Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(7)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39061781

RESUMO

Magnetic resonance electrical properties tomography (MR EPT) can retrieve permittivity from the B1+ magnitude. However, the accuracy of the permittivity measurement using MR EPT is still not ideal due to the low signal-to-noise ratio (SNR) of B1+ magnitude. In this study, the probability density function (PDF)-based channel-combination Bloch-Siegert (BSS) method was firstly introduced to MR EPT for improving the accuracy of the permittivity measurement. MRI experiments were performed using a 3T scanner with an eight-channel receiver coil. The homogeneous water phantom was scanned for assessing the spatial distribution of B1+ magnitude obtained from the PDF-based channel-combination BSS method. Gadolinium (Gd) phantom and rats were scanned for assessing the feasibility of the PDF-based channel-combination BSS method in MR EPT. The Helmholtz-based EPT reconstruction algorithm was selected. For quantitative comparison, the permittivity measured by the open-ended coaxial probe method was considered as the ground-truth value. The accuracy of the permittivity measurement was estimated by the relative error between the reconstructed value and the ground-truth value. The reconstructed relative permittivity of Gd phantom was 52.413, while that of rat leg muscle was 54.053. The ground-truth values of relative permittivity of Gd phantom and rat leg muscle were 78.86 and 49.04, respectively. The relative error of average permittivity was 33.53% for Gd and 10.22% for rat leg muscle. The results indicated the high accuracy of the permittivity measurement using the PDF-based channel-combination BSS method in MR EPT. This improvement may promote the clinical application of MR EPT technology, such as in the early diagnosis of cancers.

2.
Magn Reson Med ; 70(6): 1669-73, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23401024

RESUMO

The Bloch-Siegert (B-S) B1 (+) mapping technique is a fast, phase-based method that is highly SAR limited especially at 7T, necessitating the use of long repetition times. Spiral and echo-planar readouts were incorporated in a gradient-echo based B-S sequence to reduce specific absoprtion rate (SAR) and improve its scan efficiency. A novel, numerically optimized 4 ms B-S off-resonant pulse at + 1960 Hz was used to increase sensitivity and further reduce SAR compared with the conventional 6 ms Fermi B-S pulse. Using echo-planar and spiral readouts, scan time reductions of 8-16 were achieved. By reducing the B-S pulse width by a factor of 1.5, SAR was reduced by a factor of 1.5 and overall sensitivity was increased by a factor of 1.33 due to the nearly halved resonance offset of the new B-S pulse. This was validated on phantoms and volunteers at 7 T.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Imagem Ecoplanar/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA