Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 228: 113396, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37311269

RESUMO

The fluid nature of lipid bilayers is indispensable for the dynamic regulation of protein function and membrane morphology in biological membranes. Membrane-spanning domains of proteins interact with surrounding lipids and alter the physical properties of lipid bilayers. However, there is no comprehensive view of the effects of transmembrane proteins on the membrane's physical properties. Here, we investigated the effects of transmembrane peptides with different flip-flop-promoting abilities on the dynamics of a lipid bilayer employing complemental fluorescence and neutron scattering techniques. The quasi-elastic neutron scattering and fluorescence experiments revealed that lateral diffusion of the lipid molecules and the acyl chain motions were inhibited by the inclusion of transmembrane peptides. The neutron spin-echo spectroscopy measurements indicated that the lipid bilayer became more rigid but more compressible and the membrane viscosity increased when the transmembrane peptides were incorporated into the membrane. These results suggest that the inclusion of rigid transmembrane structures hinders individual and collective lipid motions by slowing down lipid diffusion and increasing interleaflet coupling. The present study provides a clue for understanding how the local interactions between lipids and proteins change the collective dynamics of the lipid bilayers, and therefore, the function of biological membranes.


Assuntos
Bicamadas Lipídicas , Fosfatidilcolinas , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Membrana Celular/química , Peptídeos/química , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA