Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.112
Filtrar
1.
Food Chem ; 454: 139798, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38823201

RESUMO

Ingestion of fermented foods impacts human immune function, yet the bioactive food components underlying these effects are not understood. Here, we interrogated whether fermented food bioactivity relates to microbial metabolites derived from aromatic amino acids, termed aryl-lactates. Using targeted metabolomics, we established the presence of aryl-lactates in commercially available fermented foods. After pinpointing fermented food-associated lactic acid bacteria that produce high levels of aryl-lactates, we identified fermentation conditions to increase aryl-lactate production in food matrices up to 5 × 103 fold vs. standard fermentation conditions. Using ex vivo reporter assays, we found that food matrix conditions optimized for aryl-lactate production exhibited enhanced agonist activity for the human aryl-hydrocarbon receptor (AhR) as compared to standard fermentation conditions and commercial products. Reduced microbial-induced AhR activity has emerged as a hallmark of many chronic inflammatory diseases, thus we envision strategies to enhance AhR bioactivity of fermented foods to be leveraged to improve human health.

2.
Nat Prod Res ; : 1-10, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824663

RESUMO

Plants have gained great importance. Secondary metabolites contribute to the drug discovery and development by their bioactive properties. Rubia tinctorum L. essential oil (EO) was obtained and analysed. Antioxidant and antibacterial activities were evaluated. The plant's EOs were obtained through steam distillation, and the compounds were identified using gas chromatography-mass spectrometry (GC-MS) analysis. DPPH free radical scavenging and ferric-reducing antioxidant power (FRAP) were employed to assess antioxidant activity. Total antioxidant capacity (TAC) was also presented. The disc diffusion method was employed for testing antibacterial activity. Cyclohexanone was identified as the predominant component in the EO, constituting 88.74% of the total composition. The EO did not show significant antioxidant capacity, while it demonstrated antimicrobial effect against Bacillus cereus ATCC 6633 (>13 mm of inhibition; 500 mg/mL) and Shigella ATCC 12022 (≥12 mm of inhibition; 500 mg/mL). R. tinctorum L. is new source of cyclohexanone.

3.
Int J Biol Macromol ; : 132813, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825276

RESUMO

Bionanocomposite films of three biopolymers including chitosan, gelatin, and pectin incorporated with rosemary essential oil (REO) were developed and characterized in terms of their physical, structural, mechanical, morphological, antioxidant, and antimicrobial properties. Incorporation of REO showed an increase hydrophobic nature thus, improved water vapor transmission rate (WVTR), tensile strength (TS), elongation-at-break (EAB), and thermal stability significantly (P ≤ 0.05) as compared to the control films. The addition of REO leads to more opaque films with relatively increased microstructural heterogeneity, resulting in an increase in film opacity. Fourier transform infrared spectroscopy (FTIR) and particle size revealed that REO incorporation exhibits high physicochemical stability in chitosan, gelatin, and pectin bionanocomposite films. Incorporation of REO exhibited the highest inhibitory activity against the tested pathogenic strains (Bacillus subtilis and Escherichia coli). Furthermore, the addition of REO increased the inhibitory activity of films against ABTS and DPPH free radicals. Therefore, chitosan, gelatin, and pectin-based bionanocomposite films containing REO as food packaging could act as a potential barrier to extending food shelf life.

4.
Biotechnol Bioeng ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837342

RESUMO

Injectable, tissue mimetic, bioactive, and biodegradable hydrogels offer less invasive regeneration and repair of tissues. The monitoring swelling and in vitro degradation capacities of hydrogels are highly important for drug delivery and tissue regeneration processes. Bioactivity of bone tissue engineered constructs in terms of mineralized apatite formation capacity is also pivotal. We have previously reported in situ forming chitosan-based injectable hydrogels integrated with hydroxyapatite and heparin for bone regeneration, promoting angiogenesis. These hydrogels were functionalized by glycerol and pH to improve their mechano-structural properties. In the present study, functionalized hybrid hydrogels were investigated for their swelling, in vitro degradation, and bioactivity performances. Hydrogels have degraded gradually in phosphate-buffered saline (PBS) with and without lysozyme enzyme. The percentage weight loss of hydrogels and their morphological and chemical properties, and pH of media were analyzed. The swelling ratio of hydrogels (55%-68%(wt), 6 h of equilibrium) indicated a high degree of cross-linking, can be suitable for controlled drug release. Hydrogels have gradually degraded reaching to 60%-70% (wt%) in 42 days in the presence and absence of lysozyme, respectively. Simulated body fluid (SBF)-treated hydrogels containing hydroxyapatite-induced needle-like carbonated-apatite mineralization was further enhanced by heparin content significantly.

5.
Int J Biol Macromol ; : 132846, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38834111

RESUMO

Skin is the first barrier of body which stands guard for defending aggressive pathogens and environmental pressures all the time. Cutaneous metabolism changes in harmful exposure, following with skin dysfunctions and diseases. Lots of researches have reported that polysaccharides extracted from seaweeds exhibited multidimensional bioactivities in dealing with skin disorder. However, few literature systematically reviews them. The aim of the present paper is to summarize structure, bioactivities and structure-function relationship of algal polysaccharides acting on skin. Algal polysaccharides show antioxidant, immunomodulating, hydration regulating, anti-melanogenesis and extracellular matrix (ECM) regulating abilities via multipath ways in skin. These bioactivities are determined by various parameters, including seaweed species, molecular weight, monosaccharides composition and substitute groups. In addition, potential usages of algae-derived polysaccharides in skin care and therapy are also elaborated. Algal polysaccharides are potential ingredients in formulation that providing anti-aging efficacy for skin.

6.
Biosci Rep ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836325

RESUMO

Natural and synthetic polymeric materials, particularly soft and hard tissue replacements, are paramount in medicine. We prepared calcium-incorporated sulfonated polyether-ether ketone (SPEEK) polymer membranes for bone applications.  The bioactivity was higher after 21 days of immersion in simulated body fluid (SBF) due to calcium concentration in the membrane.  We present a new biomaterial healing system composed of calcium and sulfonated polyether ether ketone (Ca-SPEEK) that can function as a successful biomaterial without causing inflammation when tested on bone marrow cells. The Ca-SPEEK exhibited 13±0.5% clot with low fibrin mesh formation compared to 21±0.5% in SPEEK. In addition, the Ca-SPEEK showed higher protein adsorption than SPEEK membranes. As an inflammatory response, IL-1 and TNF-α in the case of Ca-SPEEK were lower than those for SPEEK. We found an early regulation of IL-10 in the case of Ca-SPEEK at 6-h, which may be attributed to the down-regulation of the inflammatory markers IL-1 and TNF-. These results evidence the innovative bioactivity of Ca-SPEEK with low inflammatory response, opening venues for bone applications.

8.
Heliyon ; 10(10): e31443, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38831831

RESUMO

The objective of this study was to evaluate the antioxidant capacity by spectrophotometric methods, the in vitro and in vivo antifungal effect against Lasiodiplodia theobromae and the constitution of the essential oils (EO) of oregano and thyme in comparison with their commercial counterparts. The results showed by the EOs of extracted thyme (T-EO), commercial thyme (CT-EO), extracted oregano (O-EO) and commercial oregano (CO-EO), demonstrated antioxidant profiles with a radical neutralizing potential (DPPH•) of IC50: 1.11 ± 0.019; 1.08 ± 0.05; 40.56 ± 0.227 and 0.69 ± 0.004 mg/mL, respectively. They also revealed a ferric ion reducing capacity (FRAP) of 93.05 ± 0.52; 97.72 ± 0.42; 21.85 ± 0.57 and 117.24 ± 0.64 mg Eq Trolox/g. A reduction in ß-carotene degradation of 65.71 ± 0.04; 51.97 ± 0.66; 43.58 ± 1.56 and 57.46 ± 1.56 %. A total phenol content (Folin-Ciocalteu) of 132.97 ± 0.77; 141.89 ± 2.56; 152.04 ± 0.10 and 25.66 ± 0.40 mg EGA/g. Chemical characterization performed by gas chromatography mass spectrometry (GC-MS) showed that the respective major components of the samples were thymol (T-EO: 45.78 %), thymol (CT-EO: 43.57 %), alloaromadendrene (O-EO: 25.17 %) and carvacrol (CO-EO: 62.06 %). Regarding antifungal activity, it was evident that at the in vitro level, both commercial EOs had a MIC of 250 ppm while the extracted thyme EO had a MIC of 500 ppm; In vivo studies demonstrated that the application of thyme EO had a behavior similar to the synthetic fungicide, slowing down rot in bananas under storage conditions. Finally, partial least squares discriminant analysis (PLS-DA) and heat maps suggest p-cymene, carvacrol, linalool, eucalyptol, 4-terpineol, (z)-ß-terpineol, alkanhol, caryophyllene, ß-myrcene, d-limonene, α-terpinene, α-terpineol, d-α-pinene, camphene, caryophyllene oxide, δ-cadinene, terpinolene and thymol as relevant biomarkers associated with the assessed bioactive properties demonstrating the potential of extracted essential oils for the development of a botanical biofungicide.

9.
Compr Rev Food Sci Food Saf ; 23(4): e13386, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38847753

RESUMO

Glutamine, the most abundant amino acid in the body, plays a critical role in preserving immune function, nitrogen balance, intestinal integrity, and resistance to infection. However, its limited solubility and instability present challenges for its use a functional nutrient. Consequently, there is a preference for utilizing glutamine-derived peptides as an alternative to achieve enhanced functionality. This article aims to review the applications of glutamine monomers in clinical, sports, and enteral nutrition. It compares the functional effectiveness of monomers and glutamine-derived peptides and provides a comprehensive assessment of glutamine-derived peptides in terms of their classification, preparation, mechanism of absorption, and biological activity. Furthermore, this study explores the potential integration of artificial intelligence (AI)-based peptidomics and synthetic biology in the de novo design and large-scale production of these peptides. The findings reveal that glutamine-derived peptides possess significant structure-related bioactivities, with the smaller molecular weight fraction serving as the primary active ingredient. These peptides possess the ability to promote intestinal homeostasis, exert hypotensive and hypoglycemic effects, and display antioxidant properties. However, our understanding of the structure-function relationships of glutamine-derived peptides remains largely exploratory at current stage. The combination of AI based peptidomics and synthetic biology presents an opportunity to explore the untapped resources of glutamine-derived peptides as functional food ingredients. Additionally, the utilization and bioavailability of these peptides can be enhanced through the use of delivery systems in vivo. This review serves as a valuable reference for future investigations of and developments in the discovery, functional validation, and biomanufacturing of glutamine-derived peptides in food science.


Assuntos
Glutamina , Peptídeos , Glutamina/química , Peptídeos/química , Humanos , Animais
10.
Oral Maxillofac Surg ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722427

RESUMO

OBJECTIVE: In this study, the developed bioactive dental implant (BDI) from epoxy resin (ER), hydroxyapatite (HA), and curcumin nanoparticles (CUNPs). MATERIALS AND METHODS: The prepared BDI were characterized using their physicochemical, mechanical, antimicrobial, bioactive, and biocompatibility study. The scanning electron microscopy (SEM) morphology of the BDI was observed HA mineralized crystal layer after being immersed in the stimulated body fluids (SBF) solution. RESULTS: The mechanical properties of the BDI exhibited tensile strength (250.61 ± 0.43 MPa), elongation at break (215.66 ± 0.87%), flexural modulus (03.90 ± 0.12 GPa), water absorption (05.68 ± 0.15%), and water desorption (06.42 ± 0.14%). The antimicrobial activity of BDI was observed in excellent zone of inhibition against the gram-negative (15.33 ± 0.04%) and gram- positive (15.98 ± 0.07%) bacteria. The biocompatibility study of BDI on osteoblasts cell line (MG-63) was analyzed using MTT (3-[4, 5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The results were observed 85% viable cells present in the BDI compared to the control (only ER) samples. CONCLUSIONS: Based on the research outcome, the BDI could be used for biomaterials application, particularly tooth dental implantation.

11.
Arch Pharm (Weinheim) ; : e2400082, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724255

RESUMO

As the main active compound of Glycyrrhiza glabra L., glabridin (GLD) has been shown to have multiple bioactivities, whereas the clinical application of GLD is restricted by its low water solubility. In this study, GLD was encapsulated into a sulfobutylether-ß-cyclodextrin (SBE-ß-CD)-based inclusion complex (SBE-ß-CD/GLD) by the freeze-drying method. The materials characterization, antibacterial activity, stimulated cellular behavior and in vivo full-thickness diabetic wound healing ability of the hydrogels were assessed and analyzed. The successful encapsulation of the inclusion complex was confirmed by ultraviolet (UV) visible spectroscopy, Fourier transform infrared (FT-IR), X-ray diffractometer (XRD), scanning electron microscope (SEM), and nuclear magnetic resonance (NMR). SBE-ß-CD as an excipient significantly enhances the water solubility of GLD, and SBE-ß-CD/GLD showed excellent biocompatibility on human vascular endothelial cells (HUVECs) and erythrocytes. The SBE-ß-CD/GLD inclusion complex exerted a pronounced antibacterial activity on Staphylococcus aureus and Escherichia coli in vitro. The SBE-ß-CD/GLD inclusion complex markedly enhanced the antioxidant activity compared with free GLD. The SBE-ß-CD/GLD inclusion complex potently accelerates the healing of full-thickness skin defects by inhibiting inflammation. The outcomes suggest that SBE-ß-CD could be used as a promising drug delivery system for the clinical application of GLD.

12.
Arch Toxicol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695895

RESUMO

Grouping/read-across is widely used for predicting the toxicity of data-poor target substance(s) using data-rich source substance(s). While the chemical industry and the regulators recognise its benefits, registration dossiers are often rejected due to weak analogue/category justifications based largely on the structural similarity of source and target substances. Here we demonstrate how multi-omics measurements can improve confidence in grouping via a statistical assessment of the similarity of molecular effects. Six azo dyes provided a pool of potential source substances to predict long-term toxicity to aquatic invertebrates (Daphnia magna) for the dye Disperse Yellow 3 (DY3) as the target substance. First, we assessed the structural similarities of the dyes, generating a grouping hypothesis with DY3 and two Sudan dyes within one group. Daphnia magna were exposed acutely to equi-effective doses of all seven dyes (each at 3 doses and 3 time points), transcriptomics and metabolomics data were generated from 760 samples. Multi-omics bioactivity profile-based grouping uniquely revealed that Sudan 1 (S1) is the most suitable analogue for read-across to DY3. Mapping ToxPrint structural fingerprints of the dyes onto the bioactivity profile-based grouping indicated an aromatic alcohol moiety could be responsible for this bioactivity similarity. The long-term reproductive toxicity to aquatic invertebrates of DY3 was predicted from S1 (21-day NOEC, 40 µg/L). This prediction was confirmed experimentally by measuring the toxicity of DY3 in D. magna. While limitations of this 'omics approach are identified, the study illustrates an effective statistical approach for building chemical groups.

13.
Microb Ecol ; 87(1): 67, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703220

RESUMO

Spiders host a diverse range of bacteria in their guts and other tissues, which have been found to play a significant role in their fitness. This study aimed to investigate the community diversity and functional characteristics of spider-associated bacteria in four tissues of Heteropoda venatoria using HTS of the 16S rRNA gene and culturomics technologies, as well as the functional verification of the isolated strains. The results of HTS showed that the spider-associated bacteria in different tissues belonged to 34 phyla, 72 classes, 170 orders, 277 families, and 458 genera. Bacillus was found to be the most abundant bacteria in the venom gland, silk gland, and ovary, while Stenotrophomonas, Acinetobacter, and Sphingomonas were dominant in the gut microbiota. Based on the amplicon sequencing results, 21 distinct cultivation conditions were developed using culturomics to isolate bacteria from the ovary, gut, venom gland, and silk gland. A total of 119 bacterial strains, representing 4 phyla and 25 genera, with Bacillus and Serratia as the dominant genera, were isolated. Five strains exhibited high efficiency in degrading pesticides in the in vitro experiments. Out of the 119 isolates, 28 exhibited antibacterial activity against at least one of the tested bacterial strains, including the pathogenic bacteria Staphylococcus aureus, Acinetobacter baumanii, and Enterococcus faecalis. The study also identified three strains, GL312, PL211, and PL316, which exhibited significant cytotoxicity against MGC-803. The crude extract from the fermentation broth of strain PL316 was found to effectively induce apoptosis in MGC-803 cells. Overall, this study offers a comprehensive understanding of the bacterial community structure associated with H. venatoria. It also provides valuable insights into discovering novel antitumor natural products for gastric cancer and xenobiotic-degrading bacteria of spiders.


Assuntos
Bactérias , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S , Aranhas , Animais , Aranhas/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Feminino , Microbioma Gastrointestinal , Humanos , Filogenia , Biodiversidade , Antibacterianos/farmacologia , Praguicidas
14.
Artigo em Inglês | MEDLINE | ID: mdl-38705748

RESUMO

INTRODUCTION: The possible use of dalbavancin as a catheter lock solution was previously demonstrated by our study group. However, it was needed to assess whether heparin could affect dalbavancin bioactivity during freezing storage. METHODS: We tested the bioactivity of a dalbavancin+heparin (DH) vs. dalbavancin (D) against Staphylococcal biofilms comparing DH median value of cfu counts and metabolic activity with that obtained for D before and during storage under freezing up to 6 months. RESULTS: Despite there was a slight decrease in the median percentage reduction of metabolic activity at month 3 in Staphylococcus epidermidis between DH and D (97.6 vs. 100, p=0.037), considering the clinical criteria, no significant reduction in any of the variables tested was observed at the end of the experiment between D and DH solutions. CONCLUSION: The addition of heparin to a dalbavancin lock solution did not affect its bioactivity against staphylococcal biofilms irrespective of its preservation time under freezing.

15.
Chem Biodivers ; : e202400810, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743456

RESUMO

Oliveria decumbens is a folkloric medicinal plant belonging to the Apiaceae family, traditionally utilized to treat various diseases like gastrointestinal disorders, fever, and wounds. This review aims to provide a comprehensive overview of the plant's phytochemical composition and biological properties, with potential implications for various industries and avenues of further research. The data presented here has been compiled through searches utilizing the keyword "Oliveria" across scientific databases such as PubMed, Web of Science, Scopus, ScienceDirect, and SciFinder. Carvacrol and thymol have been identified as the primary volatile constituents, though the complete profile of the plant extract remains to be fully elucidated. Notably, Oliveria decumbens essential oil exhibits significant antibacterial, antifungal, antioxidant, and anticancer properties. Additionally, the plant extract demonstrates promising antiprotozoal, antiviral, hepatoprotective, and immunostimulant effects, although these findings are primarily derived from preliminary studies. While in vitro and in vivo investigations have validated some traditional uses of O. decumbens, further pre-clinical testing is warranted to ascertain both efficacy and safety profiles. Moreover, the identification of specific components within the plant extract is crucial for a more comprehensive understanding of the mechanisms of action underlying its therapeutic properties within the realm of phytomedicine.

16.
J Biomed Mater Res B Appl Biomater ; 112(5): e35416, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747324

RESUMO

The bone formation response of ceramic bone graft materials can be improved by modifying the material's surface and composition. A unique dual-phase ceramic bone graft material with a nanocrystalline, hydroxycarbanoapatite (HCA) surface and a calcium carbonate core (TrelCor®-Biogennix, Irvine, CA) was characterized through a variety of analytical methods. Scanning electron microscopy (SEM) of the TrelCor surface (magnification 100-100,000X) clearly demonstrated a nanosized crystalline structure covering the entire surface. The surface morphology showed a hierarchical structure that included micron-sized spherulites fully covered by plate-like nanocrystals (<60 nm in thickness). Chemical and physical characterization of the material using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy Energy Dispersive X-ray Spectroscopy (SEM-EDX) showed a surface composed of HCA. Analysis of fractured samples confirmed the dual-phase composition with the presence of a calcium carbonate core and HCA surface. An in vitro bioactivity study was conducted to evaluate whether TrelCor would form a bioactive layer when immersed in simulated body fluid. This response was compared to a known bioactive material (45S5 bioactive glass - Bioglass). Following 14-days of immersion, surface and cross-sectional analysis via SEM-EDX showed that the TrelCor material elicited a bioactive response with the formation of a bioactive layer that was qualitatively thicker than the layer that formed on Bioglass. An in vivo sheep muscle pouch model was also conducted to evaluate the ability of the material to stimulate an ectopic, cellular bone formation response. Results were compared against Bioglass and a first-generation calcium phosphate ceramic that lacked a nanocrystalline surface. Histology and histomorphometric analysis (HMA) confirmed that the TrelCor nanocrystalline HCA surface stimulated a bone formation response in muscle (avg. 11% bone area) that was significantly greater than Bioglass (3%) and the smooth surface calcium phosphate ceramic (0%).


Assuntos
Substitutos Ósseos , Nanopartículas , Animais , Substitutos Ósseos/química , Nanopartículas/química , Cerâmica/química , Teste de Materiais , Durapatita/química , Ovinos , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X , Transplante Ósseo
17.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38724454

RESUMO

AIMS: Neocosmospora species are saprobes, endophytes, and pathogens belonging to the family Nectriaceae. This study aims to investigate the taxonomy, biosynthetic potential, and application of three newly isolated Neocosmospora species from mangrove habitats in the southern part of Thailand using phylogeny, bioactivity screening, genome sequencing, and bioinformatics analysis. METHODS AND RESULTS: Detailed descriptions, illustrations, and a multi-locus phylogenetic tree with large subunit ribosomal DNA (LSU), internal transcribed spacer (ITS), translation elongation factor 1-alpha (ef1-α), and RNA polymerase II second largest subunit (RPB2) regions showing the placement of three fungal strains, MFLUCC 17-0253, MFLUCC 17-0257, and MFLUCC 17-0259 clustered within the Neocosmospora clade with strong statistical support. Fungal crude extracts of the new species N. mangrovei MFLUCC 17-0253 exhibited strong antifungal activity to control Colletotrichum truncatum CG-0064, while N. ferruginea MFLUCC 17-0259 exhibited only moderate antifungal activity toward C. acutatum CC-0036. Thus, N. mangrovei MFLUCC 17-0253 was sequenced by Oxford nanopore technology. The bioinformatics analysis revealed that 49.17 Mb genome of this fungus harbors 41 potential biosynthetic gene clusters. CONCLUSION: Two fungal isolates of Neocosmospora and a new species of N. mangrovei were reported in this study. These fungal strains showed activity against pathogenic fungi causing anthracnose in chili. In addition, full genome sequencing and bioinformatics analysis of N. mangrovei MFLUCC 17-0253 were obtained.


Assuntos
Colletotrichum , Filogenia , Colletotrichum/genética , Tailândia , Ascomicetos/genética , Antifúngicos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Agentes de Controle Biológico , DNA Fúngico/genética , Genoma Fúngico , População do Sudeste Asiático
18.
Food Res Int ; 183: 114231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760148

RESUMO

This research assessed how three preprocessing techniques [soaking (S), soaking and reconstitution (SR), and soaking and dehulling (SD)] impact the protein digestibility and bioactivity of faba bean flours when combined with thermoplastic extrusion. Samples were compared against a control (C) of extruded faba bean flour without preprocessing. Applying preprocessing techniques followed by extrusion diminished antinutrient levels while enhancing protein hydrolysis and in vitro bioactivity in higher extent compared to C. Specifically, SD combined with extrusion was the most effective, achieving an 80% rate of protein hydrolysis and uniquely promoting the release of gastric digestion-resistant proteins (50-70 kDa). It also resulted in the highest release of small peptides (<3kDa, 22.51%) and free amino acids (15.50%) during intestinal digestion. Moreover, while all preprocessing techniques increased antioxidant (ABTS radical-scavenging), antidiabetic, and anti-hypertensive activities, SD extruded flour displayed the highest levels of dipeptidyl peptidase inhibition (DPP-IVi, IC50=13.20 µg/mL), pancreatic α-amylase inhibition (IC50=8.59 mg/mL), and angiotensin I-converting enzyme inhibition (ACEi, IC50=1.71 mg protein/mL). As a result, it was selected for further peptide and in silico bioactive analysis. A total of 24 bioactive peptides were identified in intestinal digests from SD extruded flour, all with potential DPP-IVi and ACEi activities, and six were also predicted as antioxidant peptides. VIPAGYPVAIK and GLTETWNPNHPEL were highlighted as resistant bioactive peptides with the highest antidiabetic and antioxidant potential. Our findings demonstrated that combining preprocessing (particularly SD) and thermoplastic extrusion enhances protein digestibility in faba beans and promotes the release of beneficial bioactive peptides in the intestine.


Assuntos
Digestão , Farinha , Manipulação de Alimentos , Peptídeos , Vicia faba , Vicia faba/química , Farinha/análise , Manipulação de Alimentos/métodos , Antioxidantes/análise , Valor Nutritivo , Hidrólise , Aminoácidos/análise , Aminoácidos/metabolismo , Proteínas de Plantas/metabolismo
19.
Biol Chem ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38766708

RESUMO

Amphibians are well-known for their ability to produce and secrete a mixture of bioactive substances in specialized skin glands for the purpose of antibiotic self-protection and defense against predators. Some of these secretions contain various small molecules, such as the highly toxic batrachotoxin, tetrodotoxin, and samandarine. For some time, the presence of peptides in amphibian skin secretions has attracted researchers, consisting of a diverse collection of - to the current state of knowledge - three to 104 amino acid long sequences. From these more than 2000 peptides many are known to exert antimicrobial effects. In addition, there are some reports on amphibian skin peptides that can promote wound healing, regulate immunoreactions, and may serve as antiparasitic and antioxidative substances. So far, the focus has mainly been on skin peptides from frogs and toads (Anura), eclipsing the research on skin peptides of the ca. 700 salamanders and newts (Caudata). Just recently, several novel observations dealing with caudate peptides and their structure-function relationships were reported. This review focuses on the chemistry and bioactivity of caudate amphibian skin peptides and their potential as novel agents for clinical applications.

20.
Front Pharmacol ; 15: 1386509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769997

RESUMO

The Stachys L. genus has been widely used in traditional medicine in many countries throughout the world. The study aimed to investigate the chemical composition and bioactivity of the hydroethanolic extract (50% v/v) obtained by ultrasonication from the aerial flowering parts of Stachys sylvatica L. (SSE) collected in Almaty region (Southern Kazakhstan). According to RP-HPLC/PDA analysis the leading metabolites of the SSE belonged to polyphenols: chlorogenic acid and its isomers (2.34 mg/g dry extract) and luteolin derivatives (1.49 mg/g dry extract), while HPLC-ESI-QTOF-MS/MS-based qualitative fingerprinting revealed the presence of 17 metabolites, mainly chlorogenic acid and its isomers, flavonoid glycosides, and verbascoside with its derivatives. GC-MS analysis of the volatile metabolites showed mainly the presence of diterpenoids and fatty acid esters. A reduction in the viability of nematodes Rhabditis sp. was obtained for the SSE concentration of 3.3 mg/mL, while 11.1 mg/mL showed activity comparable to albendazole. The SSE exhibited higher activity against Gram-positive (MIC = 0.5-2 mg/mL) than Gram-negative bacteria and yeast (MIC = 8 mg/mL), exerting bactericidal and fungicidal effects but with no sporicidal activity. The SSE showed some antiviral activity against HCoV-229E replicating in MRC-5 and good protection against the cytopathic effect induced by HHV-1 in VERO. The SSE was moderately cytotoxic towards human cervical adenocarcinoma (H1HeLa) cells (CC50 of 0.127 mg/mL after 72 h). This study provides novel information on the SSE extract composition and its biological activity, especially in the context of the SSE as a promising candidate for further antiparasitic studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA