RESUMO
Humans need to be on their toes when interacting with competitive others to avoid being taken advantage of. Too much caution out of context can, however, be detrimental and produce false beliefs of intended harm. Here, we offer a formal account of this phenomenon through the lens of Theory of Mind. We simulate agents of different depths of mentalizing within a simple game theoretic paradigm and show how, if aligned well, deep recursive mentalization gives rise to both successful deception as well as reasonable skepticism. However, we also show that if a self is mentalizing too deeply - hyper-mentalizing - false beliefs arise that a partner is trying to trick them maliciously, resulting in a material loss to the self. Importantly, we show that this is only true when hypermentalizing agents believe observed actions are generated intentionally. This theory offers a potential cognitive mechanism for suspiciousness, paranoia, and conspiratorial ideation. Rather than a deficit in Theory of Mind, paranoia may arise from the application of overly strategic thinking to ingenuous behaviour. Author Summary: Interacting competitively requires vigilance to avoid deception. However, excessive caution can have adverse effects, stemming from false beliefs of intentional harm. So far there is no formal cognitive account of what may cause this suspiciousness. Here we present an examination of this phenomenon through the lens of Theory of Mind - the cognitive ability to consider the beliefs, intentions, and desires of others. By simulating interacting computer agents we illustrate how well-aligned agents can give rise to successful deception and justified skepticism. Crucially, we also reveal that overly cautious agents develop false beliefs that an ingenuous partner is attempting malicious trickery, leading to tangible losses. As well as formally defining a plausible mechanism for suspiciousness, paranoia, and conspiratorial thinking, our theory indicates that rather than a deficit in Theory of Mind, paranoia may involve an over-application of strategy to genuine behaviour.
RESUMO
Will something appear and if so, what will it be? Perceptual expectations can concern both the presence and content of a stimulus. However, it is unclear how these different types of expectations interact with each other in biasing perception. Here, we tested how expectations about stimulus presence and content differently affect perceptual inference. Across separate online discovery (N = 110) and replication samples (N = 218), participants were asked to judge both the presence and content (orientation) of noisy grating stimuli. Crucially, preceding compound cues simultaneously and orthogonally predicted both whether a grating was likely to appear as well as what its orientation would be. Across both samples we found that content cues affected both discrimination and presence judgements directly, namely by biasing the orientation judgements in the expected direction and enhancing confidence in stimulus presence on congruent trials. In contrast, presence cues did not affect discrimination judgements directly. Instead, presence cues influenced discrimination judgements indirectly by enhancing the effect of the orientation cues when expecting a stimulus to be present. This was the case on trials where a stimulus was present, as well as on grating-absent trials. Further, presence cues directly affected confidence in stimulus presence. This suggests that presence expectations may act as a regulatory volume knob for the influence of content expectations. Further, modelling revealed higher sensitivity in distinguishing between grating presence and absence following absence cues than presence cues, demonstrating an asymmetry between gathering evidence in favour of stimulus presence and absence. Finally, evidence for overweighted expectations being associated with hallucination-like perception was inconclusive. In sum, our results provide nuance to popular predictive processing accounts of perception by showing that expectations of presence and content have distinct but interacting roles in shaping conscious perception.
RESUMO
An intriguing perspective about human emotion, the theory of constructed emotion considers emotions as generative models according to the Bayesian brain hypothesis. This theory brings fresh insight to existing findings, but its complexity renders it challenging to test experimentally. We argue that laboratory studies of pain could support the theory because although some may not consider pain to be a genuine emotion, the theory must at minimum be able to explain pain perception and its dysfunction in pathology. We review emerging evidence that bear on this question. We cover behavioral and neural laboratory findings, computational models, placebo hyperalgesia, and chronic pain. We conclude that there is substantial evidence for a predictive processing account of painful experience, paving the way for a better understanding of neuronal and computational mechanisms of other emotions.
Assuntos
Teorema de Bayes , Emoções , Percepção da Dor , Humanos , Emoções/fisiologia , Percepção da Dor/fisiologia , Encéfalo/fisiologia , Dor/psicologia , Dor/fisiopatologia , Hiperalgesia/fisiopatologia , Hiperalgesia/psicologia , Dor Crônica/psicologia , Dor Crônica/fisiopatologiaRESUMO
To sense and interact with objects in the environment, we effortlessly configure our fingertips at desired locations. It is therefore reasonable to assume that the underlying control mechanisms rely on accurate knowledge about the structure and spatial dimensions of our hand and fingers. This intuition, however, is challenged by years of research showing drastic biases in the perception of finger geometry.1,2,3,4,5 This perceptual bias has been taken as evidence that the brain's internal representation of the body's geometry is distorted,6 leading to an apparent paradox regarding the skillfulness of our actions.7 Here, we propose an alternative explanation of the biases in hand perception-they are the result of the Bayesian integration of noisy, but unbiased, somatosensory signals about finger geometry and posture. To address this hypothesis, we combined Bayesian reverse engineering with behavioral experimentation on joint and fingertip localization of the index finger. We modeled the Bayesian integration either in sensory or in space-based coordinates, showing that the latter model variant led to biases in finger perception despite accurate representation of finger length. Behavioral measures of joint and fingertip localization responses showed similar biases, which were well fitted by the space-based, but not the sensory-based, model variant. The space-based model variant also outperformed a distorted hand model with built-in geometric biases. In total, our results suggest that perceptual distortions of finger geometry do not reflect a distorted hand model but originate from near-optimal Bayesian inference on somatosensory signals.
Assuntos
Teorema de Bayes , Dedos , Mãos , Humanos , Mãos/fisiologia , Dedos/fisiologia , Feminino , Masculino , Adulto , Adulto Jovem , Percepção do Tato/fisiologiaRESUMO
In the realm of law enforcement, the "police hunch" has long been a mysterious but crucial aspect of decision-making. Drawing on the developing framework of Active Inference from cognitive science, this theoretical article examines the genesis, mechanics, and implications of the police hunch. It argues that hunches - often vital in high-stakes situations - should not be described as mere intuitions, but as intricate products of our mind's generative models. These models, shaped by observations of the social world and assimilated and enacted through active inference, seek to reduce surprise and make hunches an indispensable tool for officers, in exactly the same way that hypotheses are indispensable for scientists. However, the predictive validity of hunches is influenced by a range of factors, including experience and bias, thus warranting critical examination of their reliability. This article not only explores the formation of police hunches but also provides practical insights for officers and researchers on how to harness the power of active inference to fully understand policing decisions and subsequently explore new avenues for future research.
RESUMO
Breathlessness is among the most common post-COVID symptoms. In a considerable number of patients, severe breathlessness cannot be explained by peripheral organ impairment. Recent concepts have described how such persistent breathlessness could arise from dysfunctional processing of respiratory information in the brain. In this paper, we present a first quantitative and testable mathematical model of how processing of respiratory-related signals could lead to breathlessness perception. The model is based on recent theories that the brain holds an adaptive and dynamic internal representation of a respiratory state that is based on previous experiences and comprises gas exchange between environment, lung and tissue cells. Perceived breathlessness reflects the brain's estimate of this respiratory state signaling a potentially hazardous disequilibrium in gas exchange. The internal respiratory state evolves from the respiratory state of the last breath, is updated by a sensory measurement of CO2 concentration, and is dependent on the current activity context. To evaluate our model and thus test the assumed mechanism, we used data from an ongoing rebreathing experiment investigating breathlessness in patients with post-COVID without peripheral organ dysfunction (N = 5) and healthy control participants without complaints after COVID-19 (N = 5). Although the observed breathlessness patterns varied extensively between individual participants in the rebreathing experiment, our model shows good performance in replicating these individual, heterogeneous time courses. The model assumes the same underlying processes in the central nervous system in all individuals, i.e., also between patients and healthy control participants, and we hypothesize that differences in breathlessness are explained by different weighting and thus influence of these processes on the final percept. Our model could thus be applied in future studies to provide insight into where in the processing cascade of respiratory signals a deficit is located that leads to (post-COVID) breathlessness. A potential clinical application could be, e.g., the monitoring of effects of pulmonary rehabilitation on respiratory processing in the brain to improve the therapeutic strategies.
RESUMO
Research on predictive processing models has focused largely on two specific algorithmic theories: Predictive Coding for perception and Active Inference for decision-making. While these interconnected theories possess broad explanatory potential, they have only recently begun to receive direct empirical evaluation. Here, we review recent studies of Predictive Coding and Active Inference with a focus on evaluating the degree to which they are empirically supported. For Predictive Coding, we find that existing empirical evidence offers modest support. However, some positive results can also be explained by alternative feedforward (e.g., feature detection-based) models. For Active Inference, most empirical studies have focused on fitting these models to behavior as a means of identifying and explaining individual or group differences. While Active Inference models tend to explain behavioral data reasonably well, there has not been a focus on testing empirical validity of active inference theory per se, which would require formal comparison to other models (e.g., non-Bayesian or model-free reinforcement learning models). This review suggests that, while promising, a number of specific research directions are still necessary to evaluate the empirical adequacy and explanatory power of these algorithms.
Assuntos
Aprendizagem , Reforço Psicológico , Humanos , Teorema de BayesRESUMO
The Free Energy Principle (FEP) is a normative computational framework for iterative reduction of prediction error and uncertainty through perception-intervention cycles that has been presented as a potential unifying theory of all brain functions (Friston, 2006). Any theory hoping to unify the brain sciences must be able to explain the mechanisms of decision-making, an important cognitive faculty, without the addition of independent, irreducible notions. This challenge has been accepted by several proponents of the FEP (Friston, 2010; Gershman, 2019). We evaluate attempts to reduce decision-making to the FEP, using Lucas' (2005) meta-theory of the brain's contextual constraints as a guidepost. We find reductive variants of the FEP for decision-making unable to explain behavior in certain types of diagnostic, predictive, and multi-armed bandit tasks. We trace the shortcomings to the core theory's lack of an adequate notion of subjective preference or "utility", a concept central to decision-making and grounded in the brain's biological reality. We argue that any attempts to fully reduce utility to the FEP would require unrealistic assumptions, making the principle an unlikely candidate for unifying brain science. We suggest that researchers instead attempt to identify contexts in which either informational or independent reward constraints predominate, delimiting the FEP's area of applicability. To encourage this type of research, we propose a two-factor formal framework that can subsume any FEP model and allows experimenters to compare the contributions of informational versus reward constraints to behavior.
Assuntos
Encéfalo , Humanos , IncertezaRESUMO
There is currently growing clinical concern regarding dysfunctional breathing disorder(s) (DBD), an umbrella term for a set of multidimensional clinical conditions that are characterized by altered breathing pattern associated with a variety of intermittent or chronic symptoms, notably dyspnea, in the absence or in excess of, organic disease. However, several aspects of DBD remain poorly understood and/or open to debate, especially the inconsistent relationship between the array of experienced symptoms and their supposedly underlying mechanisms. This may be partly due to a more general problem, i.e., the prevailing way we conceptualize symptoms. In the present article, after a brief review of the different aspects of DBD from the current perspective, I submit a call for considering DBD under the innovating perspective of the Bayesian brain hypothesis, i.e., a potent and novel model that fundamentally changes our views on symptom perception.
RESUMO
For the past decade, ketamine, an N-methyl-D-aspartate receptor (NMDAr) antagonist, has been considered a promising treatment for major depressive disorder (MDD). Unlike the delayed effect of monoaminergic treatment, ketamine may produce fast-acting antidepressant effects hours after a single administration at subanesthetic dose. Along with these antidepressant effects, it may also induce transient dissociative (disturbing of the sense of self and reality) symptoms during acute administration which resolve within hours. To understand ketamine's rapid-acting antidepressant effect, several biological hypotheses have been explored, but despite these promising avenues, there is a lack of model to understand the timeframe of antidepressant and dissociative effects of ketamine. In this article, we propose a neurocomputational account of ketamine's antidepressant and dissociative effects based on the Predictive Processing (PP) theory, a framework for cognitive and sensory processing. PP theory suggests that the brain produces top-down predictions to process incoming sensory signals, and generates bottom-up prediction errors (PEs) which are then used to update predictions. This iterative dynamic neural process would relies on N-methyl-D-aspartate (NMDAr) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic receptors (AMPAr), two major component of the glutamatergic signaling. Furthermore, it has been suggested that MDD is characterized by over-rigid predictions which cannot be updated by the PEs, leading to miscalibration of hierarchical inference and self-reinforcing negative feedback loops. Based on former empirical studies using behavioral paradigms, neurophysiological recordings, and computational modeling, we suggest that ketamine impairs top-down predictions by blocking NMDA receptors, and enhances presynaptic glutamate release and PEs, producing transient dissociative symptoms and fast-acting antidepressant effect in hours following acute administration. Moreover, we present data showing that ketamine may enhance a delayed neural plasticity pathways through AMPAr potentiation, triggering a prolonged antidepressant effect up to seven days for unique administration. Taken together, the two sides of antidepressant effects with distinct timeframe could constitute the keystone of antidepressant properties of ketamine. These PP disturbances may also participate to a ketamine-induced time window of mental flexibility, which can be used to improve the psychotherapeutic process. Finally, these proposals could be used as a theoretical framework for future research into fast-acting antidepressants, and combination with existing antidepressant and psychotherapy.
Assuntos
Transtorno Depressivo Maior , Ketamina , Humanos , Ketamina/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Encéfalo/metabolismo , Transdução de Sinais , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special focus on tinnitus-as the prime example of auditory phantom perception-we review recent work at the intersection of artificial intelligence, psychology and neuroscience. In particular, we discuss why everyone with tinnitus suffers from (at least hidden) hearing loss, but not everyone with hearing loss suffers from tinnitus. We argue that intrinsic neural noise is generated and amplified along the auditory pathway as a compensatory mechanism to restore normal hearing based on adaptive stochastic resonance. The neural noise increase can then be misinterpreted as auditory input and perceived as tinnitus. This mechanism can be formalized in the Bayesian brain framework, where the percept (posterior) assimilates a prior prediction (brain's expectations) and likelihood (bottom-up neural signal). A higher mean and lower variance (i.e. enhanced precision) of the likelihood shifts the posterior, evincing a misinterpretation of sensory evidence, which may be further confounded by plastic changes in the brain that underwrite prior predictions. Hence, two fundamental processing principles provide the most explanatory power for the emergence of auditory phantom perceptions: predictive coding as a top-down and adaptive stochastic resonance as a complementary bottom-up mechanism. We conclude that both principles also play a crucial role in healthy auditory perception. Finally, in the context of neuroscience-inspired artificial intelligence, both processing principles may serve to improve contemporary machine learning techniques.
Assuntos
Perda Auditiva , Zumbido , Humanos , Zumbido/psicologia , Teorema de Bayes , Inteligência Artificial , Percepção Auditiva , Vias AuditivasRESUMO
Recent research has investigated the potential of psychedelic substances in treating various neurological and psychiatric disorders. In particular, there has been a growth in studies concerning the intersection of psychedelics, Virtual Reality (VR), and Cognitive Flexibility (CF). Indeed, the use of immersive technology allows the simulation of the perceptual and cognitive effects of psychedelic substances without the potential risks associated with them. CF is strongly associated with creative cognition, a complex cognitive mechanism involved in creative thinking and associated with the prefrontal cortex and the neural networks supporting executive functions, memory, attention, and spontaneous modes of thought. The Bayesian brain approach, which is rooted in predictive coding, has emerged as a promising framework for understanding the effects of psychedelic hallucinations on cognitive functioning. Psychedelic substances may enhance creativity by inducing a state of CF, allowing for a wider range of associations and possibilities to be explored and increasing openness to experience. A decline in cognitive abilities, including creative processing and divergent thinking, is observed during the aging process. In particular, studies on Mild Cognitive Impairment (MCI) show poorer performance in executive functions, including CF. The present paper suggests that psychedelic hallucinations induced by VR may help optimize the balance between top-down expectations and bottom-up sensory information. Therefore, enhanced CF and creativity may be crucial during the aging process for maintaining cognitive functions and preventing pathological conditions.
RESUMO
INTRODUCTION: Consistent with the Bayesian brain hypothesis, the within-subject variability of pain intensity reports as captured with the Focused Analgesia Selection Test (FAST) might be a surrogate measure of the certainty in ascending noxious signals. The outcomes of a non-pain-related task, the rubber hand illusion, were hypothesized to reflect the same construct. This study aimed to explore whether within-subject differences in variability of pain intensity reports and the outcomes of the rubber hand illusion might be related. METHODS: Nonclinical participants underwent the classic rubber hand illusion under synchronous (experimental) and asynchronous (control) conditions. Two outcomes were assessed: proprioceptive drift and feeling of ownership. Thereafter, participants underwent the FAST to assess the within-subject variability of pain reports in response to heat stimuli. Intraclass correlation (ICC) and the correlation coefficient (R2) were the main outcomes. Spearman's correlations were used to assess associations between the outcomes of the 2 tasks. RESULTS: Thirty-six volunteers completed the study. Both FAST outcomes-ICC (Spearman's r = 0.355, p = 0.033) and R2 (Spearman's r = 0.349, p = 0.037)-were positively correlated with proprioceptive drift in the synchronous but not asynchronous conditions (p > 0.05). The subjective feeling of ownership and FAST outcomes did not correlate (p > 0.05). CONCLUSIONS: The associations between the 2 tasks' outcomes imply that both tasks at least partly assess similar constructs. Current knowledge suggests that this construct represents the person's certainty in perceiving ascending sensory signals, or, in Bayesian terminology, the certainty of the likelihood.
Assuntos
Ilusões , Dor , Propriocepção , Humanos , Teorema de Bayes , Imagem Corporal , Mãos/fisiologia , Ilusões/fisiologia , Dor/fisiopatologia , Medição da Dor , Propriocepção/fisiologia , Percepção do Tato/fisiologia , Percepção Visual/fisiologiaRESUMO
The brain integrates volition, cognition, and consciousness seamlessly over three hierarchical (scale-dependent) levels of neural activity for their emergence: a causal or 'hard' level, a computational (unconscious) or 'soft' level, and a phenomenal (conscious) or 'psyche' level respectively. The cognitive evolution theory (CET) is based on three general prerequisites: physicalism, dynamism, and emergentism, which entail five consequences about the nature of consciousness: discreteness, passivity, uniqueness, integrity, and graduation. CET starts from the assumption that brains should have primarily evolved as volitional subsystems of organisms, not as prediction machines. This emphasizes the dynamical nature of consciousness in terms of critical dynamics to account for metastability, avalanches, and self-organized criticality of brain processes, then coupling it with volition and cognition in a framework unified over the levels. Consciousness emerges near critical points, and unfolds as a discrete stream of momentary states, each volitionally driven from oldest subcortical arousal systems. The stream is the brain's way of making a difference via predictive (Bayesian) processing. Its objective observables could be complexity measures reflecting levels of consciousness and its dynamical coherency to reveal how much knowledge (information gain) the brain acquires over the stream. CET also proposes a quantitative classification of both disorders of consciousness and mental disorders within that unified framework.
RESUMO
Many cognitive processes, ranging from perception to action, depend on the ability to predict the timing of forthcoming events. Yet, how the brain uses predictive models in the temporal domain is still an unsolved question. In previous work, we began to explore the neural correlates of temporal predictions by using a computational approach in which an ideal Bayesian observer learned the temporal probabilities of target onsets in a simple reaction time task. Because the task was specifically designed to disambiguate updating of predictive models and surprise, changes in temporal probabilities were explicitly cued. However, in the real world, we are usually incidentally exposed to changes in the statistics of the environment. Here, we thus aimed to further investigate the electroencephalographic (EEG) correlates of Bayesian belief updating and surprise associated with incidental learning of temporal probabilities. In line with our previous EEG study, results showed distinct P3-like modulations for updating and surprise. While surprise was indexed by an early fronto-central P3-like modulation, updating was associated with a later and more posterior P3 modulation. Moreover, updating was associated with a P2-like potential at centro-parietal electrodes, likely capturing integration processes between prior beliefs and likelihood of the observed event. These findings support previous evidence of trial-by-trial variability of P3 amplitudes as an index of dissociable inferential processes. Coupled with our previous findings, the present study strongly bolsters the view of the P3 as a key brain signature of temporal Bayesian inference. Data and scripts are shared on OSF: osf.io/sdy8j/.
Assuntos
Encéfalo , Eletroencefalografia , Humanos , Teorema de Bayes , Mapeamento Encefálico , Tempo de ReaçãoRESUMO
Introduction: Investigating the pathological mechanisms of developmental disorders is a challenge because the symptoms are a result of complex and dynamic factors such as neural networks, cognitive behavior, environment, and developmental learning. Recently, computational methods have started to provide a unified framework for understanding developmental disorders, enabling us to describe the interactions among those multiple factors underlying symptoms. However, this approach is still limited because most studies to date have focused on cross-sectional task performance and lacked the perspectives of developmental learning. Here, we proposed a new research method for understanding the mechanisms of the acquisition and its failures in hierarchical Bayesian representations using a state-of-the-art computational model, referred to as in silico neurodevelopment framework for atypical representation learning. Methods: Simple simulation experiments were conducted using the proposed framework to examine whether manipulating the neural stochasticity and noise levels in external environments during the learning process can lead to the altered acquisition of hierarchical Bayesian representation and reduced flexibility. Results: Networks with normal neural stochasticity acquired hierarchical representations that reflected the underlying probabilistic structures in the environment, including higher-order representation, and exhibited good behavioral and cognitive flexibility. When the neural stochasticity was high during learning, top-down generation using higher-order representation became atypical, although the flexibility did not differ from that of the normal stochasticity settings. However, when the neural stochasticity was low in the learning process, the networks demonstrated reduced flexibility and altered hierarchical representation. Notably, this altered acquisition of higher-order representation and flexibility was ameliorated by increasing the level of noises in external stimuli. Discussion: These results demonstrated that the proposed method assists in modeling developmental disorders by bridging between multiple factors, such as the inherent characteristics of neural dynamics, acquisitions of hierarchical representation, flexible behavior, and external environment.
RESUMO
This special issue aims to provide a comprehensive overview of the current state of the Bayesian Brain Hypothesis and its standing across neuroscience, cognitive science and the philosophy of cognitive science. By gathering cutting-edge research from leading experts, this issue seeks to showcase the latest advancements in our understanding of the Bayesian brain, as well as its potential implications for future research in perception, cognition, and motor control. A special focus to achieve this aim is adopted in this special issue, as it seeks to explore the relation between two seemingly incompatible frameworks for the understanding of cognitive structure and function: the Bayesian Brain Hypothesis and the Modularity Theory of the Mind. In assessing the compatibility between these theories, the contributors to this special issue open up new pathways of thinking and advance our understanding of cognitive processes.
Assuntos
Encéfalo , Cognição , Humanos , Teorema de Bayes , Ciência Cognitiva , PercepçãoRESUMO
Organisms are non-equilibrium, stationary systems self-organized via spontaneous symmetry breaking and undergoing metabolic cycles with broken detailed balance in the environment. The thermodynamic free-energy (FE) principle describes an organism's homeostasis as the regulation of biochemical work constrained by the physical FE cost. By contrast, recent research in neuroscience and theoretical biology explains a higher organism's homeostasis and allostasis as Bayesian inference facilitated by the informational FE. As an integrated approach to living systems, this study presents an FE minimization theory overarching the essential features of both the thermodynamic and neuroscientific FE principles. Our results reveal that the perception and action of animals result from active inference entailed by FE minimization in the brain, and the brain operates as a Schrödinger's machine conducting the neural mechanics of minimizing sensory uncertainty. A parsimonious model suggests that the Bayesian brain develops the optimal trajectories in neural manifolds and induces a dynamic bifurcation between neural attractors in the process of active inference.
RESUMO
It is usually assumed that information cascades are most likely to occur when an early but incorrect opinion spreads through the group. Here, we analyse models of confidence-sharing in groups and reveal the opposite result: simple but plausible models of naive-Bayesian decision-making exhibit information cascades when group decisions are synchronous; however, when group decisions are asynchronous, the early decisions reached by Bayesian decision-makers tend to be correct and dominate the group consensus dynamics. Thus early decisions actually rescue the group from making errors, rather than contribute to it. We explore the likely realism of our assumed decision-making rule with reference to the evolution of mechanisms for aggregating social information, and known psychological and neuroscientific mechanisms.