Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38894312

RESUMO

To evaluate the suitability of an analytical instrument, essential figures of merit such as the limit of detection (LOD) and the limit of quantification (LOQ) can be employed. However, as the definitions k nown in the literature are mostly applicable to one signal per sample, estimating the LOD for substances with instruments yielding multidimensional results like electronic noses (eNoses) is still challenging. In this paper, we will compare and present different approaches to estimate the LOD for eNoses by employing commonly used multivariate data analysis and regression techniques, including principal component analysis (PCA), principal component regression (PCR), as well as partial least squares regression (PLSR). These methods could subsequently be used to assess the suitability of eNoses to help control and steer processes where volatiles are key process parameters. As a use case, we determined the LODs for key compounds involved in beer maturation, namely acetaldehyde, diacetyl, dimethyl sulfide, ethyl acetate, isobutanol, and 2-phenylethanol, and discussed the suitability of our eNose for that dertermination process. The results of the methods performed demonstrated differences of up to a factor of eight. For diacetyl, the LOD and the LOQ were sufficiently low to suggest potential for monitoring via eNose.


Assuntos
Cerveja , Nariz Eletrônico , Limite de Detecção , Análise de Componente Principal , Cerveja/análise , Análise dos Mínimos Quadrados , Compostos Orgânicos Voláteis/análise
2.
Food Chem ; 452: 139613, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744125

RESUMO

This short communication is devoted to a fully-mechanized flow analysis system for the control of beer fermentation process. The developed system is based on microsolenoid flow controlling devices (valves and pumps) and a flow-through optoelectronic detector. All these components are powered and controlled by a Adruino-compatible microprocessor platform that creates an integrated, compact, and robust analytical tool. Multiplication of sample aspiration ports of the analytical system allows for simultaneous monitoring of several independently performed fermentation processes, as well as a single process at the different places of fermentation tank. To demonstrate its practical utility, the developed system has been applied for online and real-time monitoring of yeast propagation and distribution in beer worts in the course of various fermentation processes. Potentially, this flow analysis system can be easily expanded to the form of multianalyte monitor equipped with optoelectronic sensors and biosensors for the determination of other parameters and analytes.


Assuntos
Cerveja , Fermentação , Cerveja/análise , Cerveja/microbiologia , Saccharomyces cerevisiae/metabolismo , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos
3.
J Fungi (Basel) ; 9(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38132738

RESUMO

Although proline is the most or second most abundant amino acid in wort and grape must, it is not fully consumed by the yeast Saccharomyces cerevisiae during alcoholic fermentation, unlike other amino acids. Our previous studies showed that arginine, the third most abundant amino acid in wort, inhibits the utilization of proline in most strains of S. cerevisiae. Furthermore, we found that some non-Saccharomyces yeasts utilized proline in a specific artificial medium with arginine and proline as the only nitrogen source, but these yeasts were not suitable for beer fermentation due to their low alcohol productivity. For yeasts to be useful for brewing, they need to utilize proline and produce alcohol during fermentation. In this study, 11 S. cerevisiae strains and 10 non-Saccharomyces yeast strains in the Phaff Yeast Culture Collection were identified that utilize proline effectively. Notably, two of these S. cerevisiae strains, UCDFST 40-144 and 68-44, utilize proline and produce sufficient alcohol in the beer fermentation model used. These strains have the potential to create distinctive beer products that are specifically alcoholic but with a reduction in proline in the finished beer.

4.
J Agric Food Chem ; 71(41): 15417-15428, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37814909

RESUMO

Yeast flocculation and viability are critical factors in beer production. Adequate flocculation of yeast at the end of fermentation helps to reduce off-flavors and cell separation, while high viability is beneficial for yeast reuse. In this study, we used comparative genomics to analyze the genome information on Saccharomyces pastorianus W01, and its spontaneous mutant W02 with appropriate weakened flocculation ability (better off-flavor reduction performance) and unwanted decreased viability, to investigate the effect of different gene expressions on yeast flocculation or/and viability. Our results indicate that knockout of CNE1, CIN5, SIN3, HP-3, YPR170W-B, and SCEPF1_0274000100 and overexpression of CNE1 and ALD2 significantly decreased the flocculation ability of W01, while knockout of EPL1 increased the flocculation ability of W01. Meanwhile, knockout of CIN5, YPR170W-B, OST5, SFT1, SCEPF1_0274000100, and EPL1 and overexpression of SWC3, ALD2, and HP-2 decreased the viability of W01. CIN5, EPL1, SCEPF1_0274000100, ALD2, and YPR170W-B have all been shown to affect yeast flocculation ability and viability.


Assuntos
Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Floculação , Saccharomyces/genética , Saccharomyces/metabolismo , Genômica , Cerveja/análise , Fermentação
5.
Appl Microbiol Biotechnol ; 107(22): 6937-6947, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37704770

RESUMO

The rapid and efficient consumption of carbon and nitrogen sources by brewer's yeast is critical for the fermentation process in the brewing industry. The comparison of the growth characterizations of typical ale and lager yeast, as well as their consumption preference to carbon and nitrogen sources were investigated in this study. Results showed that the ale strain grew faster and had a more extended stationary phase than the lager strain. However, the lager strain was more tolerant to the stressful environment in the later stage of fermentation. Meanwhile, the ale and lager yeast strains possessed varying preferences for metabolizing the specific fermentable sugar or free amino acid involved in the wort medium. The lager strain had a strong capacity to synthesize the extracellular invertase required for hydrolyzing sucrose as well as a strong capability to metabolize glucose and fructose. Furthermore, the lager strain had an advantage in consuming Lys, Arg, Val, and Phe, whereas the ale strain had a higher assimilation rate in consuming Tyr. These findings provide valuable insights into selecting the appropriate brewer's yeast strain based on the wort components for the industrial fermentation process. KEY POINTS: • The lager strain is more tolerant to the stressful environment. • The lager strain has the great capability to synthesize the extracellular invertase. • The assimilation efficiency of free amino acid varies between ale and lager.

6.
Foods ; 12(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36900579

RESUMO

The perception of hop-derived flavour in beer is not well understood, particularly regarding the effect that different yeast strains and fermentation parameters have on perceived hop aroma and the mechanisms responsible for these changes. To evaluate the influence of yeast strain on the sensory properties and volatile composition of beer, a standard wort, late-hopped with New Zealand Motueka hops (5 g·L-1), was fermented with one of twelve yeast strains under constant conditions (temperature and yeast inoculation rate). The bottled beers were evaluated using a free sorting sensory methodology, and their volatile organic compounds (VOC) were assessed using gas chromatography mass spectrometry (GC/MS) with headspace solid-phase microextraction (SPME) sampling. Beer fermented with SafLager W-34/70 yeast was associated with a hoppy flavour attribute, whereas WY1272 and OTA79 beers were sulfury, and WY1272 was also metallic. WB06 and WLP730 beers were perceived to be spicy, with WB06 beer also perceived as estery, whereas VIN13 beer was sour, and the WLP001 beer was astringent. Beers fermented using the twelve yeast strains had clearly distinct VOC profiles. Beer made with WLP730, OTA29, SPH, and WB06 yeasts had the highest 4-vinylguaiacol levels, which contributed to their spicy attribute. Beer made with W3470 had high levels of nerol, geraniol, and citronellol, which supported its sensory characterisation as being 'hoppy'. This research has illustrated the important role that yeast strain has on modulating hop flavour in beer.

7.
Food Chem ; 405(Pt A): 134861, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36370563

RESUMO

This study evaluated the levels of eight biogenic amines in 59 craft beers of five styles and monitored the changes during beer fermentation, showing that putrescine and tryptamine were the most abundant at maximum values of 46.14 mg/L and 89.97 mg/L, respectively. This research indicated for the first time that dark beer, such as Stout/Porter, displayed the highest total biogenic amine content due to considerable tryptamine accumulation, with a maximum value of 116.95 mg/L. The total biogenic amine level increased gradually during the segmental saccharification and main fermentation stages, representing the two critical control points for their formation during beer fermentation. This study provides a theoretical basis and technical guidance for the safe and standardized production of craft beer and the formulation of biogenic amines limit standards, which is highly significant for protecting the health of consumers.


Assuntos
Cerveja , Aminas Biogênicas , Cerveja/análise , Fermentação , Aminas Biogênicas/análise , Triptaminas/análise , China
8.
Foods ; 11(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36429194

RESUMO

In this study, two dynamic models of beer fermentation are proposed, and their parameters are estimated using experimental data collected during several batch experiments initiated with different sugar concentrations. Biomass, sugar, ethanol, and vicinal diketone concentrations are measured off-line with an analytical system while two on-line immersed probes deliver temperature, ethanol concentration, and carbon dioxide exhaust rate measurements. Before proceeding to the estimation of the unknown model parameters, a structural identifiability analysis is carried out to investigate the measurement configuration and the kinetic model structure. The model predictive capability is investigated in cross-validation, in view of opening up new perspectives for monitoring and control purposes. For instance, the dynamic model could be used as a predictor in receding-horizon observers and controllers.

9.
Food Chem X ; 13: 100193, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35499005

RESUMO

Contamination by Aspergillus sp. and the accumulation of its mycotoxins in food and beverages have a high impact on human health and food safety. This investigation inquires the ability of brewer's yeasts discarded after fermentation (brewing fermentation residue, BFR) to synthesize bioactive compounds and to biocontrol Aspergillus sp. BFRs of Saccharomyces cerevisiae MBELGA62 and Pichia kudriavzevii MBELGA61 proved to have bacteriostatic properties and to be efficient in fungal growth reduction, decreasing the growth rate of Aspergillus flavus and Aspergillus parasiticus up to 37.8% and 42.5%, respectively. Fungal mycelium degradation along with absentia of conidia was detected near the yeast inoculum. Moreover, the yeasts synthesize volatile bioactive compounds that extend Aspergillus sp. lag phase above 100% and decrease fungal growth rates from 20% towards 44%, along with the complete inhibition of conidia synthesis. These results indicate the potential of this residue to be used in biocontrol applications in the food industry.

10.
Food Technol Biotechnol ; 59(1): 16-23, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34084076

RESUMO

RESEARCH BACKGROUND: The production of lager beer includes successive repitchings of a single Saccharomyces pastorianus starter culture. During the beer production process, the yeast is exposed to several stress factors which could affect the fermentation performance. An incomplete fermentation represents a waste of fermentable extract and leads to a beer with higher carbohydrate levels, which could result in a beer with an atypical flavour profile. The aim of the present study is to determine the impact of successive exploitation of a single S. pastorianus starter culture on the wort saccharide uptake dynamics. EXPERIMENTAL APPROACH: The fermentation was monitored during the production of twelve batches of beer, where the starter yeast culture was reused twelve times without any further treatment. The following beer production steps were monitored: wort production, yeast starter culture propagation, primary fermentation, secondary fermentation and the final product. The work was conducted on an industrial scale employing standard process conditions. RESULTS AND CONCLUSIONS: Monitoring of the starter culture viability during successive fermentations indicated no reduction in the viability and vitality of the yeast culture. Monitoring of the fermentable wort saccharide concentrations (glucose, fructose, disaccharides and trisaccharides) revealed a correlation between an improvement in saccharide utilisation and starter culture age. Saccharide uptake efficacy proportionally matched the repitching frequency. Successive exploitation of S. pastorianus starter culture has a positive impact on the dynamics of saccharide utilisation from classical hopped wort and the young beer. Furthermore, the final lager beer contains no residues of fermentable saccharides that could affect the overall quality and flavour profile. NOVELTY AND SCIENTIFIC CONTRIBUTION: Results showed the impact of twelve successive wort fermentations on the dynamics of saccharides uptake that gives brewers important information. The added value of the experiment is all the work done on the industrial scale, with control of all processes and usage of exactly the same raw materials. This study contains usable technological data on the behaviour of saccharides during brewing on the industrial scale, which is not yet found in the literature.

11.
FEMS Yeast Res ; 21(4)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34037755

RESUMO

Yeast flocculation plays an essential role in industrial application. Appropriate flocculation of yeast cells at the end of fermentation benefits the cell separation in production, which is an important characteristic of lager yeast for beer production. Due to the complex fermentation environment and diverse genetic background of yeast strains, it is difficult to explain the flocculation mechanism and find key genes that affect yeast flocculation during beer brewing. By analyzing the genomic mutation of two natural mutant yeasts with stronger flocculation ability compared to the parental strain, it was found that the mutated genes common in both mutants were enriched in protein processing in endoplasmic reticulum, membrane lipid metabolism and other pathways or biological processes involved in stress responses. Further functional verification of genes revealed that regulation of RIM101 and VPS36 played a role in lager yeast flocculation under the brewing condition. This work provided new clues for improving yeast flocculation in beer brewing.


Assuntos
Cerveja/microbiologia , Fermentação , Floculação , Saccharomyces/genética , Evolução Molecular , Genoma Fúngico , Microrganismos Geneticamente Modificados
12.
Front Genet ; 11: 2, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32076433

RESUMO

During beer production, yeast generate ethanol that is exported to the extracellular environment where it accumulates. Depending on the initial carbohydrate concentration in the wort, the amount of yeast biomass inoculated, the fermentation temperature, and the yeast attenuation capacity, a high concentration of ethanol can be achieved in beer. The increase in ethanol concentration as a consequence of the fermentation of high gravity (HG) or very high gravity (VHG) worts promotes deleterious pleiotropic effects on the yeast cells. Moderate concentrations of ethanol (5% v/v) change the enzymatic kinetics of proteins and affect biological processes, such as the cell cycle and metabolism, impacting the reuse of yeast for subsequent fermentation. However, high concentrations of ethanol (> 5% v/v) dramatically alter protein structure, leading to unfolded proteins as well as amorphous protein aggregates. It is noteworthy that the effects of elevated ethanol concentrations generated during beer fermentation resemble those of heat shock stress, with similar responses observed in both situations, such as the activation of proteostasis and protein quality control mechanisms in different cell compartments, including endoplasmic reticulum (ER), mitochondria, and cytosol. Despite the extensive published molecular and biochemical data regarding the roles of proteostasis in different organelles of yeast cells, little is known about how this mechanism impacts beer fermentation and how different proteostasis mechanisms found in ER, mitochondria, and cytosol communicate with each other during ethanol/fermentative stress. Supporting this integrative view, transcriptome data analysis was applied using publicly available information for a lager yeast strain grown under beer production conditions. The transcriptome data indicated upregulation of genes that encode chaperones, co-chaperones, unfolded protein response elements in ER and mitochondria, ubiquitin ligases, proteasome components, N-glycosylation quality control pathway proteins, and components of processing bodies (p-bodies) and stress granules (SGs) during lager beer fermentation. Thus, the main purpose of this hypothesis and theory manuscript is to provide a concise picture of how inter-organellar proteostasis mechanisms are connected with one another and with biological processes that may modulate the viability and/or vitality of yeast populations during HG/VHG beer fermentation and serial repitching.

13.
Food Res Int ; 126: 108587, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31732066

RESUMO

The aim of this study was to evaluate the effect of 15 commercial yeasts in the mitigation of the Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEN) during the brewing process. Saccharomyces strains (10 strains of S. cerevisiae and 5 of S. pastorianus) were used to ferment DON and ZEN contaminated wort. Wort samples were taken every 24 h during fermentation, while mycotoxin analysis in yeast was performed at the end of fermentation (96 h); additionally, pH and ethanol content were measured daily. For mycotoxin analysis, after immunoaffinity purification of sample extracts, analysis was performed using an Ultra-High-Pressure Liquid Chromatograph coupled with a diode array or fluorescence detector (UHPLC-DAD/FLD). Mycotoxin presence had no significant effect on the ethanol production during brewing. At the end of fermentation, 10-17% of DON and 30-70% of ZEN had been removed, 6% of the initial concentration of DON and 31% of the ZEN being adsorbed by the yeast. Beermakers must pay careful attention to the raw material since a high percentage of DON could be present at the end of the beer fermentation process. Future studies should focus on the quantification of "masked" mycotoxins that are relevant to food security.


Assuntos
Fermentação , Fusarium/metabolismo , Micotoxinas/análise , Saccharomyces cerevisiae/metabolismo , Saccharomyces/metabolismo , Tricotecenos/análise , Zearalenona/análise , Cerveja/análise , Cerveja/microbiologia , Cromatografia Líquida de Alta Pressão , Análise de Alimentos , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Reprodutibilidade dos Testes
14.
Appl Environ Microbiol ; 84(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352086

RESUMO

Few data have been published on the occurrence and functional role of acetic acid bacteria (AAB) in lambic beer production processes, mainly due to their difficult recovery and possibly unknown role. Therefore, a novel aseptic sampling method, spanning both the spatial and temporal distributions of the AAB and their substrates and metabolites, was combined with a highly selective medium and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) as a high-throughput dereplication method followed by comparative gene sequencing for their isolation and identification, respectively. The AAB (Acetobacter species more than Gluconobacter species) proliferated during two phases of the lambic beer production process, represented by Acetobacter orientalis during a few days in the beginning of the fermentation and Acetobacter pasteurianus from 7 weeks until 24 months of maturation. Competitive exclusion tests combined with comparative genomic analysis of all genomes of strains of both species available disclosed possible reasons for this successive dominance. The spatial analysis revealed that significantly higher concentrations of acetic acid (from ethanol) and acetoin (from lactic acid) were produced at the tops of the casks, due to higher AAB counts and a higher metabolic activity of the AAB species at the air/liquid interface during the first 6 months of lambic beer production. In contrast, no differences in AAB species diversity occurred throughout the casks.IMPORTANCE Lambic beer is an acidic beer that is the result of a spontaneous fermentation and maturation process. Acidic beers are currently attracting attention worldwide. Part of the acidity of these beers is caused by acetic acid bacteria (AAB). However, due to their difficult recovery, they were never investigated extensively regarding their occurrence, species diversity, and functional role in lambic beer production. In the present study, a framework was developed for their isolation and identification using a novel aseptic sampling method in combination with matrix-assisted laser desorption ionization-time of flight mass spectrometry as a high-throughput dereplication technique followed by accurate molecular identification. The sampling method applied enabled us to take spatial differences into account regarding both enumerations and metabolite production. In this way, it was shown that more AAB were present and more acetic acid was produced at the air/liquid interface during a major part of the lambic beer production process. Also, two different AAB species were encountered, namely, Acetobacter orientalis at the beginning and Acetobacter pasteurianus in a later stage of the production process. This developed framework could also be applied for other fermentation processes.


Assuntos
Ácido Acético/metabolismo , Acetobacter/metabolismo , Cerveja/microbiologia , Gluconobacter/metabolismo , Fermentação , Microbiota
15.
J Sci Food Agric ; 98(2): 618-627, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28664995

RESUMO

BACKGROUND: Beer quality is mainly defined by its colour, foamability and foam stability, which are influenced by the chemical composition of the product such as proteins, carbohydrates, pH and alcohol. Traditional methods to assess specific chemical compounds are usually time-consuming and costly. This study used rapid methods to evaluate 15 foam and colour-related parameters using a robotic pourer (RoboBEER) and chemical fingerprinting using near infrared spectroscopy (NIR) from six replicates of 21 beers from three types of fermentation. Results from NIR were used to create partial least squares regression (PLS) and artificial neural networks (ANN) models to predict four chemometrics such as pH, alcohol, Brix and maximum volume of foam. RESULTS: The ANN method was able to create more accurate models (R2 = 0.95) compared to PLS. Principal components analysis using RoboBEER parameters and NIR overtones related to protein explained 67% of total data variability. Additionally, a sub-space discriminant model using the absorbance values from NIR wavelengths resulted in the successful classification of 85% of beers according to fermentation type. CONCLUSION: The method proposed showed to be a rapid system based on NIR spectroscopy and RoboBEER outputs of foamability that can be used to infer the quality, production method and chemical parameters of beer with minimal laboratory equipment. © 2017 Society of Chemical Industry.


Assuntos
Cerveja/normas , Análise de Alimentos/métodos , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Espectrofotometria Infravermelho/métodos , Algoritmos , Análise de Alimentos/instrumentação
16.
J Ind Microbiol Biotechnol ; 44(3): 397-405, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28154948

RESUMO

Diacetyl causes an unwanted buttery off-flavor in lager beer. The production of diacetyl is reduced by modifying the metabolic pathway of yeast in the beer fermentation process. In this study, BDH2 and ILV5 genes, coding diacetyl reductase and acetohydroxy acid reductoisomerase, respectively, were expressed using a PGK1 promoter in Saccharomyces cerevisiae, which deleted one ILV2 allelic gene. Diacetyl contents and fermentation performances were examined and compared. Results showed that the diacetyl content in beer was remarkably reduced by 16.52% in QI2-KP (one ILV2 allelic gene deleted), 55.65% in QI2-B2Y (overexpressed BDH2 gene and one ILV2 allelic gene deleted), and 69.13% in QI2-I5Y (overexpressed ILV5 gene and one ILV2 allelic gene deleted) compared with the host strain S2. The fermentation ability of mutant strains was similar to that of S2. Results of the present study can lead to further advances in this technology and its broad application in scientific investigations and industrial beer production.


Assuntos
Oxirredutases do Álcool/genética , Diacetil/metabolismo , Deleção de Genes , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Oxirredutases do Álcool/metabolismo , Alelos , Cerveja/análise , Cerveja/microbiologia , Fermentação , Microbiologia de Alimentos , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Food Chem ; 218: 479-486, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27719939

RESUMO

The development and applications of biosensors in the food industry has had a rapid grown due to their sensitivity, specificity and simplicity of use with respect to classical analytical methods. In this study, glucose and ethanol amperometric biosensors integrated with a wireless telemetry system were developed and used for the monitoring of top and bottom fermentations in beer wort samples. The collected data were in good agreement with those obtained by reference methods. The simplicity of construction, the low cost and the short time of analysis, combined with easy interpretation of the results, suggest that these devices could be a valuable alternative to conventional methods for monitoring fermentation processes in the food industry.


Assuntos
Cerveja/análise , Técnicas Biossensoriais/métodos , Etanol/análise , Fermentação , Indústria Alimentícia , Glucose/análise , Telemetria
18.
Talanta ; 131: 366-71, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25281116

RESUMO

The amino acid composition of cultivation broth is known to affect the biomass accumulation, productivity, and vitality of yeast during cultivation. A separation method based on capillary electrophoresis with laser-induced fluorescence (LIF) detection was developed for the determination of amino acid consumption by Saccharomyces cerevisiae during beer fermentation. Intraday relative standard deviations were less than 2.1% for migration times and between 2.9% and 9.9% for peak areas. Interday relative standard deviations were less than 2.5% for migration times and between 4.4% and 18.9% for peak areas. The quantification limit was even as low as 62.5 pM which equals to below attomole level detection. The method was applied to study the rate of amino acid utilization during beer fermentation.


Assuntos
Aminoácidos/análise , Aminoácidos/metabolismo , Cerveja/análise , Eletroforese Capilar/métodos , Fermentação/fisiologia , Lasers , Saccharomyces cerevisiae/metabolismo , Biomassa , Fluorescência , Limite de Detecção , Saccharomyces cerevisiae/crescimento & desenvolvimento
19.
Food Chem ; 155: 279-86, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24594186

RESUMO

This work investigates the capability of Fourier-Transform near infrared (FT-NIR) spectroscopy to monitor and assess process parameters in beer fermentation at different operative conditions. For this purpose, the fermentation of wort with two different yeast strains and at different temperatures was monitored for nine days by FT-NIR. To correlate the collected spectra with °Brix, pH and biomass, different multivariate data methodologies were applied. Principal component analysis (PCA), partial least squares (PLS) and locally weighted regression (LWR) were used to assess the relationship between FT-NIR spectra and the abovementioned process parameters that define the beer fermentation. The accuracy and robustness of the obtained results clearly show the suitability of FT-NIR spectroscopy, combined with multivariate data analysis, to be used as a quality control tool in the beer fermentation process. FT-NIR spectroscopy, when combined with LWR, demonstrates to be a perfectly suitable quantitative method to be implemented in the production of beer.


Assuntos
Cerveja/análise , Tecnologia de Alimentos/métodos , Hypericum/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Leveduras/metabolismo , Cerveja/microbiologia , Fermentação , Hypericum/química , Análise Multivariada
20.
Biotechnol Biotechnol Equip ; 28(2): 277-284, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26019512

RESUMO

Two mathematical models were developed for studying the effect of main fermentation temperature (TMF), immobilized cell mass (MIC) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as the concentration of aldehydes and vicinal diketones, were measured. The results suggested that the process parameters represented a powerful tool in controlling the fermentation time. Subsequently, the optimized process parameters were used to produce beer in laboratory batch fermentation. The system productivity was also investigated and the data were used for the development of another mathematical model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA