Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Appl Radiat Isot ; 212: 111426, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38981166

RESUMO

The suitability of F1 progeny insect larvae of the irradiated male parent, Spodoptera litura (Fabr.) for infective juveniles (IJs) of entomopathogenic nematodes (EPN), Steinernema thermophilum was assessed to comprehend the feasibility of combining EPNs with nuclear pest control tactic. As compared to the control, the IJs induced faster host mortality with reduced proliferation in F1 host larvae. IJs derived from F1 host larvae exhibited almost similar proliferation capacity on normal hosts as in control. Further, the molecular basis of EPNs induced mortality in F1 host larvae was evaluated. Dual stress of EPN infection and irradiation induced downregulation of the relative mRNA expression of antimicrobial genes and upregulated expression of antioxidative genes. A pronounced effect of EPNs in association with irradiation stress was apparent on host mortality. Radiation induced sterile F1 insect larvae of S. litura acted as a reasonably suitable host for EPNs and also provided the environment for developing viable EPNs for their potential use as biocontrol agents.

2.
Crit Rev Biotechnol ; : 1-19, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004515

RESUMO

Filamentous plant pathogens, including fungi and oomycetes, pose significant threats to cultivated crops, impacting agricultural productivity, quality and sustainability. Traditionally, disease control heavily relied on fungicides, but concerns about their negative impacts motivated stakeholders and government agencies to seek alternative solutions. Biocontrol agents (BCAs) have been developed as promising alternatives to minimize fungicide use. However, BCAs often exhibit inconsistent performances, undermining their efficacy as plant protection alternatives. The eukaryotic cell wall of plants and filamentous pathogens contributes significantly to their interaction with the environment and competitors. This highly adaptable and modular carbohydrate armor serves as the primary interface for communication, and the intricate interplay within this compartment is often mediated by carbohydrate-active enzymes (CAZymes) responsible for cell wall degradation and remodeling. These processes play a crucial role in the pathogenesis of plant diseases and contribute significantly to establishing both beneficial and detrimental microbiota. This review explores the interplay between cell wall dynamics and glycan interactions in the phytobiome scenario, providing holistic insights for efficiently exploiting microbial traits potentially involved in plant disease mitigation. Within this framework, the incorporation of glycobiology-related functional traits into the resident phytobiome can significantly enhance the plant's resilience to biotic stresses. Therefore, in the rational engineering of future beneficial consortia, it is imperative to recognize and leverage the understanding of cell wall interactions and the role of the glycome as an essential tool for the effective management of plant diseases.

3.
Indian J Microbiol ; 64(2): 343-366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39011025

RESUMO

Uncontrolled usage of chemical fertilizers, climate change due to global warming, and the ever-increasing demand for food have necessitated sustainable agricultural practices. Removal of ever-increasing environmental pollutants, treatment of life-threatening diseases, and control of drug-resistant pathogens are also the need of the present time to maintain the health and hygiene of nature, as well as human beings. Research on plant-microbe interactions is paving the way to ameliorate all these sustainably. Diverse bacterial endophytes inhabiting the internal tissues of different parts of the plants promote the growth and development of their hosts by different mechanisms, such as through nutrient acquisition, phytohormone production and modulation, protection from biotic or abiotic challenges, assisting in flowering and root development, etc. Notwithstanding, efficient exploitation of endophytes in human welfare is hindered due to scarce knowledge of the molecular aspects of their interactions, community dynamics, in-planta activities, and their actual functional potential. Modern "-omics-based" technologies and genetic manipulation tools have empowered scientists to explore the diversity, dynamics, roles, and functional potential of endophytes, ultimately empowering humans to better use them in sustainable agricultural practices, especially in future harsh environmental conditions. In this review, we have discussed the diversity of bacterial endophytes, factors (biotic as well as abiotic) affecting their diversity, and their various plant growth-promoting activities. Recent developments and technological advancements for future research, such as "-omics-based" technologies, genetic engineering, genome editing, and genome engineering tools, targeting optimal utilization of the endophytes in sustainable agricultural practices, or other purposes, have also been discussed.

4.
Meat Sci ; 216: 109591, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38991481

RESUMO

Penicillium nordicum is the main ochratoxin A (OTA)-producing species on the surface of dry-fermented sausages, such as the "chorizo". New antifungal strategies are being developed using biocontrol agents (BCAs), such as plant extracts and native microorganisms. This work aimed to evaluate the antiochratoxigenic capacity and the causative modes of action of BCAs (rosemary essential oil (REO), acorn shell extract and the yeast Debaryomyces hansenii (Dh)) in a "chorizo"-based medium (Ch-DS). BCAs were inoculated on Ch-DS together with P. nordicum and incubated at 12 °C for 15 days to collect mycelia for OTA analyses and comparative proteomics. Both REO and Dh alone decreased OTA accumulation up to 99% and affected the abundance of P. nordicum proteins linked to cell wall organisation, synthesis of OTA-related metabolites and ergosterol synthesis. It is worth highlighting the increased abundance of an amidase by REO, matching with the decrease in OTA. The use of REO and Dh as BCAs could be an effective strategy to reduce the OTA hazard in the meat industry. Based on their not fully coincident modes of action, their combined application could be of interest in "chorizo" to maximise their potential against ochratoxigenic strains.


Assuntos
Produtos da Carne , Ocratoxinas , Penicillium , Extratos Vegetais , Proteômica , Penicillium/efeitos dos fármacos , Produtos da Carne/microbiologia , Produtos da Carne/análise , Ocratoxinas/análise , Proteômica/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Animais , Debaryomyces , Microbiologia de Alimentos , Óleos Voláteis/farmacologia , Cistus/química , Antifúngicos/farmacologia , Proteínas Fúngicas/metabolismo
5.
J Fungi (Basel) ; 10(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38921384

RESUMO

Grapevine (Vitis vinifera) is one of the major economic fruit crops but suffers many diseases, causing damage to the quality of grapes. Strain G166 was isolated from the rhizosphere of grapevine and was found to exhibited broad-spectrum antagonistic activities against fungal pathogens on grapes in vitro, such as Coniella diplodiella, Botrytis cinerea, and Colletotrichum gloeosporioides. Whole-genome sequencing revealed that G166 contained a 6,613,582 bp circular chromosome with 5749 predicted coding DNA sequences and an average GC content of 60.57%. TYGS analysis revealed that G166 belongs to Pseudomonas viciae. Phenotype analysis indicated that P. viciae G166 remarkably reduced the severity of grape white rot disease in the grapevine. After inoculation with C. diplodiella, more H2O2 and MDA accumulated in the leaves and resulted in decreases in the Pn and chlorophyll content. Conversely, G166-treated grapevine displayed less oxidative damage with lower H2O2 levels and MDA contents under the pathogen treatments. Subsequently, G166-treated grapevine could sustain a normal Pn and chlorophyll content. Moreover, the application of P. viciae G166 inhibited the growth of mycelia on detached leaves and berries, while more disease symptoms occurred in non-bacterized leaves and berries. Therefore, P. viciae G166 served as a powerful bioagent against grape white rot disease. Using antiSMASH prediction and genome comparisons, a relationship between non-ribosomal peptide synthase clusters and antifungal activity was found in the genome of P. viciae G166. Taken together, P. viciae G166 shows promising antifungal potential to improve fruit quality and yield in ecological agriculture.

6.
Biology (Basel) ; 13(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38927249

RESUMO

Tomato bacterial spots, caused by Xanthomonas campestris pv. vesicatoria (Xcv1) and X. euvesicatoria (Xe2), as well as bacterial specks, caused by two strains of Pseudomonas syringae pv. tomato (Pst1 and Pst2), represent significant threats to tomato production in the El-Sharkia governorate, often resulting in substantial yield losses. The objective of this study was to evaluate the efficacy of various biocontrol culture filtrates, including bacteria and fungi agents, in managing the occurrence and severity of these diseases, while also monitoring physiological changes in tomato leaves, including antioxidant enzymes, phenolics, and pigment content. The culture filtrates from examined Trichoderma species (T. viride, T. harzianum, and T. album), as well as the tested bacteria (Bacillus subtilis, Pseudomonas fluorescens, and Serratia marcescens) at concentrations of 25%, 50%, and 100%, significantly inhibited the proliferation of pathogenic bacteria In vitro. For the In vivo experiments, we used specific doses of 5 mL of spore suspension per plant for the fungal bioagents at a concentration of 2.5 × 107 spores/mL. The bacterial bioagents were applied as a 10 mL suspension per plant at a concentration of 1 × 108 CFU/mL. Spraying the culture filtrates of the tested bioagents two days before infection In vivo significantly reduced disease incidence and severity. Trichoderma viride exhibited the highest efficacy among the fungal bioagents, followed by T. harzianum and T. album. Meanwhile, the culture filtrate of B. subtilis emerged as the most potent among the bacterial bioagents, followed by P. fluorescens. Furthermore, applying these culture filtrates resulted in elevated levels of chitinase, peroxidase, and polyphenol oxidase activity. This effect extended to increased phenol contents, as well as chlorophyll a, chlorophyll b, and carotenoids in sprayed tomato plants compared to the control treatment. Overall, these findings underscore the potential of these biocontrol strategies to effectively mitigate disease incidence and severity while enhancing plant defense mechanisms and physiological parameters, thus offering promising avenues for sustainable disease management in tomato production.

7.
Appl Microbiol Biotechnol ; 108(1): 370, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861018

RESUMO

Members of the genus Lysinibacillus attract attention for their mosquitocidal, bioremediation, and plant growth-promoting abilities. Despite this interest, comprehensive studies focusing on genomic traits governing plant growth and stress resilience in this genus using whole-genome sequencing are still scarce. Therefore, we sequenced and compared the genomes of three endophytic Lysinibacillus irui strains isolated from Canary Island date palms with the ex-type strain IRB4-01. Overall, the genomes of these strains consist of a circular chromosome with an average size of 4.6 Mb and a GC content of 37.2%. Comparative analysis identified conserved gene clusters within the core genome involved in iron acquisition, phosphate solubilization, indole-3-acetic acid biosynthesis, and volatile compounds. In addition, genome analysis revealed the presence of genes encoding carbohydrate-active enzymes, and proteins that confer resistance to oxidative, osmotic, and salinity stresses. Furthermore, pathways of putative novel bacteriocins were identified in all genomes. This illustrates possible common plant growth-promoting traits shared among all strains of L. irui. Our findings highlight a rich repertoire of genes associated with plant lifestyles, suggesting significant potential for developing inoculants to enhance plant growth and resilience. This study is the first to provide insights into the overall genomic signatures and mechanisms of plant growth promotion and biocontrol in the genus Lysinibacillus. KEY POINTS: • Pioneer study in elucidating plant growth promoting in L. irui through comparative genomics. • Genome mining identified biosynthetic pathways of putative novel bacteriocins. • Future research directions to develop L. irui-based biofertilizers for sustainable agriculture.


Assuntos
Bacillaceae , Genoma Bacteriano , Genômica , Bacillaceae/genética , Bacillaceae/metabolismo , Composição de Bases , Família Multigênica , Arecaceae/microbiologia , Desenvolvimento Vegetal , Sequenciamento Completo do Genoma , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriocinas/biossíntese , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Estresse Fisiológico
8.
Front Plant Sci ; 15: 1374228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803599

RESUMO

Environmental stresses are the main constraints on agricultural productivity and food security worldwide. This issue is worsened by abrupt and severe changes in global climate. The formation of sugarcane yield and the accumulation of sucrose are significantly influenced by biotic and abiotic stresses. Understanding the biochemical, physiological, and environmental phenomena associated with these stresses is essential to increase crop production. This review explores the effect of environmental factors on sucrose content and sugarcane yield and highlights the negative effects of insufficient water supply, temperature fluctuations, insect pests, and diseases. This article also explains the mechanism of reactive oxygen species (ROS), the role of different metabolites under environmental stresses, and highlights the function of environmental stress-related resistance genes in sugarcane. This review further discusses sugarcane crop improvement approaches, with a focus on endophytic mechanism and consortium endophyte application in sugarcane plants. Endophytes are vital in plant defense; they produce bioactive molecules that act as biocontrol agents to enhance plant immune systems and modify environmental responses through interaction with plants. This review provides an overview of internal mechanisms to enhance sugarcane plant growth and environmental resistance and offers new ideas for improving sugarcane plant fitness and crop productivity.

9.
Heliyon ; 10(7): e28758, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38576553

RESUMO

Mango is a commercial fruit crop of India that suffers huge postharvest losses every year. The application of biocontrol agents (BCAs) bears a vast potential for managing the same, which is yet to be exploited to its fullest extent. Hence, studies were conducted for BCAs application of Debaryomyces hansenii, Bacillus subtilis and Pseudomonas fluorescens strains on mango fruit under in-vitro, in-vivo conditions to know the efficacy of these BCAs on the postharvest pathogen, shelf life and quality retention of mango fruit. The 'poisoned food technique' was attempted for in-vitro studies. For the in-vivo studies, fruit of the commercial cultivar 'Amrapali' were un-inoculated and pre-inoculated with major postharvest pathogens (anthracnose: Colletotrichum gloeosporioides and stem-end rot: Botryodiplodia theobromae) were treated with BCA, followed by ambient storage at (24 ± 4 °C, 75 ± 5 % RH). From the results, it has been observed that under in vitro studies, BCA Debaryomyces hansenii (Strain: KP006) and Bacillus subtilis (Strain: BJ0011) at the treatment level 108 CFU mL-1 while, the Pseudomonas fluorescens at 109 CFU mL-1 (Strain: BE0001) were significantly effective for pathogen inhibition. However, under the in vivo studies, the BCA Debaryomyces hansenii (Strain: KP006) at 108 CFU mL-1 treatment level was found to significantly reduce the pathogen's decay incidence while positively influencing the shelf life and biochemical (quality) attributes. This treatment increased the storage life of mango fruit by more than three days over control fruit. Therefore, BCA Debaryomyces hansenii (Strain: KP006) at 108 CFU mL-1 can be used to control the postharvest pathological loss of mango fruit without affecting its internal quality.

10.
Plants (Basel) ; 13(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674544

RESUMO

The economic impact of phytopathogenic bacteria on agriculture is staggering, costing billions of US dollars globally. Pseudomonas syringae is the top most phytopathogenic bacteria, having more than 60 pathovars, which cause bacteria speck in tomatoes, halo blight in beans, and so on. Although antibiotics or a combination of antibiotics are used to manage infectious diseases in plants, they are employed far less in agriculture compared to human and animal populations. Moreover, the majority of antibiotics used in plants are immediately washed away, leading to environmental damage to ecosystems and food chains. Due to the serious risk of antibiotic resistance (AR) and the potential for environmental contamination with antibiotic residues and resistance genes, the use of unchecked antibiotics against phytopathogenic bacteria is not advisable. Despite the significant concern regarding AR in the world today, there are inadequate and outdated data on the AR of phytopathogenic bacteria. This review presents recent AR data on plant pathogenic bacteria (PPB), along with their environmental impact. In light of these findings, we suggest the use of biocontrol agents as a sustainable, eco-friendly, and effective alternative to controlling phytopathogenic bacteria.

11.
mSystems ; 9(4): e0112623, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38506511

RESUMO

The contamination of the plant phyllosphere with antibiotics and antibiotic resistance genes (ARGs), caused by application of antibiotics, is a significant environmental issue in agricultural management. Alternatively, biocontrol agents are environmentally friendly and have attracted a lot of interest. However, the influence of biocontrol agents on the phyllosphere resistome remains unknown. In this study, we applied biocontrol agents to control the wildfire disease in the Solanaceae crops and investigated their effects on the resistome and the pathogen in the phyllosphere by using metagenomics. A total of 250 ARGs were detected from 15 samples, which showed a variation in distribution across treatments of biocontrol agents (BA), BA with Mg2+ (T1), BA with Mn2+ (T2), and kasugamycin (T3) and nontreated (CK). The results showed that the abundance of ARGs under the treatment of BA-Mg2+ was lower than that in the CK group. The abundance of cphA3 (carbapenem resistance), PME-1 (carbapenem resistance), tcr3 (tetracycline antibiotic resistance), and AAC (3)-VIIIa (aminoglycoside antibiotic resistance) in BA-Mg2+ was significantly higher than that in BA-Mn2+ (P < 0.05). The abundance of cphA3, PME_1, and tcr3 was significantly negatively related to the abundance of the phyllosphere pathogen Pseudomonas syringae (P < 0.05). We also found that the upstream and downstream regions of cphA3 were relatively conserved, in which rpl, rpm, and rps gene families were identified in most sequences (92%). The Ka/Ks of cphA3 was 0 in all observed sequences, indicating that under the action of purifying selection, nonsynonymous substitutions are often gradually eliminated in the population. Overall, this study clarifies the effect of biocontrol agents with Mg2+ on the distribution of the phyllosphere resistome and provides evolutionary insights into the biocontrol process. IMPORTANCE: Our study applied metagenomics analysis to examine the impact of biocontrol agents (BAs) on the phyllosphere resistome and the pathogen. Irregular use of antibiotics has led to the escalating dissemination of antibiotic resistance genes (ARGs) in the environment. The majority of BA research has focused on the effect of monospecies on the plant disease control process, the role of the compound BA with nutrition elements in the phyllosphere disease, and the resistome is still unknown. We believe BAs are eco-friendly alternatives for antibiotics to combat the transfer of ARGs. Our results revealed that BA-Mg2+ had a lower relative abundance of ARGs compared to the CK group, and the phyllosphere pathogen Pseudomonas syringae was negatively related to three specific ARGs, cphA3, PME-1, and tcr3. These three genes also present different Ka/Ks. We believe that the identification of the distribution and evolution modes of ARGs further elucidates the ecological role and facilitates the development of BAs, which will attract general interest in this field.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Genes Bacterianos/genética , Bactérias , Tetraciclina/farmacologia , Carbapenêmicos/farmacologia
13.
Methods Mol Biol ; 2756: 291-304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427300

RESUMO

Full compatible interactions between crop plants and endoparasitic sedentary nematodes (ESNs) lead to severe infestation of the roots and plant growth impairing, as well as to the increase of nematode population in the soil that is a threat for the next planting crop. In the absence of activators, basic plant defense is overcome by nematode secretion of effectors that suppress defense gene expression, inhibit ROS generation and the oxidative burst used by plants to hamper nematode feeding site settlement and limit its development and reproduction. Activators can be exogenously added as a preventive measure to prime plants and strengthen their defense against ESNs. Activators can be an array of antioxidant compounds or biocontrol agents, such as mutualist microorganisms living in the rhizosphere (biocontrol fungi (BCF), arbuscular mycorrhizal fungi (AMF), plant growth-promoting bacteria (PGPB), etc.). In this chapter, methods are described for usage of both salicylic acid (SA) and its methylated form (Met-SA), and BCF/AMF as elicitors of resistance of vegetable crops against root-knot nematodes (RKNs). The rhizosphere-living BCF/AMF were recovered from commercial formulates pre-incubated in suitable growth media and provided exclusively as soil drench of potted plants. The plant hormones SA and Met-SA were provided to plants as soil drench, foliar spray, and root dip. It is indicated that activators' dosages and plant age are crucial factors in determining the success of a pre-treatment to reduce nematode infection. Therefore, dosages should be expressed as amounts of activators per g of plant weight at treatment. Thresholds exist above which dosages start to work; overdoses were found to be toxic to plants and useless as activators.


Assuntos
Micorrizas , Nematoides , Animais , Agentes de Controle Biológico/metabolismo , Doenças das Plantas/genética , Raízes de Plantas/metabolismo , Nematoides/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Micorrizas/metabolismo , Produtos Agrícolas/metabolismo , Solo
14.
Int J Biol Macromol ; 263(Pt 1): 130259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382793

RESUMO

Citrus canker is a disease of economic importance and there are limited biocontrol agents available to mitigate it in an integrated manner. This study was conducted to combat citrus canker disease using biologically active nanoparticles (Ag, Cu and ZnO and 300, 900, 1200, and 1500 ppm) synthesized from macromolecules extracted from alga, Oedogonium sp. The synthesis of the nanoparticles was confirmed by UV-Vis Spectroscopy, FTIR, SEM, XRD, and DLS Zeta sizer while their efficacy was tested against Xanthomonas citri by measuring zone of inhibition. Results indicated that Ag and Cu nanoparticles at 1200 ppm exhibit the highest activity against Xanthomonas citri, followed by ZnO at 1500 ppm. The minimum inhibitory concentrations (MIC) of Ag, Cu and ZnO NPs were 1, 2 and 10 mg mL-1, respectively while minimum bactericidal concentrations (MBC) were for Ag and Cu 2, 4 mg mL-1 and for ZnO NPs more then 10 mg mL-1, were required to kill the X. citri. Bacterial growth respectively. Macromolecules extracted from algal sources can produce nanoparticles with bactericidal potential, in the order of Ag > Cu > ZnO to mitigate citrus canker disease and ensuring sustainable food production amid the growing human population.


Assuntos
Citrus , Xanthomonas , Óxido de Zinco , Humanos , Citrus/microbiologia , Xanthomonas/fisiologia , Segurança Alimentar , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
15.
Heliyon ; 10(1): e23030, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38169743

RESUMO

Sclerotinia sclerotiorum, is a highly destructive pathogen with widespread impact on common bean (Phasaeolus vulgaris L.) worldwide. In this work, we investigated the efficacy of microbial consortia in bolstering host defense against sclerotinia rot. Specifically, we evaluated the performance of a microbial consortia comprising of Trichoderma erinaceum (T51) and Trichoderma viride (T52) (referred to as the T4 treatment) in terms of biochemical parameters, alleviation of the ROS induced cellular toxicity, membrane integrity (measured as MDA content), nutrient profiling, and the host defense-related antioxidative enzyme activities. Our findings demonstrate a notable enhancement in thiamine content, exhibiting 1.887 and 1.513-fold higher in the T4 compared to the un-inoculated control and the T1 treatment (only S. sclerotiorum treated). Similarly, the total proline content exhibited 3.46 and 1.24-fold higher and the total phenol content was 4.083 and 2.625-fold higher in the T4 compared to the un-inoculated control and the T1 treatment, respectively. Likewise, a general trend was found for other antioxidative and non-oxidative enzyme activities. However, results found were approximately similar in T2 treatment (bioprimed with T51) or T3 treatments (bioprimed with T52). Further, host defense attribute (survival rate) under the pathogen challenged condition was maximum in the T4 (15.55 % disease incidence) compared to others. Therefore, bio priming with consortia could be useful in reducing the economic losses incited by S. sclerotiorum in common beans.

16.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086610

RESUMO

AIMS: Aspergillus fungi are common members of the soil microbiota. Some physiological and structural characteristics of Aspergillus species make them important participants in soil ecological processes. In this study, we aimed to evaluate the impact of 2,4-diacetylphloroglucinol (2,4-DAPG), a common metabolite of soil and rhizosphere bacteria, on the physiology of Aspergillus fumigatus. METHODS AND RESULTS: Integrated analysis using microscopy, spectrophotometry, and liquid chromatography showed the following effects of 2,4-DAPG on Aspergillus physiology. It was found that A. fumigatus in the biofilm state is resistant to high concentrations of 2,4-DAPG. However, experimental exposure led to a depletion of the extracellular polymeric substance, changes in the structure of the cell wall of the mycelium (increase in the content of α- and ß-glucans, chitin, and ergosterol), and conidia (decrease in the content of DHN-melanin). 2,4-DAPG significantly reduced the production of mycotoxins (gliotoxin and fumagillin) but increased the secretion of proteases and galactosaminogalactan. CONCLUSIONS: Overall, the data obtained suggest that 2,4-DAPG-producing Pseudomonas bacteria are unlikely to directly eliminate A. fumigatus fungi, as they exhibit a high level of resistance when in the biofilm state. However, at low concentrations, 2,4-DAPG significantly alters the physiology of aspergilli, potentially reducing the adaptive and competitive capabilities of these fungi.


Assuntos
Aspergillus fumigatus , Matriz Extracelular de Substâncias Poliméricas , Humanos , Aspergillus fumigatus/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Floroglucinol/farmacologia , Floroglucinol/metabolismo , Solo
17.
Front Fungal Biol ; 4: 1298350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094869

RESUMO

[This corrects the article DOI: 10.3389/ffunb.2023.1095765.].

18.
Antibiotics (Basel) ; 12(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136753

RESUMO

The global spread of antibiotic resistance marks the end of the era of conventional antibiotics. Mankind desires new molecular tools to fight pathogenic bacteria. In this regard, the development of new antimicrobials based on antimicrobial peptides (AMPs) is again of particular interest. AMPs have various mechanisms of action on bacterial cells. Moreover, AMPs have been reported to be efficient in preclinical studies, demonstrating a low level of resistance formation. Thanatin is a small, beta-hairpin antimicrobial peptide with a bacterial-specific mode of action, predetermining its low cytotoxicity toward eukaryotic cells. This makes thanatin an exceptional candidate for new antibiotic development. Here, a microorganism was bioengineered to produce an antimicrobial agent, providing novel opportunities in antibiotic research through the directed creation of biocontrol agents. The constitutive heterologous production of recombinant thanatin (rThan) in the yeast Pichia pastoris endows the latter with antibacterial properties. Optimized expression and purification conditions enable a high production level, yielding up to 20 mg/L of rThan from the culture medium. rThan shows a wide spectrum of activity against pathogenic bacteria, similarly to its chemically synthesized analogue. The designed approach provides new avenues for AMP engineering and creating live biocontrol agents to fight antibiotic resistance.

19.
Plants (Basel) ; 12(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38140407

RESUMO

In a world with constant population growth, and in the context of climate change, the need to supply the demand of safe crops has stimulated an interest in ecological products that can increase agricultural productivity. This implies the use of beneficial organisms and natural products to improve crop performance and control pests and diseases, replacing chemical compounds that can affect the environment and human health. Microbial biological control agents (MBCAs) interact with pathogens directly or by inducing a physiological state of resistance in the plant. This involves several mechanisms, like interference with phytohormone pathways and priming defensive compounds. In Argentina, one of the world's main maize exporters, yield is restricted by several limitations, including foliar diseases such as common rust and northern corn leaf blight (NCLB). Here, we discuss the impact of pathogen infection on important food crops and MBCA interactions with the plant's immune system, and its biochemical indicators such as phytohormones, reactive oxygen species, phenolic compounds and lytic enzymes, focused mainly on the maize-NCLB pathosystem. MBCA could be integrated into disease management as a mechanism to improve the plant's inducible defences against foliar diseases. However, there is still much to elucidate regarding plant responses when exposed to hemibiotrophic pathogens.

20.
Pest Manag Sci ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948321

RESUMO

The potential of insect viruses in the biological control of agricultural pests is well-recognized, yet their practical application faces obstacles such as host specificity, variable virulence, and resource scarcity. High-throughput sequencing (HTS) technologies have significantly advanced our capabilities in discovering and identifying new insect viruses, thereby enriching the arsenal for pest management. Concurrently, progress in reverse genetics has facilitated the development of versatile viral expression vectors. These vectors have enhanced the specificity and effectiveness of insect viruses in targeting specific pests, offering a more precise approach to pest control. This review provides a comprehensive examination of the methodologies employed in the identification of insect viruses using HTS. Additionally, it explores the domain of genetically modified insect viruses and their associated challenges in pest management. The adoption of these cutting-edge approaches holds great promise for developing environmentally sustainable and effective pest control solutions. © 2023 Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA