Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 17(4): e202101169, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-34951523

RESUMO

A new strategy for the preparation of distinct N-substituted muropeptides is described. Different orthogonally N-protected disaccharide thioglycosides were designed and synthesized. Among them, compound 4, qualified as a key intermediate, was utilized for further chemical transformations to develop a series of diverse N-substituted-glucosaminyl N-substituted-muramyl dipeptides (GMDPs). These unique muropeptides were applied for the study of human NOD2 stimulation. Intriguingly, structural modification of the MurNAc residue to N-non-substituted muramic acid (MurNH2 ) in GMDP dramatically impaired NOD2 stimulatory activity, but GMDPs possessing the glucosamine residue with a free amino group retained NOD2 stimulation activity. This work is the first study to illustrate the impact of both N-substituents of GMDPs on immunostimulatory activities of human NOD2.


Assuntos
Dipeptídeos , Dissacarídeos , Humanos , Proteína Adaptadora de Sinalização NOD2/metabolismo
2.
Pharmaceuticals (Basel) ; 13(11)2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33203094

RESUMO

Peptidoglycan (PGN) is a major constituent of most bacterial cell walls that is recognized as a primary target of the innate immune system. The availability of pure PGN molecules has become key to different biological studies. This review aims to (1) provide an overview of PGN biosynthesis, focusing on the main biosynthetic intermediates; (2) focus on the challenges for chemical synthesis posed by the unique and complex structure of PGN; and (3) cover the synthetic routes of PGN fragments developed to date. The key difficulties in the synthesis of PGN molecules mainly involve stereoselective glycosylation involving NAG derivatives. The complex synthesis of the carbohydrate backbone commonly involves multistep sequences of chemical reactions to install the lactyl moiety at the O-3 position of NAG derivatives and to control enantioselective glycosylation. Recent advances are presented and synthetic routes are described according to the main strategy used: (i) based on the availability of starting materials such as glucosamine derivatives; (ii) based on a particular orthogonal synthesis; and (iii) based on the use of other natural biopolymers as raw materials.

3.
Bioorg Med Chem Lett ; 30(10): 127116, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32223923

RESUMO

Healthy function of the gut microenvironment is dependent on complex interactions between the bacteria of the microbiome, epithelial and immune (host) cells, and the surrounding tissue. Misregulation of these interactions is implicated in disease. A range of tools have been developed to study these interactions, from mechanistic studies to therapeutic evaluation. In this Digest, we highlight select tools at the cellular and molecular level for probing specific cell-microenvironment interactions. Approaches are overviewed for controlling and probing cell-cell interactions, from transwell and microfluidic devices to engineered bacterial peptidoglycan fragments, and cell-matrix interactions, from three-dimensional scaffolds to chemical handles for in situ modifications.


Assuntos
Bactérias/química , Corantes Fluorescentes/química , Interações Hospedeiro-Parasita , Intestinos/microbiologia , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Microambiente Celular , Matriz Extracelular/metabolismo , Humanos , Imunidade Inata , Intestinos/citologia , Modelos Biológicos
4.
Curr Protoc Chem Biol ; 11(4): e74, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31763799

RESUMO

Bacterial cells utilize small carbohydrate building blocks to construct peptidoglycan (PG), a highly conserved mesh-like polymer that serves as a protective coat for the cell. PG production has long been a target for antibiotics, and its breakdown is a source for human immune recognition. A key component of bacterial PG, N-acetyl muramic acid (NAM), is a vital element in many synthetically derived immunostimulatory compounds. However, the exact molecular details of these structures and how they are generated remain unknown due to a lack of chemical probes surrounding the NAM core. A robust synthetic strategy to generate bioorthogonally tagged NAM carbohydrate units is implemented. These molecules serve as precursors for PG biosynthesis and recycling. Escherichia coli cells are metabolically engineered to incorporate the bioorthogonal NAM probes into their PG network. The probes are subsequently modified using copper-catalyzed azide-alkyne cycloaddition to install fluorophores directly into the bacterial PG, as confirmed by super-resolution microscopy and high-resolution mass spectrometry. Here, synthetic notes for key elements of this process to generate the sugar probes as well as streamlined user-friendly metabolic labeling strategies for both microbiology and immunological applications are described. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Synthesis of peracetylated 2-azido glucosamine Basic Protocol 2: Synthesis of 2-azido and 2-alkyne NAM Basic Protocol 3: Synthesis of 3-azido NAM methyl ester Basic Protocol 4: Incorporation of NAM probes into bacterial peptidoglycan Basic Protocol 5: Confirmation of bacterial cell wall remodeling by mass spectrometry.


Assuntos
Escherichia coli/metabolismo , Ácidos Murâmicos/metabolismo , Peptidoglicano/metabolismo , Alcinos/química , Alcinos/metabolismo , Azidas/química , Azidas/metabolismo , Catálise , Química Click , Reação de Cicloadição , Escherichia coli/química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Engenharia Metabólica/métodos , Ácidos Murâmicos/química , Peptidoglicano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA