Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Exp Eye Res ; 242: 109881, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554800

RESUMO

The retinal ganglion cells (RGCs) serve as the critical pathway for transmitting visual information from the retina to the brain, yet they can be dramatically impacted by diseases such as glaucoma. When investigating disease processes affecting RGCs in mouse models, accurately quantifying affected cells becomes essential. However, the use of pan RGC markers like RBPMS or THY1 presents challenges in accurate total cell counting. While Brn3a serves as a reliable RGC nuclear marker for automated counting, it fails to encompass all RGC subtypes in mice. To address this limitation and enable precise automated counting, our research endeavors to develop a method for labeling nuclei in all RGC subtypes. Investigating RGC subtypes labeled with the nuclear marker POU6F2 revealed that numerous RGCs unlabeled by Brn3a were, in fact, labeled with POU6F2. We hypothesize that using antibodies against both Brn3a and POU6F2 would label virtually all RGC nuclei in the mouse retina. Our experiments confirmed that staining retinas with both markers resulted in the labeling of all RGCs. Additionally, when using the cell body marker RBPMS known to label all mouse RGCs, all RBPMS-labeled cells also exhibited Brn3a or POU6F2 labeling. This combination of Brn3a and POU6F2 antibodies provides a pan-RGC nuclear stain, facilitating accurate automated counting by labeling cell nuclei in the retina.


Assuntos
Núcleo Celular , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina , Fator de Transcrição Brn-3A , Animais , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Camundongos , Contagem de Células , Núcleo Celular/metabolismo , Fator de Transcrição Brn-3A/metabolismo , Coloração e Rotulagem/métodos , Biomarcadores/metabolismo
2.
Front Neuroanat ; 18: 1335176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415017

RESUMO

Purpose: The aim of this study was to investigate, the neuroprotective effects of a new Gramine derivative named: ITH12657, in a model of retinal excitotoxicity induced by intravitreal injection of NMDA. Methods: Adult Sprague Dawley rats received an intravitreal injection of 100 mM NMDA in their left eye and were treated daily with subcutaneous injections of ITH12657 or vehicle. The best dose-response, therapeutic window study, and optimal treatment duration of ITH12657 were studied. Based on the best survival of Brn3a + RGCs obtained from the above-mentioned studies, the protective effects of ITH12657 were studied in vivo (retinal thickness and full-field Electroretinography), and ex vivo by quantifying the surviving population of Brn3a + RGCs, αRGCs and their subtypes α-ONsRGCs, α-ONtRGCs, and α-OFFRGCs. Results: Administration of 10 mg/kg ITH12657, starting 12 h before NMDA injection and dispensed for 3 days, resulted in the best significant protection of Brn3a + RGCs against NMDA-induced excitotoxicity. In vivo, ITH12657-treated rats showed significant preservation of retinal thickness and functional protection against NMDA-induced retinal excitotoxicity. Ex vivo results showed that ITH12657 afforded a significant protection against NMDA-induced excitotoxicity for the populations of Brn3a + RGC, αRGC, and αONs-RGC, but not for the population of αOFF-RGC, while the population of α-ONtRGC was fully resistant to NMDA-induced excitotoxicity. Conclusion: Subcutaneous administration of ITH12657 at 10 mg/kg, initiated 12 h before NMDA-induced retinal injury and continued for 3 days, resulted in the best protection of Brn3a + RGCs, αRGC, and αONs-RGC against excitotoxicity-induced RGC death. The population of αOFF-RGCs was extremely sensitive while α-ONtRGCs were fully resistant to NMDA-induced excitotoxicity.

3.
Zool Res ; 44(1): 226-248, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36594396

RESUMO

Univocal identification of retinal ganglion cells (RGCs) is an essential prerequisite for studying their degeneration and neuroprotection. Before the advent of phenotypic markers, RGCs were normally identified using retrograde tracing of retinorecipient areas. This is an invasive technique, and its use is precluded in higher mammals such as monkeys. In the past decade, several RGC markers have been described. Here, we reviewed and analyzed the specificity of nine markers used to identify all or most RGCs, i.e., pan-RGC markers, in rats, mice, and macaques. The best markers in the three species in terms of specificity, proportion of RGCs labeled, and indicators of viability were BRN3A, expressed by vision-forming RGCs, and RBPMS, expressed by vision- and non-vision-forming RGCs. NEUN, often used to identify RGCs, was expressed by non-RGCs in the ganglion cell layer, and therefore was not RGC-specific. γ-SYN, TUJ1, and NF-L labeled the RGC axons, which impaired the detection of their somas in the central retina but would be good for studying RGC morphology. In rats, TUJ1 and NF-L were also expressed by non-RGCs. BM88, ERRß, and PGP9.5 are rarely used as markers, but they identified most RGCs in the rats and macaques and ERRß in mice. However, PGP9.5 was also expressed by non-RGCs in rats and macaques and BM88 and ERRß were not suitable markers of viability.


Assuntos
Traumatismos do Nervo Óptico , Ratos , Camundongos , Animais , Células Ganglionares da Retina , Macaca mulatta , Traumatismos do Nervo Óptico/veterinária , Retina , Mamíferos , Biomarcadores
4.
Exp Eye Res ; 226: 109310, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400286

RESUMO

Immunofluorescence is used in numerous research areas including eye research to detect specific antigens in cells and tissues. One limitation is that fluorescent signal can fade, causing detection problems if data recording was not completed in a timely manner or if additional data acquisition is required. The ability to repeat immunostaining for the same antigen after initial fluorescence has faded may require time-consuming and potentially damaging steps to remove primary antibodies. Our studies assessed whether immunofluorescence could be reapplied to previously labeled retinal ganglion cells (RGCs). To examine whether immunostaining of Brn3a, a commonly used RGC marker, could be repeated in retinas with previously faded immunostaining, retinal whole mounts were labeled with anti-Brn3a primary antibodies and green fluorescent secondary antibodies, then allowed to fade over time. Faded retinas were restained with anti-Brn3a antibody followed by secondary antibody, or with secondary antibody alone. Results show restaining with anti-Brn3a primary antibody followed by Alexa-fluor green secondary antibody is effective for RGC detection. Repeat RGC labeling improved the clarity of staining compared with original staining prior to fading, with significant reduction in the percentage of blurry/out of focus fluorescent cells (6 vs 26%); whereas, repeat application of secondary antibody alone was not effective. Preflattening retinas under a coverslip prior to initial Brn3a staining also increased the clarity of staining, and facilitated significantly more accurate automated counting of RGCs. Findings suggest Brn3a antigen remains accessible for repeat immunofluorescence labeling after original staining fades. Staining retinas after flattening tissue may enhance the clarity of staining and accuracy of automated RGC counting. Repeat immunofluorescence staining, without the need to strip off prior bound antibodies, may be useful in other tissues as well and warrants future examination.


Assuntos
Retina , Células Ganglionares da Retina , Células Ganglionares da Retina/metabolismo , Imunofluorescência , Coloração e Rotulagem , Fator de Transcrição Brn-3A/metabolismo
5.
Front Pain Res (Lausanne) ; 3: 979038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570085

RESUMO

The spinal dorsal horn plays a crucial role in the transmission and processing of somatosensory information. Although spinal neural circuits that process several distinct types of somatic sensations have been studied extensively, those responsible for visceral pain transmission remain poorly understood. In the present study, we analyzed dextran sodium sulfate (DSS)-induced inflammatory bowel disease (IBD) mouse models to characterize the spinal dorsal horn neurons involved in visceral pain transmission. Immunostaining for c-fos, a marker of neuronal activity, demonstrated that numerous c-fos-positive cells were found bilaterally in the lumbosacral spinal dorsal horn, and their distribution was particularly abundant in the shallow dorsal horn. Characterization of these neurons by several molecular markers revealed that the percentage of the Pit1-Oct1-Unc86 domain (POU domain)-containing transcription factor Brn3a-positive neurons among the c-fos-positive neurons in the shallow dorsal horn was 30%-40% in DSS-treated mice, which was significantly higher than that in the somatic pain model mice. We further demonstrated by neuronal tracing that, within the shallow dorsal horn, Brn3a-positive neurons were more highly represented in spino-solitary projection neurons than in spino-parabrachial projection neurons. These results raise the possibility that Brn3a-positive spinal dorsal horn neurons make a large contribution to visceral pain transmission, part of which is mediated through the spino-solitary pathway.

6.
Mol Genet Metab Rep ; 33: 100914, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36092250

RESUMO

Fabry disease is an X-linked glycolipid storage disorder caused by mutations in the GLA gene which result in a deficiency in the lysosomal enzyme alpha galactosidase A (AGA). As a result, the glycolipid substrate Gb3 accumulates in critical tissues and organs producing a progressive debilitating disease. In Fabry disease up to 80% of patients experience life-long neuropathic pain that is difficult to treat and greatly affects their quality of life. The molecular mechanisms by which deficiency of AGA leads to neuropathic pain are not well understood, due in part to a lack of in vitro models that can be used to study the underlying pathology at the cellular level. Using CRISPR-Cas9 gene editing, we generated two clones with mutations in the GLA gene from a human embryonic stem cell line. Our clonal cell lines maintained normal stem cell morphology and markers for pluripotency, and showed the phenotypic characteristics of Fabry disease including absent AGA activity and intracellular accumulation of Gb3. Mutations in the predicted locations in exon 1 of the GLA gene were confirmed. Using established techniques for dual-SMAD inhibition/WNT activation, we were able to show that our AGA-deficient clones, as well as wild-type controls, could be differentiated to peripheral-type sensory neurons that express pain receptors. This genetically and physiologically relevant human model system offers a new and promising tool for investigating the cellular mechanisms of peripheral neuropathy in Fabry disease and may assist in the development of new therapeutic strategies to help lessen the burden of this disease.

7.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055045

RESUMO

The neural crest transcription factor BRN3A is essential for the proliferation and survival of melanoma cells. It is frequently expressed in melanoma but not in normal melanocytes or benign nevi. The mechanisms underlying the aberrant expression of BRN3A are unknown. Here, we investigated the epigenetic regulation of BRN3A in melanocytes and melanoma cell lines treated with DNA methyltransferase (DNMT), histone acetyltransferase (HAT), and histone deacetylase (HDAC) inhibitors. DNMT and HAT inhibition did not significantly alter BRN3A expression levels, whereas panHDAC inhibition by trichostatin A led to increased expression. Treatment with the isoform-specific HDAC inhibitor mocetinostat, but not with PCI-34051, also increased BRN3A expression levels, suggesting that class I HDACs HDAC1, HDAC2, and HDAC3, and class IV HDAC11, were involved in the regulation of BRN3A expression. Transient silencing of HDACs 1, 2, 3, and 11 by siRNAs revealed that, specifically, HDAC2 inhibition was able to increase BRN3A expression. ChIP-Seq analysis uncovered that HDAC2 inhibition specifically increased H3K27ac levels at a distal enhancer region of the BRN3A gene. Altogether, our data suggest that HDAC2 is a key epigenetic regulator of BRN3A in melanocytes and melanoma cells. These results highlight the importance of epigenetic mechanisms in regulating melanoma oncogenes.


Assuntos
Regulação da Expressão Gênica , Histona Desacetilase 2/metabolismo , Melanócitos/metabolismo , Melanoma/etiologia , Melanoma/metabolismo , Fator de Transcrição Brn-3A/genética , Linhagem Celular , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Histona Desacetilase 2/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Melanócitos/patologia , Melanoma/patologia , Fator de Transcrição Brn-3A/metabolismo
8.
Int J Mol Cell Med ; 11(2): 88-103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37091039

RESUMO

Among the HPV-mediated cervical cancers, cellular factor BRN3A has gained considerable attention due to its role in promoting an anti-apoptotic cellular environment and in facilitating epitheliotropic transformations of the host. The majority of previous studies looked at BRN3A's molecular characteristics; however, the possibility of genetic variations in BRN3A's auto-regulatory region in relation to cervical cancer risk has been underestimated until now. In a retrospective study in the Eastern UP population, India, we detected genetic variations in the cis-regulatory proximal enhancer region located around 5.6 kb upstream of transcription start site of BRN3A. Our analysis of PCR and DNA sequencing confirmed this novel SNP (BRN3A g.60163379A>G) within the auto-regulatory region of BRN3A. As compared to control subjects, cancer cases exhibited a 1.32-fold higher allele frequency (χ2 = 6.315, p = 0.012). In homozygous (GG) but not in heterozygous conditions, odds ratio (OR) analysis suggests a significant association of cancer risk with the SNP (OR = 2.60, p ≤ 0.004). We further confirmed using the functional analysis that this SNP increased the luciferase gene activity in HPV-positive cervical cancer SiHa cells that were exposed to progesterone. As a result of the association of polymorphisms in a non-coding region of an oncogene with increased cancer risks, we are suggesting that this genetic variation in non-coding region can be used in prediction, diagnosis, or predicting the progression of the disease.

9.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769247

RESUMO

To analyze the neuroprotective effects of 7,8-Dihydroxyflavone (DHF) in vivo and ex vivo, adult albino Sprague-Dawley rats were given a left intraorbital optic nerve transection (IONT) and were divided in two groups: One was treated daily with intraperitoneal (ip) DHF (5 mg/kg) (n = 24) and the other (n = 18) received ip vehicle (1% DMSO in 0.9% NaCl) from one day before IONT until processing. At 5, 7, 10, 12, 14, and 21 days (d) after IONT, full field electroretinograms (ERG) were recorded from both experimental and one additional naïve-control group (n = 6). Treated rats were analyzed 7 (n = 14), 14 (n = 14) or 21 d (n = 14) after IONT, and the retinas immune stained against Brn3a, Osteopontin (OPN) and the T-box transcription factor T-brain 2 (Tbr2) to identify surviving retinal ganglion cells (RGCs) (Brn3a+), α-like (OPN+), α-OFF like (OPN+Brn3a+) or M4-like/α-ON sustained RGCs (OPN+Tbr+). Naïve and right treated retinas showed normal ERG recordings. Left vehicle-treated retinas showed decreased amplitudes of the scotopic threshold response (pSTR) (as early as 5 d), the rod b-wave, the mixed response and the cone response (as early as 10 d), which did not recover with time. In these retinas, by day 7 the total numbers of Brn3a+RGCs, OPN+RGCs and OPN+Tbr2+RGCs decreased to less than one half and OPN+Brn3a+RGCs decreased to approximately 0.5%, and Brn3a+RGCs showed a progressive loss with time, while OPN+RGCs and OPN+Tbr2+RGCs did not diminish after seven days. Compared to vehicle-treated, the left DHF-treated retinas showed significantly greater amplitudes of the pSTR, normal b-wave values and significantly greater numbers of OPN+RGCs and OPN+Tbr2+RGCs for up to 14 d and of Brn3a+RGCs for up to 21 days. DHF affords significant rescue of Brn3a+RGCs, OPN+RGCs and OPN+Tbr2+RGCs, but not OPN+Brn3a+RGCs, and preserves functional ERG responses after IONT.


Assuntos
Flavonas/farmacologia , Fármacos Neuroprotetores/farmacologia , Traumatismos do Nervo Óptico , Nervo Óptico , Células Ganglionares da Retina , Animais , Eletrorretinografia , Feminino , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
10.
Exp Eye Res ; 210: 108694, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245756

RESUMO

PURPOSE: To analyze responses of different RGC populations to left intraorbital optic nerve transection (IONT) and intraperitoneal (i.p.) treatment with 7,8-Dihydroxyflavone (DHF), a potent selective TrkB agonist. METHODS: Adult albino Sprague-Dawley rats received, following IONT, daily i.p. injections of vehicle (1%DMSO in 0.9%NaCl) or DHF. Group-1 (n = 58) assessed at 7days (d) the optimal DHF amount (1-25 mg/kg). Group-2, using freshly dissected naïve or treated retinas (n = 28), investigated if DHF treatment was associated with TrkB activation using Western-blotting at 1, 3 or 7d. Group-3 (n = 98) explored persistence of protection and was analyzed at survival intervals from 7 to 60d after IONT. Groups 2-3 received daily i.p. vehicle or DHF (5 mg/kg). Retinal wholemounts were immunolabelled for Brn3a and melanopsin to identify Brn3a+RGCs and m+RGCs, respectively. RESULTS: Optimal neuroprotection was achieved with 5 mg/kg DHF and resulted in TrkB phosphorylation. The percentage of surviving Brn3a+RGCs in vehicle treated rats was 60, 28, 18, 13, 12 or 8% of the original value at 7, 10, 14, 21, 30 or 60d, respectively, while in DHF treated retinas was 94, 70, 64, 17, 10 or 9% at the same time intervals. The percentages of m+RGCs diminished by 7d-13%, and recovered by 14d-38% in vehicle-treated and to 48% in DHF-treated retinas, without further variations. CONCLUSIONS: DHF neuroprotects Brn3a + RGCs and m + RGCs; its protective effects for Brn3a+RGCs are maximal at 7 days but still significant at 21d, whereas for m+RGCs neuroprotection was significant at 14d and permanent.


Assuntos
Flavonas/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Receptor trkB/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Axotomia , Western Blotting , Sobrevivência Celular/fisiologia , Feminino , Imuno-Histoquímica , Injeções Intraperitoneais , Neuroproteção , Nervo Óptico/fisiopatologia , Nervo Óptico/cirurgia , Fosforilação , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Opsinas de Bastonetes/metabolismo , Fator de Transcrição Brn-3A/metabolismo
11.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669765

RESUMO

Signaling mediated by cytokines and chemokines is involved in glaucoma-associated neuroinflammation and in the damage of retinal ganglion cells (RGCs). Using multiplexed immunoassay and immunohistochemical techniques in a glaucoma mouse model at different time points after ocular hypertension (OHT), we analyzed (i) the expression of pro-inflammatory cytokines, anti-inflammatory cytokines, BDNF, VEGF, and fractalkine; and (ii) the number of Brn3a+ RGCs. In OHT eyes, there was an upregulation of (i) IFN-γ at days 3, 5, and 15; (ii) IL-4 at days 1, 3, 5, and 7 and IL-10 at days 3 and 5 (coinciding with downregulation of IL1-ß at days 1, 5, and 7); (iii) IL-6 at days 1, 3, and 5; (iv) fractalkine and VEGF at day 1; and (v) BDNF at days 1, 3, 7, and 15. In contralateral eyes, there were (i) an upregulation of IL-1ß at days 1 and 3 and a downregulation at day 7, coinciding with the downregulation of IL4 at days 3 and 5 and the upregulation at day 7; (ii) an upregulation of IL-6 at days 1, 5, and 7 and a downregulation at 15 days; (iii) an upregulation of IL-10 at days 3 and 7; and (iv) an upregulation of IL-17 at day 15. In OHT eyes, there was a reduction in the Brn3a+ RGCs number at days 3, 5, 7, and 15. OHT changes cytokine levels in both OHT and contralateral eyes at different time points after OHT induction, confirming the immune system involvement in glaucomatous neurodegeneration.


Assuntos
Encéfalo/patologia , Glaucoma/patologia , Inflamação/patologia , Neurônios/patologia , Células Ganglionares da Retina/patologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Glaucoma/fisiopatologia , Mediadores da Inflamação/metabolismo , Pressão Intraocular , Masculino , Camundongos , Microglia/patologia , Hipertensão Ocular/metabolismo , Hipertensão Ocular/fisiopatologia , Fatores de Tempo
12.
J Clin Endocrinol Metab ; 105(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32474599

RESUMO

BACKGROUND: Brn3a/Pou4f1 is a class IV POU domain-containing transcription factor and has been found to be expressed in a variety of cancers. However, the mechanism and action of Brn3a in thyroid cancer has not been investigated. PURPOSE: To investigate the role of Brn3a in thyroid cancer progression and its clinical implication. METHODS: We examined Brn3a expression status in patients with thyroid cancer and analyzed relationships between Brn3a expression and clinicopathological findings using The Cancer Genome Atlas (TCGA) database. For functional in vitro analysis, proliferation, migration, invasion assay, and Western blotting were performed after overexpression or suppression of Brn3a. RESULTS: The promoter hypermethylation of Brn3a was found in patients with aggressive thyroid cancer and Brn3a was downregulated in tissues of patients with thyroid cancer. In TCGA database, the low-Brn3a-expression group revealed a more aggressive phenotype, including T stage and extrathyroid extension when compared with the high-Brn3a-expression group. Overexpression of Brn3a suppressed cell migration and invasion via regulation of epithelial-mesenchymal transition (EMT)-associated proteins in thyroid cancer cell lines. Brn3a overexpression also downregulated signal transducer and activator of transcription 3 (STAT3) signaling through suppression of tyrosine-protein kinase Met (c-MET). In contrast, knockdown of Brn3a by small interfering ribonucleic acid (siRNA) significantly increased cell migration and invasion through upregulation of c-MET/STAT3. These results imply that Brn3a suppresses tumor metastasis via c-MET/STAT3 inhibition and EMT suppression in thyroid cancer. CONCLUSIONS: Our findings show that Brn3a is a potential tumor suppressor that leads to reduced cancer cell migration and invasion in thyroid cancer. Elucidation of the Brn3a-regulated cancer pathways may therefore provide novel therapeutic strategies to control thyroid cancer metastasis.


Assuntos
Receptores Proteína Tirosina Quinases/genética , Fator de Transcrição STAT3/genética , Neoplasias da Glândula Tireoide/genética , Fator de Transcrição Brn-3A/fisiologia , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor/fisiologia , Humanos , Análise em Microsséries , Receptores Proteína Tirosina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Neoplasias da Glândula Tireoide/patologia
13.
Int J Mol Sci ; 20(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443568

RESUMO

Glaucoma is a neurodegenerative disease characterized by the loss of retinal ganglion cells (RGCs). An increase in the intraocular pressure is the principal risk factor for such loss, but controlling this pressure does not always prevent glaucomatous damage. Activation of immune cells resident in the retina (microglia) may contribute to RGC death. Thus, a substance with anti-inflammatory activity may protect against RGC degeneration. This study investigated the neuroprotective and anti-inflammatory effects of a hydrophilic saffron extract standardized to 3% crocin content in a mouse model of unilateral, laser-induced ocular hypertension (OHT). Treatment with saffron extract decreased microglion numbers and morphological signs of their activation, including soma size and process retraction, both in OHT and in contralateral eyes. Saffron extract treatment also partially reversed OHT-induced down-regulation of P2RY12. In addition, the extract prevented retinal ganglion cell death in OHT eyes. Oral administration of saffron extract was able to decrease the neuroinflammation associated with increased intraocular pressure, preventing retinal ganglion cell death. Our findings indicate that saffron extract may exert a protective effect in glaucomatous pathology.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Crocus/química , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Biomarcadores , Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Glaucoma/etiologia , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Interações Hidrofóbicas e Hidrofílicas , Pressão Intraocular/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia
14.
Int J Mol Sci ; 20(12)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226772

RESUMO

We studied short- and long-term effects of intravitreal injection of N-methyl-d-aspartate (NMDA) on melanopsin-containing (m+) and non-melanopsin-containing (Brn3a+) retinal ganglion cells (RGCs). In adult SD-rats, the left eye received a single intravitreal injection of 5µL of 100nM NMDA. At 3 and 15 months, retinal thickness was measured in vivo using Spectral Domain-Optical Coherence Tomography (SD-OCT). Ex vivo analyses were done at 3, 7, or 14 days or 15 months after damage. Whole-mounted retinas were immunolabelled for brain-specific homeobox/POU domain protein 3A (Brn3a) and melanopsin (m), the total number of Brn3a+RGCs and m+RGCs were quantified, and their topography represented. In control retinas, the mean total numbers of Brn3a+RGCs and m+RGCs were 78,903 ± 3572 and 2358 ± 144 (mean ± SD; n = 10), respectively. In the NMDA injected retinas, Brn3a+RGCs numbers diminished to 49%, 28%, 24%, and 19%, at 3, 7, 14 days, and 15 months, respectively. There was no further loss between 7 days and 15 months. The number of immunoidentified m+RGCs decreased significantly at 3 days, recovered between 3 and 7 days, and were back to normal thereafter. OCT measurements revealed a significant thinning of the left retinas at 3 and 15 months. Intravitreal injections of NMDA induced within a week a rapid loss of 72% of Brn3a+RGCs, a transient downregulation of melanopsin expression (but not m+RGC death), and a thinning of the inner retinal layers.


Assuntos
N-Metilaspartato/toxicidade , Células Ganglionares da Retina/efeitos dos fármacos , Opsinas de Bastonetes/metabolismo , Animais , Contagem de Células , Feminino , Injeções Intravítreas , N-Metilaspartato/administração & dosagem , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Opsinas de Bastonetes/análise , Fator de Transcrição Brn-3A/análise , Fator de Transcrição Brn-3A/metabolismo
15.
Curr Biol ; 28(17): 2813-2823.e2, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30146154

RESUMO

Many distinct regulatory factors have been shown to be required for the proper initiation of neuron-type-specific differentiation programs, but much less is known about the regulatory programs that maintain the differentiated state in the adult [1-3]. One possibility is that regulatory factors that initiate a terminal differentiation program during development are continuously required to maintain the differentiated state. Here, we test this hypothesis by investigating the function of two orthologous POU homeobox genes in nematodes and mice. The C. elegans POU homeobox gene unc-86 is a terminal selector that is required during development to initiate the terminal differentiation program of several distinct neuron classes [4-13]. Through post-developmental removal of unc-86 activity, we show here that unc-86 is also continuously required throughout the life of many neuron classes to maintain neuron-class-specific identity features. Similarly, the mouse unc-86 ortholog Brn3a/POU4F1 has been shown to control the initiation of the terminal differentiation program of distinct neuron types across the mouse brain, such as the medial habenular neurons [14-20]. By conditionally removing Brn3a in the adult mouse central nervous system, we show that, like its invertebrate ortholog unc-86, Brn3a is also required for the maintenance of terminal identity features of medial habenular neurons. In addition, Brn3a is required for the survival of these neurons, indicating that identity maintenance and survival are genetically linked. We conclude that the continuous expression of transcription factors is essential for the active maintenance of the differentiated state of a neuron across phylogeny.


Assuntos
Caenorhabditis elegans/genética , Diferenciação Celular/fisiologia , Neurônios/fisiologia , Fatores do Domínio POU/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Genes Homeobox , Camundongos , Mitose , Neurogênese , Fatores do Domínio POU/genética , Tamoxifeno/farmacologia , Fatores de Transcrição/metabolismo
16.
Neural Dev ; 13(1): 15, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29958540

RESUMO

BACKGROUND: About 20-30 distinct Retinal Ganglion Cell (RGC) types transmit visual information from the retina to the brain. The developmental mechanisms by which RGCs are specified are still largely unknown. Brn3a is a member of the Brn3/Pou4f transcription factor family, which contains key regulators of RGC postmitotic specification. In particular, Brn3a ablation results in the loss of RGCs with small, thick and dense dendritic arbors ('midget-like' RGCs), and morphological changes in other RGC subpopulations. To identify downstream molecular mechanisms underlying Brn3a effects on RGC numbers and morphology, our group recently performed a RNA deep sequencing screen for Brn3a transcriptional targets in mouse RGCs and identified 180 candidate transcripts. METHODS: We now focus on a subset of 28 candidate genes encoding potential cell type determinant proteins. We validate and further define their retinal expression profile at five postnatal developmental time points between birth and adult stage, using in situ hybridization (ISH), RT-PCR and fluorescent immunodetection (IIF). RESULTS: We find that a majority of candidate genes are enriched in the ganglion cell layer during early stages of postnatal development, but dynamically change their expression profile. We also document transcript-specific expression differences for two example candidates, using RT-PCR and ISH. Brn3a dependency could be confirmed by ISH and IIF only for a fraction of our candidates. CONCLUSIONS: Amongst our candidate Brn3a target genes, a majority demonstrated ganglion cell layer specificity, however only around two thirds showed Brn3a dependency. Some were previously implicated in RGC type specification, while others have known physiological functions in RGCs. Only three genes were found to be consistently regulated by Brn3a throughout postnatal retina development - Mapk10, Tusc5 and Cdh4.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas do Tecido Nervoso/metabolismo , Retina/crescimento & desenvolvimento , Células Ganglionares da Retina/classificação , Células Ganglionares da Retina/metabolismo , Fator de Transcrição Brn-3A/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Caderinas/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , RNA Mensageiro/metabolismo , Retina/citologia , Estatísticas não Paramétricas , Fator de Transcrição Brn-3A/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
17.
Exp Eye Res ; 170: 40-50, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29452106

RESUMO

We have investigated the long term effects of two different models of unilateral optic nerve (ON) lesion on retinal ganglion cells (RGCs) and their axons, in the injured and contralateral retinas of adult albino mice. Intact animals were used as controls. The left ON was intraorbitally crushed or transected at 0.5 mm from the optic disk and both retinas were analyzed at 2, 3, 5, 7, 14, 30, 45 or 90 days after injury. RGCs were immunoidentified with anti-Brn3a, and their axons with anti-highly phosphorylated axonal neurofilament subunit H (pNFH). After both lesions, RGC death in the injured retinas is first significant at day 3, and progresses quickly up to 7 days slowing down till 90 days. In the same retinas, the anatomical loss of RGC axons is not evident until day 30. However, by two days after both lesions there are changes in the expression pattern of pNFH: axonal beads, axonal club- or bulb-like formations, and pNFH+RGC somas. The number of pNFH+RGC somata peak at day 5 after either lesion and is significantly higher than in intact retinas at all time points. pNFH+RGC somata are distributed across the retina, in accordance with the pattern of RGC death which is diffuse and homogenous. In the contralateral retinas there is no RGC loss, but there are few pNFH+RGCs from day 2 to day 90. In conclusion, in albino mice, axotomy-induced RGC death precedes the loss of their intraretinal axons and occurs in two phases, a rapid and a slower, but steady, one. Injured retinas show similar changes in the pattern of pNFH expression and a comparable course of RGC loss.


Assuntos
Compressão Nervosa , Degeneração Neural/patologia , Fibras Nervosas/patologia , Traumatismos do Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Animais , Axotomia , Contagem de Células , Sobrevivência Celular , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Camundongos , Microscopia de Fluorescência , Proteínas de Neurofilamentos/metabolismo , Fator de Transcrição Brn-3A/metabolismo
18.
Neurobiol Aging ; 61: 146-168, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29080498

RESUMO

In healthy beings, age is the ultimate reason of cellular malfunction and death. In the rat retina, age causes a functional decline and loss of specific neuronal populations. In this regard, controversial conclusions have been reported for the innermost retina. Here, we have studied the albino and pigmented retina for the duration of the rat life-span. Independent of age (21 days-22 months), the electroretinographic recordings and the volume of the retina and its layers are smaller in albinos. Functionally, aging causes in both strains a loss of cone- and rod-mediated responses. Anatomically, cell density decreases with age because the retina grows linearly with time; no cell loss is observed in the ganglion cell layer; and only in the pigmented rat, there is a decrease in cone photoreceptors. In old animals of both strains, there is gliosis in the superior colliculi and a diminution of the area innervated by retinal ganglion cells. In conclusion, this work provides the basis for further studies linking senescence to neurodegenerative retinal diseases.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Retina/patologia , Retina/fisiopatologia , Animais , Transporte Axonal , Eletrorretinografia , Feminino , Microglia , Ratos Sprague-Dawley , Retina/citologia , Retina/diagnóstico por imagem , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Segmento Interno das Células Fotorreceptoras da Retina/patologia , Segmento Interno das Células Fotorreceptoras da Retina/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Tomografia de Coerência Óptica
19.
J Comp Neurol ; 526(4): 742-766, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29218725

RESUMO

We report the retinal expression pattern of Ret, a receptor tyrosine kinase for the glial derived neurotrophic factor (GDNF) family ligands (GFLs), during development and in the adult mouse. Ret is initially expressed in retinal ganglion cells (RGCs), followed by horizontal cells (HCs) and amacrine cells (ACs), beginning with the early stages of postmitotic development. Ret expression persists in all three classes of neurons in the adult. Using RNA sequencing, immunostaining and random sparse recombination, we show that Ret is expressed in at least three distinct types of ACs, and ten types of RGCs. Using intersectional genetics, we describe the dendritic arbor morphologies of RGC types expressing Ret in combination with each of the three members of the POU4f/Brn3 family of transcription factors. Ret expression overlaps with Brn3a in 4 RGC types, with Brn3b in 5 RGC types, and with Brn3c in one RGC type, respectively. Ret+ RGCs project to the lateral geniculate nucleus (LGN), pretectal area (PTA) and superior colliculus (SC), and avoid the suprachiasmatic nucleus and accessory optic system. Brn3a+ Ret+ and Brn3c+ Ret+ RGCs project preferentially to contralateral retinorecipient areas, while Brn3b+ Ret+ RGCs shows minor ipsilateral projections to the olivary pretectal nucleus and the LGN. Our findings establish intersectional genetic approaches for the anatomic and developmental characterization of individual Ret+ RGC types. In addition, they provide necessary information for addressing the potential interplay between GDNF neurotrophic signaling and transcriptional regulation in RGC type specification.


Assuntos
Células Amácrinas/enzimologia , Proteínas Proto-Oncogênicas c-ret/metabolismo , Células Ganglionares da Retina/enzimologia , Células Horizontais da Retina/enzimologia , Células Amácrinas/citologia , Animais , Dendritos/enzimologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Camundongos Transgênicos , Células Ganglionares da Retina/citologia , Células Horizontais da Retina/citologia , Fator de Transcrição Brn-3A/metabolismo , Vias Visuais/citologia , Vias Visuais/enzimologia , Vias Visuais/crescimento & desenvolvimento
20.
J Neuroinflammation ; 14(1): 218, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29121969

RESUMO

BACKGROUND: Microglial cells (MCs) are the sentries of the central nervous system. In health, they are known as surveying MCs because they examine the tissue to maintain the homeostasis. In disease, they activate and, among other functions, become phagocytic to clean the cellular debris. In this work, we have studied the behavior of rat retinal MCs in two models of unilateral complete intraorbital optic nerve axotomy which elicit a different time course of retinal ganglion cell (RGC) loss. METHODS: Albino Sprague-Dawley rats were divided into these groups: (a) intact (no surgery), (b) fluorogold (FG) tracing from the superior colliculi, and (c) FG tracing + crush or transection of the left optic nerve. The retinas were dissected from 2 days to 2 months after the lesions (n = 4-12 group/lesion and time point) and then were subjected to Brn3a and Iba1 double immunodetection. In each intact retina, the total number of Brn3a+RGCs and Iba+MCs was quantified. In each traced retina (b and c groups), FG-traced RGCs and phagocytic microglial cells (PMCs, FG+Iba+) were also quantified. Topographical distribution was assessed by neighbor maps. RESULTS: In intact retinas, surveying MCs are homogenously distributed in the ganglion cell layer and the inner plexiform layer. Independently of the axotomy model, RGC death occurs in two phases, one quick and one protracted, and there is a lineal and topographical correlation between the appearance of PMCs and the loss of traced RGCs. Furthermore, the clearance of FG+RGCs by PMCs occurs 3 days after the actual loss of Brn3a expression that marks RGC death. In addition, almost 50% of MCs from the inner plexiform layer migrate to the ganglion cell layer during the quick phase of RGC loss, returning to the inner plexiform layer during the slow degeneration phase. Finally, in contrast to what happens in mice, in rats, there is no microglial phagocytosis in the contralateral uninjured retina. CONCLUSIONS: Axotomy-induced RGC death occurs earlier than RGC clearance and there is an inverse correlation between RGC loss and PMC appearance, both numerically and topographically, suggesting that phagocytosis occurs as a direct response to RGC death rather than to axonal damage.


Assuntos
Microglia/metabolismo , Traumatismos do Nervo Óptico/patologia , Fagocitose/fisiologia , Células Ganglionares da Retina/patologia , Animais , Axotomia , Morte Celular , Feminino , Nervo Óptico/patologia , Nervo Óptico/cirurgia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA