and pathways that may be strongly implicated in the pathogenesis of MAFLD. The overlapping genes with high specificity were screened using the Gene Expression Omnibus (GEO) database. Through comparison and analysis with the GEO database, we determined that BHMT2 and PKLR could be highly correlated with MAFLD. Clinical data analysis and RNA interference testing in vitro confirmed that BHMT2 may a new regulator of lipid metabolism in MAFLD pathogenesis. These results may provide new ideas for understanding the pathogenesis of MAFLD and thus provide new targets for the treatment of MAFLD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA