Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
1.
J Control Release ; 374: 61-75, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39089507

RESUMO

Predictive performance assays are crucial for the development and approval of nanomedicines and their bioequivalent successors. At present, there are no established compendial methods that provide a reliable standard for comparing and selecting these formulation prototypes, and our understanding of the in vivo release remains still incomplete. Consequently, extensive animal studies, with enhanced analytical resolution for both, released and encapsulated drug, are necessary to assess bioequivalence. This significantly raises the cost and duration of nanomedicine development. This work presents the development of a discriminatory and biopredictive release test method for liposomal prednisolone phosphate. Using model-informed deconvolution, we identified an in vivo target release. The experimental design employed a discrete L-optimal configuration to refine the analytical method and determine the impact of in vitro parameters on the dosage form. A three-point specification evaluated the key phases of in vivo release: early (T-5%), intermediate (T-20%), and late release behavior (T-40%), compared to the in vivo release profile of the reference product, NanoCort®. Various levels of shear responses and the influence of clinically relevant release media compositions were tested. This enabled an assessment of the effect of shear on the release, an essential aspect of their in vivo deformation and release behavior. The type and concentration of proteins in the medium influence liposome release. Fetal bovine serum strongly impacted the discriminatory performance at intermediate shear conditions. The method provided deep insights into the release response of liposomes and offers an interesting workflow for in vitro bioequivalence evaluation.

2.
Drug Metab Rev ; : 1-20, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700278

RESUMO

pH-mediated drug-drug interactions (DDI) is a prevalent DDI in drug development, especially for weak base compounds with highly pH-dependent solubility. FDA has released a guidance on the evaluation of pH-mediated DDI assessments using in vitro testing and clinical studies. Currently, there is no common practice of ways of testing across the academia and industry. The development of biopredictive method and physiologically-based biopharmaceutics modeling (PBBM) approaches to assess acid-reducing agent (ARA)-DDI have been proven with accurate prediction and could decrease drug development burden, inform clinical design and potentially waive clinical studies. Formulation strategies and careful clinical design could help mitigate the pH-mediated DDI to avoid more clinical studies and label restrictions, ultimately benefiting the patient. In this review paper, a detailed introduction on biorelevant dissolution testing, preclinical and clinical study requirement and PBPK modeling approaches to assess ARA-DDI are described. An improved decision tree for pH-mediated DDI is proposed. Potential mitigations including clinical or formulation strategies are discussed.

3.
Front Nutr ; 11: 1394330, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769992

RESUMO

This project aims to investigate the release performance of bilayer tablet (BL-Tablet) designed with both fast and slow-release technology, targeting sleep disorders. The tablet incorporates Melatonin, extracts of Eschscholzia californica and Melissa officinalis. In order to validate the effectiveness of the extended-release profile, an advanced dissolution test was herein proposed. This new method utilizes biorelevant intestinal fluid media and incorporates a stomach-to-intestine fluid changing (SIFC) system. To demonstrate the advantages of employing this method for assessing the controlled release profile of active ingredients, the dissolution results were compared with those obtained using the conventional EU Pharmacopoeia approach. Furthermore, the comparative analysis was extended to include a monolayer tablet version (ML-Tablet) lacking the slow-release technology. Technological characterization and bioaccessibility studies, including intestinal permeability test, were conducted as well to assess the pharmacological performance and bioavailability of active ingredients. The dissolution data recovered revealed that the two dissolution methods did not exhibit any significant differences in the release of ML-Tablet's. However, the dissolution profile of the BL-Tablet exhibited notable differences between the two methods particularly when assessing the behavior of the slow-release layer. In this scenario, both methods initially exhibited a similar release pattern within the first approximately 0.5 h, driven by the fast-release layer of the tablet. Following this, distinct gradual and sustained releases were observed, spanning 2.5 h for the EU Pharmacopoeia method and 8 h for the new SIFC-biorelevant dissolution method, respectively. Overall, the novel method demonstrated a substantial improvement compared to conventional EU Pharmacopoeia test in evaluating the performance of a controlled slow-release technology. Remarkably, the prolonged release technology did not have an adverse impact on melatonin intestinal absorption, and, consequently, maintaining its potential bioavailability of around 78%. Concluding, this research provides valuable insights into how the innovative dissolution test can assist formulators in developing controlled release formulations.

4.
J Pharm Sci ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768754

RESUMO

In this work, the ability of the artificial stomach and duodenum (ASD) model to predict bioavailability in rats was investigated using a poorly soluble model compound, BI-639667. A solution and four suspensions of different solid forms of BI-639667 were tested both in an ASD and rats. Rank order of the bioavailability estimated from an ASD apparatus is consistent with that of in vivo result in rats, i.e., solution > salicylic acid cocrystal > malate salt > maleate salt > monohydrate, which correlates with the ability of the different solid forms to maintain supersaturation with respect to the stable form in aqueous solution. The results support the use of an ASD for characterizing dissolution performance of solid forms to aid their selection for tablet formulation development.

5.
Mol Pharm ; 21(6): 2854-2864, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38718215

RESUMO

The purpose of the present study was to clarify whether the precipitation profile of a drug in bicarbonate buffer (BCB) may differ from that in phosphate buffer (PPB) by a well-controlled comparative study. The precipitation profiles of structurally diverse poorly soluble drugs in BCB and PPB were evaluated by a pH-shift precipitation test or a solvent-shift precipitation test (seven weak acid drugs (pKa: 4.2 to 7.5), six weak base drugs (pKa: 4.8 to 8.4), one unionizable drug, and one zwitterionic drug). To focus on crystal precipitation processes, each ionizable drug was first completely dissolved in an HCl (pH 3.0) or NaOH (pH 11.0) aqueous solution (450 mL, 50 rpm, 37 °C). A 10-fold concentrated buffer solution (50 mL) was then added to shift the pH value to 6.5 to initiate precipitation (final volume: 500 mL, buffer capacity (ß): 4.4 mM/ΔpH (BCB: 10 mM or PPB: 8 mM), ionic strength (I): 0.14 M (adjusted by NaCl)). The pH, ß, and I values were set to be relevant to the physiology of the small intestine. For an unionizable drug, a solvent-shift method was used (1/100 dilution). To maintain the pH value of BCB, a floating lid was used to avoid the loss of CO2. The floating lid was applied also to PPB to precisely align the experimental conditions between BCB and PPB. The solid form of the precipitants was identified by powder X-ray diffraction and differential scanning microscopy. The precipitation of weak acids (pKa ≤ 5.1) and weak bases (pKa ≥ 7.3) was found to be slower in BCB than in PPB. In contrast, the precipitation profiles in BCB and PPB were similar for less ionizable or nonionizable drugs at pH 6.5. The final pH values of the bulk phase were pH 6.5 ± 0.1 after the precipitation tests in all cases. All precipitates were in their respective free forms. The precipitation of ionizable weak acids and bases was slower in BCB than in PPB. The surface pH of precipitating particles may have differed between BCB and PPB due to the slow hydration process of CO2 specific to BCB. Since BCB is a physiological buffer in the small intestine, it should be considered as an option for precipitation studies of ionizable weak acids and bases.


Assuntos
Bicarbonatos , Precipitação Química , Cristalização , Fosfatos , Soluções Tampão , Concentração de Íons de Hidrogênio , Bicarbonatos/química , Fosfatos/química , Solubilidade , Concentração Osmolar , Química Farmacêutica/métodos , Difração de Raios X/métodos
6.
Int J Pharm X ; 7: 100243, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38585343

RESUMO

In recent years, the application of fixed dose combinations of antiretroviral drugs in HIV therapy has been established. Despite numerous therapeutic benefits, this approach poses several challenges for the formulation development especially when poorly soluble drugs are considered. Amorphous solid dispersions (ASD) thereby have gained considerable interest in the pharmaceutical field, however, mainly including binary systems containing only one drug and a polymer. The co-formulation of two amorphous drugs can be accompanied by an immense increase in the complexity of the system as exemplarily reported for ritonavir and lopinavir embedded in a composite polymer matrix of PVPVA. The present study aims to present a new formulation approach to overcome the well-documented interaction during dissolution. Two different polymers, PVPVA and HPMCAS were used to produce ASDs for both drugs individually via hot-melt extrusion. The embedding of lopinavir in the slower dissolving polymer HPMCAS, while using PVPVA for ritonavir was found to significantly improve the overall dissolution performance compared to the individual use of PVPVA as well as to the commercial product Kaletra®. In addition, the use of different grades of HPMCAS demonstrated the possibility to further modify the dissolution profile. For a preliminary biorelevant assessment, the selected formulations were tested in a biphasic dissolution setup.

7.
Pharm Res ; 41(5): 959-966, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653942

RESUMO

PURPOSE: The purpose of this study was to clarify the extent to which the dissolution profiles of immediate release (IR) products of various drugs differ between biorelevant bicarbonate buffer (BCB) and compendial phosphate buffer (PPB). METHODS: The dissolution profiles of the IR products of fifteen poorly soluble ionizable drugs were measured in BCB and PPB. BCB was set to be relevant to the small intestine (pH 6.8, 10 mM). The pH was maintained using the floating lid method. The Japanese pharmacopeia second fluid (JP2, 25 mM phosphate buffer, nominal pH 6.8) was used as compendial PPB. The compendial paddle apparatus was used for the dissolution tests (500 mL, 50 rpm, 37°C). RESULTS: In 11/15 cases, a difference in dissolved% (< 0.8 or > 1.25-fold) was observed at a time point. In 4/15 cases, the ratio of the area under the dissolution curve was not equivalent (< 0.8 or > 1.25-fold). In the cases of free-form drugs, the dissolution rate tended to be slower in BCB than in JP2. In the case of salt-form drugs, a marked difference was observed for the cases that showed supersaturation. However, no trend was observed in the differences. CONCLUSIONS: Many IR products showed differences in the dissolution profiles between biorelevant BCB and compendial PPB. With the floating lid method, BCB is as simple and easy to use as PPB. Biorelevant BCB is recommended for dissolution testing.


Assuntos
Bicarbonatos , Fosfatos , Solubilidade , Soluções Tampão , Fosfatos/química , Concentração de Íons de Hidrogênio , Bicarbonatos/química , Preparações Farmacêuticas/química , Química Farmacêutica/métodos , Liberação Controlada de Fármacos
8.
Eur J Pharm Sci ; 196: 106745, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471596

RESUMO

f2 with or without bootstrapping is the most common method to compare in vitro dissolution profiles, but methods to compare dissolution profiles have become less harmonized. The objective was to compare outcomes from bootstrap f2 and f2 (i.e. not-bootstrapped f2) using a large set of in vitro dissolution data. Non-parametric bootstrapping was performed on the 104 profile comparisons that did not meet the percent coefficient of variation (CV%) criteria to use average dissolution data. Bootstrap f2 was taken as the lower 90 % confidence interval of bootstrapped samples. There was concordance between bootstrap f2 and f2 in 92 of the 104 comparisons (88 %). There were no false positives. However, 12 % were false negative. Inspection of these discordance pairs suggests that bootstrap f2 serves as a conservative approach to assess profile similarity, particularly when a value of 50 is being used as decision criteria.

9.
Mol Pharm ; 21(4): 1884-1899, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38512389

RESUMO

Upon dissolution, amorphous solid dispersions (ASDs) of poorly water-soluble compounds can generate supersaturated solutions consisting of bound and free drug species that are in dynamic equilibrium with each other. Only free drug is available for absorption. Drug species bound to bile micelles, polymer excipients, and amorphous and crystalline precipitate can reduce the drug solute's activity to permeate, but they can also serve as reservoirs to replenish free drug in solution lost to absorption. However, with multiple processes of dissolution, absorption, and speciation occurring simultaneously, it may become challenging to understand which processes lead to an increase or decrease in drug solution concentration. Closed, nonsink dissolution testing methods used routinely, in the absence of drug removal, allow only for static equilibrium to exist and obscure the impact of each drug species on absorption. An artificial gut simulator (AGS) introduced recently consists of a hollow fiber-based absorption module and allows mass transfer of the drug from the dissolution media at a physiological rate after tuning the operating parameters. In the present work, ASDs of varying drug loadings were prepared with a BCS-II model compound, ketoconazole (KTZ), and hypromellose acetate succinate (HPMCAS) polymer. Simultaneous dissolution and absorption testing of the ASDs was conducted with the AGS, and simple analytical techniques were utilized to elucidate the impact of bound drug species on absorption. In all cases, a lower amount of crystalline precipitate was formed in the presence of absorption relative to the nonsink dissolution "control". However, formation of HPMCAS-bound drug species and crystalline precipitate significantly reduced KTZ absorption. Moreover, at high drug loading, inclusion of an absorption module was shown to enhance ASD dissolution. The rank ordering of the ASDs with respect to dissolution was significantly different when nonsink dissolution versus AGS was used, and this discrepancy could be mechanistically elucidated by understanding drug dissolution and speciation in the presence of absorption.


Assuntos
Absorção Gastrointestinal , Polímeros , Solubilidade , Cristalização , Liberação Controlada de Fármacos , Polímeros/química
10.
Curr Top Med Chem ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38544390

RESUMO

This review highlights major developments in the application of green organocatalytic and enzymatic dynamic kinetic resolutions (DKRs) in the total synthesis of biorelevant scaffolds. It illustrates the diversity of useful bioactive products and intermediates that can be synthesized under greener and more economic conditions through the combination of the powerful concept of DKR, which allows the resolution of racemic compounds with up to 100% yield, with either asymmetric organocatalysis or enzymatic catalysis, avoiding the use of toxic and expensive metals. With the need for more ecologic synthetic technologies, this field will undoubtedly expand its scope in the future with the employment of other organocatalysts/enzymes to even more types of transformations, thus allowing powerful greener and more economic strategies to reach other biologically important molecules.

11.
Eur J Pharm Biopharm ; 198: 114264, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492868

RESUMO

In this study, we present the first meta-analysis of human urine reported in the literature, drawing data from a total of 35 articles with a combined participant count of 14,021. Through this analysis, we have developed an artificial urine (AU) composition that can be adjusted within typical physiological parameters for in vitro applications. Our findings demonstrate the utility of this AU in determining the solubility of nitrofurantoin, particularly in the context of crystalluria. Notably, we observe that in saline, nitrofurantoin solubility, within the framework of its urinary pharmacokinetics, suggests a risk of crystalluria. However, in AU, this risk is mitigated due to complexation with urea. More broadly, we anticipate that our developed formulation will serve as a foundation for translational studies across biomedical and pharmaceutical sciences.


Assuntos
Nitrofurantoína , Urinálise , Humanos , Cristalúria , Ureia
12.
Pharm Res ; 41(5): 877-890, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38538971

RESUMO

OBJECTIVE: To utilize the global system analysis (GSA) in oral absorption modeling to gain a deeper understanding of system behavior, improve model accuracy, and make informed decisions during drug development. METHODS: GSA was utilized to give insight into which drug substance (DS), drug product (DP), and/or physiological parameter would have an impact on peak plasma concentration (Cmax) and area under the curve (AUC) of dipyridamole as a model weakly basic compound. GSA guided the design of in vitro experiments and oral absorption risk assessment using FormulatedProducts v2202.1.0. The solubility and precipitation profiles of dipyridamole in different bile salt concentrations were measured. The results were then used to build a mechanistic oral absorption model. RESULTS: GSA warranted further investigation into the precipitation kinetics and its link to the levels of bile salt concentrations. Mechanistic modeling studies demonstrated that a precipitation-integrated modeling approach appropriately predicted the mean plasma profiles, Cmax, and AUC from the clinical studies. CONCLUSIONS: This work shows the value of GSA utilization in early development to guide in vitro experimentation and build more confidence in identifying the critical parameters for the mathematical models.


Assuntos
Dipiridamol , Modelos Biológicos , Solubilidade , Dipiridamol/farmacocinética , Dipiridamol/administração & dosagem , Dipiridamol/química , Administração Oral , Humanos , Ácidos e Sais Biliares/química , Área Sob a Curva , Absorção Intestinal
13.
Drug Deliv Transl Res ; 14(4): 841-857, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37957474

RESUMO

Age-appropriateness of a formulation is the ability to deliver variable but accurate doses to the paediatric population in a safe and acceptable manner to improve medical adherence and reduce medication errors. Paediatric drug delivery is a challenging area of formulation research due to the existing gap in knowledge. This includes the unknown safety of excipients in the paediatric population, the need for an age-appropriate formulation, the lack of an effective taste-masking method and the lack of paediatric pharmacokinetic data and patient acceptability. It is equally important to establish methods for predicting the biopharmaceutical performance of a paediatric formulation as a function of age. Overcoming the challenges of existing technologies and providing custom-made solutions for the development of age-appropriate formulation is, therefore, a daunting task. Orodispersible films (ODF) are promising as age-appropriate formulations, an unmet need in paediatric drug delivery. New technological improvements in taste masking, improving solubility and rate of dissolution of insoluble drugs, the flexibility of dosing and extemporaneous preparation of these films in a hospital good manufacturing practises (GMP) setup using 3D printing can increase its acceptance among clinicians, patients and caregivers. The current review discusses the problems and possibilities in ODF technology to address the outstanding issues of age-appropriateness, which is the hallmark of patient acceptance and medical adherence in paediatrics.


Assuntos
Sistemas de Liberação de Medicamentos , Tecnologia , Humanos , Criança , Administração Oral , Preparações Farmacêuticas , Solubilidade , Composição de Medicamentos
14.
Eur J Pharm Sci ; 192: 106655, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016626

RESUMO

Hot-melt extrusion is often used to prepare amorphous solid dispersion to overcome low drug solubility and enhance bio-performance of the formulation. Due to the uniqueness of each drug - polymer combination and its physico-chemical properties, setting the appropriate HME barrel temperature, feed rate and screw speed ensures drug amorphization, absence of residual crystallinity, absence of water, and a suitable drug release profile. In this research, samples with BCS II/IV model drug and PVP/VA polymer were prepared to evaluate the impact of HME process parameters, incoming drug form (anhydrous vs. hydrate), and drug supplier (i.e., impurity profile), on biorelevant drug release. This study provides a relationship between observed in vitro supersaturation and precipitation behavior of amorphous solid dispersion formulation with in vivo results, on patients, by using the acceptor profile of side-by-side dissolution-permeation apparatus. An in vitro dissolution method, in small volumes, in an apparatus with paddles and dissolution-permeation side-by-side method was developed on the MicroFlux™ apparatus to assess if the differences observed in vitro bears relevance to the bioequivalence outcome in vivo. The former was used to guide the generic drug product development due to high discriminatory strength, while the latter was biorelevant, due to the inclusion of the second compartment assuring absorptive environment to capture the impact of supersaturation and subsequent precipitation on bioavailability. Bio-relevancy of the in vitro method was confirmed with the in vivo dog study and clinical study on patients, and an in vitro - in vivo correlation was established. For the investigated BCS II/IV drug, this research highlights the importance of considering supersaturation and formation of colloidal species during amorphous solid dispersion release testing to assure product quality, safety and efficacy.


Assuntos
Contaminação de Medicamentos , Temperatura Alta , Humanos , Animais , Cães , Polímeros/química , Polivinil/química , Solubilidade , Liberação Controlada de Fármacos , Composição de Medicamentos/métodos
15.
Int J Pharm ; 648: 123594, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37981249

RESUMO

The influence mechanism of biorelevant media on the dissolution of active pharmaceutical ingredients (APIs) is the key to their formulation design. The dissolution kinetics of naproxen (NAP) and indomethacin (IND) in biorelevant media was systematically investigated. The dissolution mechanism was analyzed by chemical potential gradient model to explore the influence of surfactant type, pH and ionic strength. Hexadecyl trimethyl ammonium bromide (CTAB) is superior to sodium dodecyl sulfate (SDS) in promoting the dissolution of NAP and IND by increasing the solubility and accelerating the surface reaction processes. The electrostatic repulsion between SDS and NAP and IND with the same negative charge facilitates the diffusion of API, while the mutual attraction between CTAB and NAP and IND is not conducive to diffusion. High pH was favorable for the dissolution of acidic NAP and IND, as the simultaneous increase in solubility, surface reaction constant, and diffusion constant. High ionic strength was beneficial for the surface reaction of NAP and IND, but hindered their diffusion. It was shown that the modeling results were in conformity with the in vitro experimental data. These results are expected to provide theoretical supports for the design of biorelevant media and pharmaceutical formulations in the pharmaceutical development.


Assuntos
Tensoativos , Cetrimônio , Dodecilsulfato de Sódio , Cinética , Solubilidade , Preparações Farmacêuticas
16.
Pharmaceutics ; 15(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37765162

RESUMO

To assess the probability of bioequivalence (BE) between orally disintegrating tablets (ODTs) taken without water and conventional tablets (CTs) taken with water, an in vitro biorelevant methodology was developed using the BE Checker, which reproduces fluid shifts in the gastrointestinal tract and drug permeation. In addition to the fluid shift from the stomach to the small intestine, the process of ODT disintegration in a small amount of fluid in the oral cavity and the difference in gastric emptying caused by differences in water intake were incorporated into the evaluation protocol. Assuming a longer time to maximum plasma concentration after oral administration of ODTs taken without water than for CTs taken with water due to a delay in gastric emptying, the fluid shift in the donor chamber of the BE Checker without water was set longer than that taken with water. In the case of naftopidil ODTs and CTs, the values of the f2 function, representing the similarity of the permeation profiles, were 50 or higher when the fluid shift in ODTs taken without water was set at 1.5 or 2 times longer than that of the CTs taken with water. The values of the f2 function in permeation profiles of pitavastatin and memantine ODTs were both 62 when the optimized experimental settings for naftopidil formulations were applied. This methodology can be useful in formulation studies for estimating the BE probability between ODTs and CTs.

17.
BMC Biotechnol ; 23(1): 36, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684623

RESUMO

BACKGROUND: Lamotrigine is an effective antiseizure medication that can be used in the management of focal and generalized epilepsies in pediatric patients. This study was conducted to quantify and compare the solubility of lamotrigine in age-specific biorelevant media that simulated the fasted and fed conditions of the gastric and intestinal environments in pediatrics and adults. Another aim was to predict how traditional, re-formulated, modified, and new oral formulations would behave in the gastric and intestinal environments across different age groups. METHODS: Solubility studies of lamotrigine were conducted in 16 different age-specific biorelevant media over the pH range and temperature specified by the current biopharmaceutical classification system-based criteria. The age-specific biorelevant media simulated the environments in the stomach and proximal gastrointestinal tract in both fasted and fed conditions of adults and pediatric sub-populations. The solubility of lamotrigine was determined using a pre-validated HPLC-UV method. RESULTS: Lamotrigine showed low solubility in the 16 age-specific biorelevant media as indicated by a dose number of > 1. There were significant age-specific variabilities in the solubility of lamotrigine in the different age-specific biorelevant media. Pediatric/adult solubility ratios of lamotrigine fell outside the 80-125% range in 6 (50.0%) and were borderline in 3 (25.0%) out of the 12 compared media. These ratios indicated that the solubility of lamotrigine showed considerable differences in 9 out of the 12 (75.0%) of the compared media. CONCLUSION: Future studies are still needed to generate more pediatric biopharmaceutical data to help understand the performances of oral dosage forms in pediatric sub-populations.


Assuntos
Produtos Biológicos , Estômago , Adulto , Humanos , Criança , Lamotrigina , Solubilidade , Fatores Etários
18.
Polymers (Basel) ; 15(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37631487

RESUMO

In the local treatment of the esophageal mucosa, the retention time of the different dosage forms, such as tablets, films or liquids, is of high relevance for the effective treatment of diseases. Unfortunately, there are only few in vitro models describing the esophageal route of administration. To predict the behaviour of an esophageal-applied dosage form, it is necessary to simulate the site of application in a biorelevant way. The aim of this work was to develop two test setups for an esophageal peristalsis model which was described in a previous study. Different parameters such as flow rate, peristalsis, angle of inclination or mucous membrane were varied or introduced into the model. A stimulated and unstimulated modus were developed and tested with two different dosage forms. The time until the dosage form was cleared from the in vitro model was shorter with the stimulated than with the unstimulated modus. Also, esophageal-applied films had a prolonged transit time compared to a viscous syrup. The modification of the simulated esophageal surface made it possible to estimate the retention time of the dosage forms. It could be demonstrated that the residence time of a dosage form depends on different parameters affecting each other.

19.
Int J Pharm ; 645: 123347, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37633536

RESUMO

Anatomical/physiological gastrointestinal changes after bariatric surgery may influence the fate of orally administered drugs.Since non-selective NSAIDs are not well-tolerated post-surgery, selective cyclooxygenase-2 (COX-2) inhibitors may be important for these patients. In this work we investigated celecoxib, etoricoxib and etodolac, for impaired post-bariatric solubility/dissolution and absorption. Solubility was studied in-vitro, and ex-vivoin aspirated gastric contents from patients pre- vs. post-surgery. Dissolution was studied in conditions simulating pre- vs. post-surgery stomach. Finally, the experimental solubility data were used in physiologically-based biopharmaceutics model (PBBM) (GastroPlus®) to simulate pre- vs. post-surgery celecoxib/etoricoxib/etodolac pharmacokinetic (PK) profiles.For etoricoxib and etodolac (but not celecoxib), pH-dependent solubility was demonstrated: etoricoxib solubility decreased âˆ¼1000-fold, and etodolac solubility increased 120-fold, as pH increased from 1 to 7, which was also confirmed ex-vivo. Hampered etoricoxib dissolution and improved etodolac dissolution post-surgery was revealed. Tablet crushing, clinically recommended after surgery, failed to improve post-bariatric dissolution. PBBM simulations revealed significantly impaired etoricoxib absorption post-surgery across all conditions; for instance, 79% lower Cmax and 53% decreased AUC was simulated post-gastric bypass procedure, after single 120 mg dose. Celecoxib and etodolac maintained unaffected absorption after bariatric surgery.This mechanistically-based analysis suggests to prefer the acidic drug etodolac or the neutral celecoxib as selective COX-2 inhibitors, over the basic drug etoricoxib, after bariatric surgery.


Assuntos
Cirurgia Bariátrica , Bariatria , Humanos , Inibidores de Ciclo-Oxigenase 2 , Celecoxib , Etoricoxib , Etodolac , Solubilidade
20.
ACS Biomater Sci Eng ; 9(8): 4821-4830, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37441793

RESUMO

Drug loading of polymer micelles can have a profound effect on their particle size and morphology as well as their physicochemical properties. In turn, this influences performance in biological environments. For oral delivery of drugs, the intestinal environment is key, and consequently, a thorough structural understanding of what happens at this material-biology interface is required to understand in vivo performance and tailor improved delivery vehicles. In this study, we address this interface in vitro through a detailed structural characterization of the colloidal assemblies of polymeric micelles based on poly(2-oxazolines) with three different guest loadings with the natural product curcumin (17-52 wt %) in fed-state simulated intestinal fluids (FeSSIF). For this, we employ NMR spectroscopy, in particular, 1H NMR, 1H-1H-NOESY, and 1H DOSY experiments complemented by quantum chemical calculations and cryo-TEM measurements. Through this mixture of methods, we identified curcumin-taurocholate interactions as central interaction patterns alongside interactions with the polymer and lipids. Furthermore, curcumin molecules can be exchanged between polymer micelles and bile colloids, an important prerequisite for their uptake. Finally, increased loading of the polymer micelles with curcumin resulted in a larger number of vesicles as taurocholate─through coordination with Cur─is less available to form nanoparticles with the lipids. The loading-dependent behavior found in this study deviates from previous work on a different drug substance highlighting the need for further studies including different drug molecules and polymer types to improve the understanding of events on the molecular level.


Assuntos
Antineoplásicos , Curcumina , Micelas , Curcumina/química , Polímeros/química , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA