RESUMO
Polyunsaturated fatty acids (PUFAs), especially arachidonic acid (ARA) and docosahexaenoic acid (DHA), are extremely important fatty acids for brain development in the fetus and early childhood. Premature infants face challenges obtaining these two fatty acids from their mothers. It has been reported that supplementation with triacylglycerols (TAGs) with an ARA:DHA (w/w) ratio of 2:1 may be optimal for preterm infants, as presented in commercial formulas such as Formulaid™. This study explored methods to produce TAGs with a 2:1 ratio (ARA:DHA), particularly at the more bioavailable sn-2 position of the glycerol backbone. Blending and enzymatic acidolysis of microalgae oil (rich in DHA) and ARA-rich oil yielded products with the desired ARA:DHA ratio, enhancing sn-2 composition compared to Formulaid™ (1.6 for blending and 2.3 for acidolysis versus 0.9 in Formulaid™). Optimal acidolysis conditions were 45 °C, a 1:3 substrate molar ratio, 10% Candida antarctica lipase, and 4 h. The process was reproducible, and scalable, and the lipase could be reused. In vitro digestion showed that 75.5% of the final product mixture was bio-accessible, comprising 19.1% monoacylglycerols, ~50% free fatty acids, 14.6% TAGs, and 10.1% diacylglycerols, indicating better bio-accessibility than precursor oils.
RESUMO
Bread can vary in textural and nutritional attributes based on differences in the bread making process (e.g., flour type, fermentation agent, fermentation time). Four bread recipes (BRs) made with sourdough preferments (BR1, white flour; BR2, whole grain flour) or regular yeast breads (BR3, white flour; BR4, whole grain flour) were evaluated for texture, digestibility, and their effect on the metabolic activity and composition of the gut microbiota using texture profile analysis (TPA) coupled with in vitro upper gastrointestinal (GIT) digestion and colonic fermentation (Colon-on-a-plate™ model), using fecal samples from eight healthy human donors. TPA revealed significantly higher values for hardness, fracturability, gumminess, and chewiness, and significantly lower values for springiness, cohesiveness, and resilience with whole grain versus white breads (all p < 0.001); values for springiness, cohesiveness, and resilience were significantly higher for sourdough versus yeast bread (p < 0.001). Nutrient composition and bioaccessibility were generally comparable between sourdough and yeast bread with similar flours. Following simulation of upper GIT digestion, all BRs demonstrated good digestibility of minerals, carbohydrates, and proteins. Colonic fermentation revealed changes in gut microbiota composition, significant increases in short-chain fatty acids, and a significant decrease in branched short-chain fatty acids with all BRs versus a blank. Overall, new insights into wheat bread digestibility and colonic fermentation were provided, which are important aspects to fully characterize bread nutritional profile and potential.
RESUMO
Vegetables are good sources of essential mineral elements that promote good health and immunity. Information on the nutritional contents of indigenous vegetables is scarce. Therefore, this study sought to ascertain the concentrations of magnesium, manganese, chrome, zinc, copper, and iron in Solanum nigrum and Gynandropsis gynandra indigenous vegetables from two agroecological zones (upper midland and lower highland) of Kisii County, Kenya, using inductively coupled plasma optical emission spectroscopy (ICPâOES). For Gnandropsis gynandra, the most abundant erythrocytic synthesis element was Fe (1856.67 ± 15.28 mg/kg DW) for plants harvested from Nyanchwa (UM), and the least was Cu (8.90 ± 0.44 mg/kg DW) in plants harvested from Kari (LH). In addition, Mg was the hypoglycemic element with the highest concentration (5975.00 ± 10.00 mg/kg DW), and Cr lowest (3.16 ± 0.45 mg/kg DW) in samples harvested from Matongo (UM). For Solanum nigrum, the most erythrocytic synthesis element was Fe (1280.00 ± 10.00 mg/kg DW for samples collected from Kiamabundu (UM), and the least was Cu (9.08 ± 0.15 mg/kg DW) in the samples from Nyanchwa (UM), whereas Mg in samples from Nyabioto (UM) was the hypoglycemic element with the highest concentration (4920.00 ± 10.00 mg/kg DW) and Cr in samples from Mariba (LH had the lowest concentration) (3.95 ± 1.63 mg/kg DW). The concentrations of elements in the two indigenous vegetables from the UM agroecological zone were slightly greater than those in the LH agroecological zone. Nonetheless, the variations observed were not statistically significant (P < 0.05). Enzymatically bio accessed concentrations of iron, zinc, chromium, magnesium, manganese, and copper were higher than those obtained aquatically. The indigenous vegetable bio avails substantial amounts of iron and copper to enable them be used in the management pernicious anaemia; on the other hand, the substantial bio availed levels of zinc, manganese, magnesium, and chromium enables the vegetable to be used in the management of diabetes.
RESUMO
Seaweeds consumption is one of main internal exposure sources of arsenic for human. However, the absence of representative bio-availabilities of arsenic species makes the accurate assessment of arsenic health risk originating from seaweeds consumption impossible. Herein, the arsenic species in various seaweeds collected from Fujian of China were investigated, and the bio-accessibilities/bio-availabilities of arsenic species existing in seaweeds were evaluated in vitro and in vivo. Results revealed that in vitro bio-availabilities of arsenic species presenting in seaweeds, which obtained with Caco-2 cells, were lower than those of pure arsenic standards, and varied with order of inorganic arsenic (iAs) > dimethylarsinic acid (DMA) ≈ arsenobetaine (AsB) > arsenosugars. During gastrointestinal digestion of mice, As5+ was partly methylated into monomethylarsonic acid (MMA) and DMA, which makes the in vivo bioavailability of iAs (â31.8 %) obtained with mouse metabolic experiment is much higher than its in vitro bio-availability (â10.3 %). The in vivo bio-availabilities of DMA and total arsenic (tAs) are similar to their in vitro bio-availabilities. As the dominant arsenic species in most seaweeds, arsenosugars have an â0.0 % of in vivo bioavailability and only a â3.7 % of in vitro bioavailability. The simulated calculation of target hazard quotient (THQ) and target cancer risk (TR) revealed that the arsenic risk originating from seaweeds was greatly degraded by taking into consideration of arsenic species and bio-availabilities, and all seaweeds collected from Fujian are safety for consumption. The simulated calculation also revealed that arsenic risk of seaweeds can be also more accurately assessed based on tAs together with bioavailability, which provides a simple but accurate and protective method for the risk assessment of arsenic originating from seaweeds. Our work provides the possible representative bio-availabilities of arsenic species presenting in seaweeds for accurately assessing arsenic risk of seaweeds, and novel insights into the bio-availabilities of arsenic in animal.
Assuntos
Arsênio , Arsenicais , Alga Marinha , Alga Marinha/química , Medição de Risco , Arsênio/análise , Arsenicais/análise , Camundongos , Humanos , Animais , China , Disponibilidade Biológica , Contaminação de Alimentos/análise , Ácido Cacodílico , Células CACO-2 , Algas ComestíveisRESUMO
Selenium (Se) pollution is mainly caused by anthropogenic activities, and the resulting biosecurity concerns have garnered significant attention in recent years. Using one-compartmental toxicokinetic (TK) modelling, this study explored the kinetic absorption, sub-tissue distribution, and elimination processes of the main Se species (selenate, Se(VI)) in the cultivated aerobic soil of the earthworm Eisenia fetida. The bio-accessibility of earthworm-derived Se was assessed using an in vitro simulated gastrointestinal digestion test to evaluate its potential trophic risk. The results demonstrated that Se accumulated in the pre-clitellum (PC) and total tissues (TT) of earthworms in a time- and dose-dependent manner. The highest Se levels in the PC, post-clitellum (PoC), and TT were 70.54, 57.93, and 64.26â¯mg/kg during the uptake phase, respectively. The kinetic Se contents in the earthworms PC and TT were consistent with the TK model but not with PoC. The earthworm TT exhibited a faster uptake (Kus = 0.83-1.02â¯mg/kg/day) and elimination rate of Se (Kee = 0.044-0.049â¯mg/kg/day), as well as a shorter half-life time (LT1/2 = 15.88-14.22 days) than PC at low soil Se levels (≤5â¯mg/kg). Conversely, the opposite trend was observed with higher Se concentrations (10 and 20â¯mg/kg). These results are likely attributable to the tissue specificity and concentration of the toxicant. Earthworms PC and TT exhibited a higher kinetic Se accumulation factor (BAFk) than steady-state BAF (BAFss), with values ranging from 8 to 24 and 3-13, respectively. Furthermore, the bio-accessibility of earthworm-derived Se to poultry ranged from 66.25â¯% to 84.35â¯%. As earthworms are at the bottom of the terrestrial food chain, the high bio-accessibility of earthworm-derived Se poses a potential risk to predators. This study offers data support and a theoretical foundation for understanding the biological footprint of soil Se and its toxicological impacts and ecological hazards.
Assuntos
Oligoquetos , Selênio , Poluentes do Solo , Toxicocinética , Oligoquetos/efeitos dos fármacos , Oligoquetos/metabolismo , Animais , Poluentes do Solo/toxicidade , Poluentes do Solo/farmacocinética , Selênio/toxicidade , Selênio/farmacocinética , Selênio/análise , Ácido Selênico/toxicidade , Ácido Selênico/farmacocinética , Distribuição Tecidual , Solo/químicaRESUMO
A predigested product from arachidonic acid oil (ARA) and docosahexaenoic acid (DHA) oil in a 2:1 (w/w) ratio has been developed and evaluated in an in vitro digestion model. To produce this predigested lipid mixture, first, the two oils were enzymatically hydrolyzed up to 90% of free fatty acids (FFAs) were achieved. Then, these two fatty acid (FA) mixtures were mixed in a 2:1 ARA-to-DHA ratio (w/w) and enzymatically esterified with glycerol to produce a mixture of FFAs, mono-, di-, and triacylglycerides. Different glycerol ratios and temperatures were evaluated. The best results were attained at 10 °C and a glycerol-to-FA molar ratio of 3:1. The bio-accessibility of this predigested mixture was studied in an in vitro digestion model. A total of 90% of the digestion product was found in the micellar phase, which contained 30% monoacylglycerides, more than 50% FFAs, and a very small amount of triacylglycerols (3% w/w). All these data indicate an excellent bio-accessibility of this predigested mixture.
Assuntos
Ácido Araquidônico , Digestão , Ácidos Docosa-Hexaenoicos , Ácidos Docosa-Hexaenoicos/química , Ácido Araquidônico/metabolismo , Glicerol/química , Temperatura , Hidrólise , Triglicerídeos/química , Animais , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/química , HumanosRESUMO
This study has redirected focus towards the untapped potential of millets, exploring their utilization as small-scale vegetables like sprouts and microgreens. This study assessed the metabolite profiles and therapeutic efficacy of barnyard millets as sprouts and microgreens for antioxidant, anti-diabetic, and bioaccessibility properties. Based on the study, sprouts contained 456.52 mg GE/g of starch and microgreens contained 470.04 mg GE/g of carbohydrates, whereas the gastric phase of microgreens showed 426.85 mg BSAE/g, 397.6 mg LE/g, 348.19 g RE/g, and 307.40 g AAE/g of proteins, amino acids, vitamin A and vitamin C respectively. Secondary metabolites were significantly concentrated in the microgreen stage which is responsible for their increased antioxidant and antidiabetic potential than sprouts. This study validated the therapeutic and nutritional value of millet sprouts and microgreens by demonstrating their significant nutritional composition.
Assuntos
Antioxidantes , Echinochloa , Antioxidantes/metabolismo , Echinochloa/química , Hipoglicemiantes , Vitaminas , ProteínasRESUMO
Astaxanthin accumulation in Haematococcus pluvialis typically occurs alongside the formation of secondary cell wall (SCW), hindering astaxanthin extraction and bio-accessibility. A potential solution lies in cultivating astaxanthin-rich motile cells lacking SCW. This study explored the influence and underlying mechanism of nitrogen-deprivation (ND) on SCW formation and established a connection between pyrimidine metabolism and SCW development. Then, various pyrimidine and ND combinations were examined to cultivate astaxanthin-rich motile cells. The results indicated that, compared to the nitrogen-replete group, the combination of uridine and ND increased the proportion of motile cells by 25-33 times, achieving 95 %, and enhanced astaxanthin yield by 26.52 %. Moreover, the efficiency of astaxanthin extraction from intact, wet motile cells was 91 % - 95 %, which was 5.6-9.0 times that from non-motile cells. This study not only presents a promising method for producing astaxanthin-rich motile cells in H. pluvialis but also provides insights into the relationship between pyrimidine metabolism and SCW development.
Assuntos
Clorofíceas , Clorófitas , Clorófitas/metabolismo , Uridina/metabolismo , Nitrogênio/metabolismo , XantofilasRESUMO
Sixty-eight paired samples of urban surface dust and soil as well as four samples of atmospheric dustfall were collected from the arid city of Urumqi in Northwest China. Thirteen organophosphate esters (OPEs) in these samples were analyzed for the characteristics, sources, bio-accessibility, and health risks of OPEs. The studied OPEs were widely detected in the urban surface dust, soil, and dustfall, with Σ13OPEs (total concentration of 13 OPEs) of 1362, 164.0, and 1367 ng/g, respectively, dominated by tris(2-chloroethyle) phosphate (TCEP), tri(2-chloroisopropyl) phosphate (TCiPP), tri(1, 3-dichloroisopropyl) phosphate (TDCiPP) and tris(2-butoxyethyl) phosphate (TBOEP), TBOEP and tri(2-ethylhexyl) phosphate (TEHP), and TCEP, TCiPP, TBOEP, triphenyl phosphate and TEHP, respectively. The low and high frequency magnetic susceptibility of surface dust and urban soil might indicate the pollution of OPEs in them. Elevated levels of the Σ13OPEs in the surface dust and urban soil were found in the west, south, and northeast of Urumqi city. The total deposition flux of dustfall-bound 13 OPEs ranged from 86.5 to 143 ng/m2/day, with a mean of 105 ng/m2/day. OPEs in the surface dust and urban soil were associated with the emissions of indoor and outdoor products containing OPEs, the dry and wet deposition of atmosphere, and the emissions of traffic. Trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tri-isobutyl phosphate, TCEP, TCiPP, TDCiPP, and TBOEP in surface dust and urban soil had relatively high bio-accessibility. The bio-accessibility of OPEs was mainly affected by the physio-chemical properties of OPEs. The non-cancer and cancer risks of human exposure to OPEs in surface dust and urban soil were relatively low or negligible. The current research results may provide scientific supports for prevention and control of pollution and risks of OPEs.
Assuntos
Poeira , Retardadores de Chama , Fosfinas , Humanos , Poeira/análise , Monitoramento Ambiental/métodos , Solo , Ésteres/análise , Retardadores de Chama/análise , Organofosfatos/análise , China , FosfatosRESUMO
The ability of an organism to biomethylate toxic inorganic arsenic (As) determines both, the amount of As available for uptake higher up the food chain and the toxicity of bioavailable As. An exposure study was conducted to determine ability of farmed crickets to metabolize dietary arsenate. Crickets were exposed to 1.3 ± 0.1, 5.1 ± 2.5 and 36.3 ± 5.6 mg kg-1 dietary arsenate and quantitation of total As showed retention of 0.416 ± 0.003, 1.3 ± 0.04 and 2.46 ± 0.09 mg kg-1, respectively. Speciation analysis revealed that crickets have well developed ability to biomethylate dietary arsenate and the most abundant methylated As compound was DMA followed by MMA, TMAO and an unknown compound. Arsenobetaine, although present in all feed, control and As-rich, was measured only in the control crickets. To assess the bio-accessibility of the As species, crickets were subjected to simulated gastrointestinal digestion. The results showed that majority of As was extracted in saliva, followed by gastric and intestinal juice, which mass fraction was equal to residue. Over 78% of total As was shown to be bio-accessible with methylated species reaching 100% and iAs over 79% bio-accessibility. Additionally, arsenite and arsenate have shown different distributions between sequential leachate solutions. Bioaccumulation of As was observed in the studied crickets although it does not seem to occur to the same extent at higher exposure levels.
Assuntos
Intoxicação por Arsênico , Arsênio , Arsenicais , Críquete , Humanos , Arseniatos/toxicidade , Arsênio/análise , Arsenicais/análise , MetilaçãoRESUMO
As natural antioxidants added to meat products, polyphenols can interact with proteins, and the acid-base environment influenced the extent of non-covalent and covalent interactions between them. This study compared the bio-functional characteristics and metabolic outcomes of the myofibrillar protein-chlorogenic acid (MP-CGA) complexes binding in different environments (pH 6.0 and 8.5). The results showed that CGA bound with MP significantly enhanced its antioxidant activity and inhibitory effect on metabolism enzymes. CGA bound deeply into the MP structure hydrophobic cavity at pH 6.0, which reduced its degradation by digestive enzymes, thus increasing its bio-accessibility from 59.5% to 71.6%. The digestion products of the two complexes exhibited significant differences, with the non-covalent MP-CGA complexes formed at pH 6.0 showing significantly higher concentrations of rhetsinine and piplartine, two well-known compounds to modulate diabetes. This study demonstrated that non-covalent binding between protein and polyphenol in the acidic environment held greater promising prospects for improving health.
Assuntos
Ácido Clorogênico , Diabetes Mellitus , Humanos , Ácido Clorogênico/química , Polifenóis/química , Antioxidantes/química , DigestãoRESUMO
Pineapple-peel-based chitosan film was employed to extend the shelf life of Indian Cottage Cheese, commonly termed "paneer" in the Indian subcontinent. Pineapple peel extracts (PPE) at 3 different concentrations (1-3 %) were incorporated into the chitosan matrix. In comparison to control samples (unpacked paneer), packaged paneer samples exhibited reduced weight loss, lipid peroxidation, and pH changes. The microbiological shelf life of paneer got extended till 9th day at 4 °C when packaged in chitosan-PPE films. Korsmeyer-Peppas's model suggested that the release of polyphenols from the chitosan-PPE film followed Fickian diffusion. As per sensory evaluation on a 9-point hedonic scale, packaged paneer samples were superior in juiciness, texture, color, flavor, and overall acceptability compared to unpackaged paneer samples. As compared to the control sample (CS), the overall acceptance was higher for the film with 1 % pineapple peel extract (CS PPE 1), followed by films with 2 % and 3 % pineapple peel extracts (CS-PPE 2 and CS-PPE 3). The bio-accessibility study utilized the dynamic gastric model to simulate digestion in the upper gastrointestinal tract and revealed 40-60 % recovery rate of polyphenols from the chitosan-pineapple peel film.
Assuntos
Ananas , Queijo , Quitosana , Antioxidantes , Polifenóis , Extratos VegetaisRESUMO
With their rich history dating back 6000 years, figs are one of the oldest known plants to mankind and are a classical fruit in the Mediterranean diet. They possess a diverse array of bioactive components, including flavonoids, phenolic acids, carotenoids, and tocopherols, which have been used for centuries in traditional medicine for their health-promoting effects addressing gastrointestinal, respiratory, inflammatory, metabolic, and cardiovascular issues. This review summarizes the updated information on the phenolic composition, antioxidant capacity and other functional properties of fresh and dried figs cultivated in various parts of the world, highlighting variation in phenolic composition based on cultivar, harvesting time, maturity stage, processing, and fig parts. Additionally, the review delves into the bio-accessibility and bio-availability of bioactive components from figs and their potential influence on cardiovascular health, diabetes, obesity, and gut/digestive health. Data suggest that the intake of figs regularly in the diet, alone or with other dried fruits, increases select micronutrient intake and is associated with higher diet quality, respectively. Research in animal and human models of health and disease risk provide preliminary health benefits data on figs and their extracts from fig parts; however, additional well-controlled human studies, particularly using fig fruit, will be required to uncover and verify the potential impact of dietary intake of figs on modern day health issues.
Assuntos
Ficus , Animais , Humanos , Ficus/química , Frutas/química , Dieta , Antioxidantes/análise , Compostos Fitoquímicos/químicaRESUMO
Polyphenols are plant-based compounds famous for their positive impact on both human health and the quality of food products. The benefits of polyphenols are related to reducing cardiovascular diseases, cholesterol management, cancers, and neurological disorders in humans and increasing the shelf life, management of oxidation, and anti-microbial activity in food products. The bioavailability and bio-accessibility of polyphenols are of the highest importance to secure their impact on human and food health. This paper summarizes the current state-of-the-art approaches on how polyphenols can be made more accessible in food products to contribute to human health. For example, by using food processing methods including various technologies, such as chemical and biotechnological treatments. Food matrix design and simulation procedures, in combination with encapsulation of fractionated polyphenols utilizing enzymatic and fermentation methodology, may be the future technologies to tailor specific food products with the ability to ensure polyphenol release and availability in the most suitable parts of the human body (bowl, intestine, etc.). The development of such new procedures for utilizing polyphenols, combining novel methodologies with traditional food processing technologies, has the potential to contribute enormous benefits to the food industry and health sector, not only reducing food waste and food-borne illnesses but also to sustain human health.
RESUMO
Food additives are used to enhance freshness, safety, appearance, flavour, and texture of food. Depending on the absorbed dose, exposure method, and length of exposure, heavy metals in diet may have a negative impact on human health. The X-Ray Fluorescence (XRF) Analyzer from Niton Thermo Scientific (Mobile Test S, NDTr-XL3t-86956, com 24) was used in this work to measure the heavy metal content in saltpetre, a food additive that mostly contains potassium nitrate. The average essential metal concentrations in the samples were determined to be 27044.27 ± 10905.18 mg kg-1, 24521.10 ± 6564.28 mg kg-1, 2418.33 ± 461.50 mg kg-1, and 4.615 ± 3.59 mg kg-1 for Ca, K, Fe and Zn respectively. Toxic metals (As, Pb) were present in the saltpetre samples at 4.13 ± 2.47 mg kg-1 and 2.11 ± 1.87 mg kg-1 average concentrations. No traces of mercury or cadmium were detected. Studies on exposure, health risks, and bio-accessibility identified arsenic as a significant risk factor for potential illnesses. The need to monitor heavy metal content of saltpetre and any potential health effects on consumers is brought to light by this study.
RESUMO
The main purpose of this study was to compare the antioxidant and anticancer activities of lycopene samples with different ratios of Z-isomers. Lycopene samples containing 5%, 30%, and 55% Z-isomers were successfully prepared by using thermal treatment combined with anti-solvent crystallization. The in vitro bio-accessibility of lycopene was estimated by the determination of partition factor (PF) and the results showed that lycopene with 55% Z-isomers possessed the highest bio-accessibility. Moreover, DPPH and ABTS assays suggested that the antioxidant activity of lycopene increased with the Z-isomers content from 5% to 55%. However, lycopene inhibited the survival of human hepatocellular carcinoma cells (HepG2) in a dose and time-dependent manner. The highest inhibition of HepG2 cell lines was achieved by 55% Z-ratio of lycopene. The cell viability was 22.54% at 20 µg/mL after incubating for 24 h, the number of cells was significantly reduced and the morphology was shrunk. Furthermore, molecular docking was introduced to compare the binding ability between different lycopene isomers with Scavenger Receptor class B type I (SR-BI), and the results revealed that the affinity of (all-E)-lycopene with SR-BI was lower compared to 5Z-lycopene and 13Z-lycopene, providing the reasons for different bioavailability of the above-mentioned lycopene isomers. All the above results demonstrated that Z-isomers-rich lycopene could enhance bio-accessibility and biological functionality.
RESUMO
Risk assessment of human exposure to bisphenols (BPs) including bisphenol A, S, F and AF (BPA, BPS, BPF and BPAF) have suggested that except for ingestion, health risk resulting from dermal contact is not negligible. However, the absorption kinetics of BPA substitutes in humans following dermal exposure have been poorly studied. This study aimed to address the knowledge gap in physiologically based pharmacokinetic (PBPK) modeling of BPA and its high-concerned substitutes (BPS, BPF and BPAF) following dermal administration. Parallel-layered skin compartmental model for dermal absorption of BPs was for the first time proposed and human dermal administration studies were conducted to determine dermal bio-accessibility of BPS from thermal paper (TP) (n = 4), BPF (n = 4) and BPAF (n = 5) from personal care products (PCPs). Further, pharmacokinetics of BPS and its metabolites following human handling TP were investigated and the dermal PBPK models for BPA and BPS were validated using the available human biomonitoring data. Overall, 28.03 % ± 13.76 % of BPS in TP was transferred to fingers followed by absorption of 96.17 % ± 2.78 % of that. The dermal bio-accessibilities of BPs in PCPs were 31.65 % ± 2.90 % for BPF and 12.49 % ± 1.66 % for BPAF. Monte Carlo analysis indicated that 90 % of the predicted variability fell within one order of magnitude, which suggested that the developed PBPK models had medium uncertainty. Global sensitivity analysis revealed that the model uncertainty is mainly attributed to the variabilities of dermal absorption parameters. Compared with the previous models for BPs, the developed dermal PBPK models were capable of more accurate predictions of the internal dose metric in target organs following human dermal exposure to BPs via TP and PCPs routes. These results suggested that the developed human dermal PBPK models would provide an alternative tool for assessing the risk of human exposure to BPs through dermal absorption.
Assuntos
Compostos Benzidrílicos , Fenóis , Humanos , Administração Cutânea , PeleRESUMO
Grain, vegetable, and fruit samples were collected from Xi'an City in Northwest China and analyzed for the characteristics, bio-accessibility, and dietary exposure of 22 phthalic acid esters (PAEs). All the studied PAEs were ubiquitously detected, except for diethyl phthalate in vegetables and fruits. In grains, the sum of detectable PAEs (∑22PAEs) varied between 0.0840 and 40.0 µg/g, with a mean of 4.19 µg/g, presenting rice > > beans > flour, and the major PAEs were di-n-butyl phthalate (DnBP) and bis(2-ethylhexyl) phthalate (DEHP). In vegetables, the ∑21PAEs ranged from 0.190 to 56.8 µg/g, with a mean of 8.07 µg/g, exhibiting leafy vegetables > root vegetables > fruits-vegetables > fungus > cauliflower > beans, and the main PAEs were di-iso-butyl phthalate (DiBP), DnBP, DEHP, di-iso-nonyl phthalate (DiNP), and di-iso-decyl phthalate (DiDP). In fruits, the ∑21PAEs varied between 0.300 and 12.6 µg/g, with a mean of 3.97 µg/g, presenting spring-winter season fruits > summer-autumn season fruits and shell-less fruits > shelled fruits, and the predominant PAEs were DiBP, DnBP, DEHP, DiNP, and DiDP. The bio-accessibility of PAEs in the gastrointestinal fluid simulant was higher than that in the single gastric or intestinal fluid simulant. The bio-accessibility of PAEs was correlated with the physiochemical properties of PAEs. The estimated daily intakes (EDIs) of human dietary exposure to PAEs were lower than the reference doses of United States Environmental Protection Agency and the tolerable dairy intakes (TDIs) of European Food Safety Authority (EFSA), except for the EDI of DnBP in the grains and DiBP in the vegetables higher than or close to the TDI of the EFSA. The research suggested that special attention should be paid to human dietary exposure to DnBP and DiBP, especially for children and adolescents.
Assuntos
Dietilexilftalato , Fabaceae , Ácidos Ftálicos , Criança , Humanos , Adolescente , Verduras , Dietilexilftalato/análise , Frutas/química , Exposição Dietética , Ácidos Ftálicos/análise , Dibutilftalato/análise , Ésteres/análise , ChinaRESUMO
Microalgae have emerged as novel sources for monogastric animals' diets since they are rich in many nutrients, including proteins. Arthrospira platensis is particularly rich in proteins (up to 76% of dry matter), lipids, minerals and pigments. However, its rigid peptidoglycan cell wall interferes with the digestibility, bio-accessibility and bioavailability of nutrients for monogastric animals. The aim of the present study was to evaluate the digestibility, bio-accessibility, bioavailability and protein quality of nutrients from A. platensis for poultry and swine feeding, searching all the studies available in PubMed, Web of Science, Scopus and Google Scholar in June 2022 concerning this subject. Overall, digestibility values of A. platensis proteins or amino acids varying from 66.1 to 68.7% for poultry (microalgae at 1% feed) and from 75.4 to 80.6% for swine (10% feed) have been reported. Therefore, the extraction of microalgae components using mechanical or non-mechanical pre-treatments is required to promote cell disruption and improve digestibility and bio-accessibility. Although A. platensis is a promising feedstuff to support future needs, it is important to perform more investigation concerning digestibility, dietary inclusion level and possible treatments to disrupt microalga cell walls and increase bioavailability of nutrients.
RESUMO
BACKGROUND: Fish are the primary source of protein and docosahexaenoic acid (DHA) for pregnant women and children, but methylmercury (MeHg) pollution is the potential hazard of fish consumption. In risk assessments, the bio-accessibility of MeHg is usually assumed to be 100%, which could lead to overestimation of dietary exposure. METHOD: An existing PBTK model was adapted to estimate parameters of the bio-accessibility based on MeHg exposure data from a cohort of 397 Chinese pregnant women. The posterior distributions of parameters were determined by using the ABC - MCMC. RMSEP and Spearman's rank correlation coefficients (Rho) were calculated to determine the goodness of model fitting. The Monte Carlo analysis was performed for the parameter distributions to estimate the model variability. RESULT: The median of daily MeHg intake and maternal MeHg levels were 0.018 µg/kg bw and 3.01 µg/kg in the early and middle terms of pregnancy. The estimated bio-accessibility of freshwater fish, marine fish and others were 46.1, 17.3 and 58.2%, separately. The RMSEP improved from 11.18 to 2.54 and the Rho improved from 0.19 to 0.22 after bio-accessibility optimization. The model variability was estimated to be 2.6. CONCLUSION: The bio-accessibility estimated in this study was comparable to that determined in previous in vitro studies. The optimized model could improve the prediction performance on the MeHg body burden by dietary exposure.