Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 392, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446264

RESUMO

Pathogenic fungi and their spores are ubiquitously present and invade the tissues of higher living plants causing pathogenesis and inevitably death or retarded growth. A group of fungi kills its hosts and consume the dead tissues (necrotrophs), while others feed on living tissue (biotrophs) or combination of two (hemibiotrophs). A number of virulent factors is used by fungal pathogens to inhabit new hosts and cause illness. Fungal pathogens develop specialized structures for complete invasion into plant organs to regulate pathogenic growth. Virulence factors like effectors, mycotoxins, cell wall degrading enzymes and organic acids have varied roles depending on the infection strategy and assist the pathogens to possess control on living tissues of the plants. Infection strategies employed by fungi generally masks the plant defense mechanism, however necrotrophs are best known to harm plant tissues with their poisonous secretion. Interestingly, the effector chemicals released by Biotrophs reduce plant cell growth and regulate plant metabolism in their advantage causing no direct death. All these virulence tools cause huge loss to the agricultural product of pre- harvest crops and post-harvest yields causing low output leading to huge economic losses. This review focusses on comprehensive study of range of virulence factors of the pathogenic fungi responsible for their invasion inside the healthy tissues of plants. The compiled information would influence researchers to design antidote against all virulence factors of fungi relevant to their area of research which could pave way for protection against plant pathogenesis.


Assuntos
Produtos Agrícolas , Fatores de Virulência , Virulência , Agricultura , Ciclo Celular
2.
Fungal Syst Evol ; 12: 203-217, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38529086

RESUMO

Downy mildew is one of the most important diseases of commercial sunflower and other Asteraceae hosts, including ornamental Rudbeckia. Plasmopara halstedii has historically been identified as the causal agent of this disease, considered a complex of species affecting nearly 35 genera in various tribes. However, with the use of molecular DNA characters for phylogenetic studies, distinct lineages of P. halstedii in the Asteraceae have been identified, confirmed as distinct or segregated as new species. During August of 2022, a downy mildew was observed on potted Echinacea purpurea grown in a retail greenhouse in Jefferson County, Wisconsin, USA. Phylogenetic analyses of the cytochrome c oxidase subunit 2 (cox2) and nuclear large subunit ribosomal RNA (nc LSU rDNA) gene regions indicated these Plasmopara sp. isolates are not conspecific with P. halstedii. Based on phylogenetic evidence and new host association, the Plasmopara isolates from E. purpurea are here described as Plasmopara echinaceae. Diagnostic morphological characters for this new species were not observed when compared with other isolates of P. halstedii or other Plasmopara species found on Asteraceae hosts, and therefore a list of species-specific substitutions in the cox2 region are provided as diagnostic characters. As this study corresponds to the first observation of downy mildew in cone flowers, it is recommended to follow the required disease prevention guidelines to prevent outbreaks and the establishment of this plant pathogen in production sites. Citation: Salgado-Salazar C, Romberg MK, Hudelson B (2023). Plasmopara echinaceae, a new species of downy mildew affecting cone flowers (Echinacea purpurea) in the United States. Fungal Systematics and Evolution 12: 203-217. doi: 10.3114/fuse.2023.12.10.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA