RESUMO
This study was performed to determine the effect of mushroom powder (MP) (Agaricus bisporus) supplementation on growing Japanese quail (Coturnix coturnix japonica). A total of 300 unsexed 1-day-old Japanese quails with similar body weights (8.38 ± 0.2 g) were randomly assigned to five treatment groups with six replications. Additions of 0, 0.25, 0.50, 0.75, or 1.00% of MP to the basal diet were used to develop the treatment groups. Quails were fed ad libitum for 42 days. At the end of the experiment, 12 quails from each experimental unit were euthanised to determine performance, carcass traits, meat quality, and bone biochemical properties. Results showed that all dietary MP did not negatively affect any performance parameters (P > 0.05), while by the third week of life, there was an increase (P < 0.05) in body weight and body weight gain in the quails of the 0.75% MP group compared to the control group. Nevertheless, these differences disappeared at the end of the trial (P > 0.05). No differences were observed (P > 0.05) for any of the studied carcass traits, except for the pancreas weight which decreased (P < 0.05) with the addition of high MP (1.00%). Regarding meat quality, all color parameters were affected on the fifth day of sampling (P < 0.05) but not on the first day (P > 0.05). It was detected that the breast of the quails in group 0.75% MP had the highest L* value and the lowest a* value. While the breast of the 1.00% MP group had the highest b value and the lowest pH value. Dietary MP enhanced oxidative stability, reducing malondialdehyde (MDA) value in the breast compared to the control at both sampling points (P < 0.01), being more noted on the fifth day of sampling. Bone biomechanical properties (in terms of shear force or shear stress) were improved (P < 0.01) with the dietary addition of MP at 0.75% compared to the control. It can be suggested that MP is a secure ingredient in animal feed without negatively affecting performance parameters, carcass traits, or meat quality. Therefore, including an interval of 0.50-0.75% of MP in the diet of growing quails could be a suitable strategy to improve certain parameters such as the meat's oxidative stability and the bone's biomechanical parameters. Moreover, the efficacy of MP on performance development would be greater during the first weeks of the quails' life due to their intestinal conditions at this stage.
Assuntos
Agaricus , Coturnix , Animais , Codorniz , Pós , Dieta/veterinária , Suplementos Nutricionais , Carne/análise , Ração Animal/análiseRESUMO
Measurement of the properties of bone as a material can happen in various length scales in its hierarchical and composite structure. The aim of this study was to test the tissue level properties of clinically-relevant human bone samples which were collected from donors belonging to three groups: ageing donors who suffered no fractures (Control); untreated fracture patients (Fx-Untreated) and patient who experienced hip fracture despite being treated with bisphosphonates (Fx-BisTreated). Tissue level properties were assessed by (a) nanoindentation and (b) synchrotron tensile tests (STT) where strains were measured at the 'tissue', 'fibril' and 'mineral' levels by using simultaneous Wide-angle - (WAXD) and Small angle- X-ray diffraction (SAXD). The composition was analysed by thermogravimetric analysis and material level endo- and exo-thermic reactions by differential scanning calorimetry (TGA/DSC3+). Irrespective of treatment fracture donors exhibited significantly lower tissue, fibril and mineral strain at the micro and nanoscale respectively and had a higher mineral content than controls. In nanoindentation only nanohardness was significantly greater for Controls and Fx-BisTreated versus Fx-Untreated. The other nanoindentation parameters did not vary significantly across the three groups. There was a highly significant positive correlation (p < 0.001) between organic content and tissue level strain behaviour. Overall hip-fractures were associated with lower STT nanostrains and it was behaviour measured by STT which proved to be a more effective approach for predicting fracture risk because evidently it was able to demonstrate the mechanical deficit for the bone tissue of the donors who had experienced fractures.
Assuntos
Osso e Ossos , Fraturas do Quadril , Humanos , Envelhecimento , Difração de Raios X , Minerais , Densidade ÓsseaRESUMO
The abrasive machining of cortical tissue is used in many arthroplasties and craniofacial surgery procedures. However, this method requires further research due to the processes' complexity and the tissue's composite structure. Therefore, studies were carried out to assess the impact of grid geometry and the anisotropic structure of bone tissue on the cutting process and crack propagation. The analysis was performed based on an orthogonal cutting in three directions. The grain shape has been simplified, and the cutting forces, crack path and surface quality were monitored. The results indicate that a depth of cut at 100−25 µm allows the most accurate cutting control. A transverse cutting direction results in the greatest surface irregularity: Iz = 17.7%, Vvc = 3.29 mL/m2 and df = 5.22 µm and generates the most uncontrolled cracks. Maximum fracture force values of FF > 80 N were generated for d = 175 µm. For d < 5 µm, no cracks or only slight penetration occurs. A positive γ provides greater repeatability and crack control. Negative γ generates penetrating cracks and uncontrolled material damage. The individual types of cracks have a characteristic course of changes in Fx. The clearance angle did not affect the crack propagation.
RESUMO
Severe bone fractures are often treated by appending internal fixations. In unhealthy or osteoporotic patients, post-implantation bone fractures can occur due to external impact (e.g. from a fall), day-to-day activities in highly-osteoporotic cases and mismatches in the stiffness of bone and the implant's biomaterial, since this causes stress concentrations. One approach to alleviating this problem is to use biomaterials that closely mimic the effective stiffness of real bone, thereby more seamlessly integrating the fixation. This requires to know the properties target (bone properties) and therefore, it highlights the relevance of the evaluation of the bone's mechanical properties which is impractical via direct measurement. This work presents a methodology (multistage homogenisation) for predicting the anisotropic stiffness of bone given the porosity and mineral fraction, both of which are more readily obtained than the mechanical properties themselves. Unlike previous work we: (i) account for finger-like morphology of the mineral phase at the nanoscale; (ii) use microscopy data to model the osteon geometry and its curvilinear anisotropy at the microscale, and (iii) use data to define the trabecular (microCT) and cortical (microscopy) bone geometries at the mesoscale. The predicts have been shown to agree favourably with experimental data in the literature as well as previous modelling works. The results are summarised in a database containing anisotropic stiffness tensors applicable to a broad range of degrees of bone health (e.g. mineral fractions and mesoscale porosities); thus, this work is a contribution towards being able to design more robust patient-specific bone implants in practice.
Assuntos
Fraturas Ósseas , Osteoporose , Materiais Biocompatíveis , Osso e Ossos , Humanos , Microtomografia por Raio-XRESUMO
Matrix Gla protein (MGP) is mostly known to be a calcification inhibitor, as its absence leads to ectopic calcification of different tissues such as cartilage or arteries. MGP deficiency also leads to low bone mass and delayed bone growth. In the present contribution, we investigate the effect of MGP deficiency on the structural and material mechanical bone properties by focusing on the elastic response of femurs undergoing three-points bending. To this aim, biomechanical tests are performed on femurs issued from Mgp-deficient mice at 14, 21, 28, and 35 days of postnatal life and compared to healthy control femurs. µCT acquisitions enable to reconstruct bone geometries and are used to construct subject-specific finite element models avoiding some of the reported limitations concerning the use of beam-like assumptions for small bone samples. Our results indicate that MGP deficiency may be associated to differences in both structural and material properties of femurs during early stages of development. MGP deficiency appears to be related to a decrease in bone dimensions, compensated by higher material properties resulting in similar structural bone properties at P35. The search for a unique density-elasticity relationship based on calibrated bone mineral density (BMD) indicates that MGP deficiency may affect bone tissue in several ways, that may not be represented uniquely from the quantification of BMD. Despite of its limitation to elastic response, the present preliminary study reports for the very first time the mechanical skeletal properties of Mgp-deficient mice at early stages of development.
Assuntos
Proteínas de Ligação ao Cálcio , Proteínas da Matriz Extracelular , Fêmur , Animais , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Cartilagem/metabolismo , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Fêmur/diagnóstico por imagem , Fêmur/fisiopatologia , Camundongos , Proteína de Matriz GlaRESUMO
Understanding what maturity entails for bone, when it arrives, and its pre- and post-maturity traits and properties are very important for understanding its evolution and physiology. There is a clear but fine distinction between the chronological age of bone (the age of its donor) and the tissue age of the bone packets it comprises at the microscopic level. Whole bone fragility changes with age due to mass and architecture effects, but so do the properties of bone at the tissue level. Tissue age and tissue-level properties are therefore increasingly attracting a great deal of attention recently. The present study investigated compositional and material changes in the hydroxyapatite crystals, the collagenous phase, changes in bone matrix composition and its nanoindentation properties and their decline with chronological age in later life. The aim was to track the age threshold at which cortical bone arrives at maturity and what happens following that threshold. To do so FTIR, DSC/TGA, XRD, nanoindentation and microindentation were used to investigate rib cortical bone material across a cohort of 86 individuals from one ethnic group with age spanning between 17 and 82â¯years. Results of this cross-sectional study showed a clear increase in mineral content relative to the organic and water contents across all ages. Furthermore, an increase in crystal size and consequent decrease in strain (coherence length) was detected associated with secondary mineralisation and an increase in carbonate substitution. Overall, we observe a number of modifications which contribute to a typical functional behaviour of bone showing an increase in both indentation modulus and hardness until the age of about 35 after which both of these properties decline gradually and concomitantly to other physicochemical changes and seemingly until the end of one's life.
Assuntos
Desenvolvimento Ósseo , Osso Cortical , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos/fisiologia , Densidade Óssea/fisiologia , Estudos Transversais , Humanos , Pessoa de Meia-Idade , Costelas , Adulto JovemRESUMO
The objective of this study was to characterize femur morphology in healthy infants and young children. Anterior-posterior (AP) radiographs of the femur from children age 0-3 years with no history of bone disease were obtained from two children's hospitals and one medical examiner's office. Femur morphological measures (bone length, minimum diaphysis diameter, growth plate width, and femur radius of curvature) and sectional structural measures were determined. Measures were described and compared based on subject age and mass. Relationships between measures and age and mass were evaluated. The 169 AP femur radiographs were obtained from 99 children (59.6% males, median age = 12.0 months, IQR = 0-27.5 months, median body weight = 10.0 kg, IQR = 4.4-15.6 kg). Femur length (rs = 0.97, p < 0.001; rs = 0.89, p < 0.001), trochanter width (rs = 0.86, p < 0.001; rs = 0.85, p < 0.001), minimum diaphysis diameter (rs = 0.91, p < 0.001; rs = 0.87, p < 0.001), and growth plate width (rs = 0.91, p < 0.001; rs = 0.84, p < 0.001) increased with age and weight, respectively. Cross-sectional area (rs = 0.87; rs = 0.86; p < 0.01), polar moment of inertia (rs = 0.91; rs = 0.87; p < 0.001), moment of inertia (rs = 0.91; rs = 0.87; p < 0.001), polar modulus (rs = 0.91; rs = 0.87; p < 0.001) and medullary canal diameter (rs = 0.83, p < 0.001; rs = 0.73, p < 0.001) at the minimum diaphysis also increased with age and weight, respectively. Changes during rapid bone growth are important to understanding fracture risk in infants and young children as they transition to independent walking. Femur length, trochanter width, minimum diaphysis diameter and growth plate width increased with age and weight. Structural properties associated with fracture resistance also increased with age and weight.
Assuntos
Fêmur , Fraturas Ósseas , Densidade Óssea , Desenvolvimento Ósseo , Criança , Pré-Escolar , Diáfises/diagnóstico por imagem , Feminino , Fêmur/anatomia & histologia , Fêmur/diagnóstico por imagem , Humanos , Lactente , Recém-Nascido , Masculino , Rádio (Anatomia)RESUMO
Biomedical experimental studies such as pull-out (PO), screw loosening experience variability mechanical properties of fresh bone, legal procedures of cadaver bone samples and time-consuming problems. Finite Element Method (FEM) could overcome experimental problems in biomechanics. However, material modelling of bone is quite difficult, which has viscoelastic and viscoplastic properties. The study presents a bone material model which is constructed at the strain rates with the Johnson-Cook (JC) material model, one of the robust constitutive material models. The JC material constants of trabecular bone are determined by the curve fitting method at strain rates for the 3D PO finite element simulation, which defines the screw-bone interface relationship. The PO simulation is performed using the Abaqus/CAE software program. Bone fracture mechanisms are simulated with dynamic/explicit solutions during the PO phenomenon. The paper exposes whether the strain rate has effects on the PO performance. Moreover, simulation reveals the relationship between pedicle screw diameter and PO performance. The results obtained that the maximum pull-out force (POF) improves as both the screw diameter and the strain rate increase. For 5.5 mm diameter pedicle screw POFs were 487, 517 and 1708 N at strain rate 0.00015, 0.015 and 0.015 s-1, respectively. The FOFs obtained from the simulation of the other screw were 730, 802 and 2008 N at strain rates 0.00015, 0.0015 and 0.015, respectively. PO phenomenon was also simulated realistically in the finite element analysis (FEA).
Assuntos
Parafusos Pediculares , Fenômenos Biomecânicos , Osso Esponjoso , Simulação por Computador , Análise de Elementos FinitosRESUMO
OBJECTIVES: Even though much is known about bone mineral and matrix composition, studies about their relationship with several bone properties and its alterations related to bone diseases such as osteoporosis are practically non-existent in humans. Thus, the development of methods to understand the effects of bone properties at a microscopic level is paramount. This research aimed to evaluate whether Fourier transform infrared-attenuated total reflectance (FTIR-ATR) band intensity ratios correlate with femoral bone mass, bone mineral content (BMC) (total and femoral neck), bone mineral per unit area (BMD) (total, femoral neck, greater trochanter, intertrochanteric region, and Ward's area) and the area (total and femoral neck). A sample of femora from the 21st Century Identified Skeleton Collection (N = 78, 42 females and 36 males) was employed and BMC, BMD, and the femoral areas were acquired by DXA. RESULTS: It was found that only females' BMD had a significant association with the femoral FTIR-ATR indices under study, whereas bone collagen (Am/P) and the content of carbonate Type A (API) in males correlated with the total proximal femur area of the regions of interest and the femoral neck area. DISCUSSION: Men and women showed different changes related to their chemical composition in BMD, BMC, and probed area, most likely due to differences in structure and physiology, as well as mechanical strength in the proximal femoral sites where BMD was analyzed.
Assuntos
Densidade Óssea , Osteoporose , Feminino , Fêmur/diagnóstico por imagem , Colo do Fêmur/diagnóstico por imagem , Humanos , MasculinoRESUMO
BACKGROUND: 25-Hydroxycholecalciferol (25OHD3 ) is a new feed additive, which is a potential alternative to vitamin D3 in swine nutrition. The objective of this study was to determine the effects of different doses of 25OHD3 supplementation on performance, immunity, antioxidant capacity, intestinal morphology and bone quality in piglets. RESULTS: As dietary 25OHD3 supplementation increased, the average daily gain (ADG) improved (P < 0.05) quadratically during days 1-14, and tended to increase (P = 0.06) quadratically during the overall period of the experiment. Increasing 25OHD3 supplementation increased (linear effect, P < 0.05) the serum 25OHD3 level and serum glutathione peroxidase (GSH-Px) activity. On day 14, serum immunoglobulin A (IgA) was increased (linear and quadratic effects, P < 0.05) as dietary 25OHD3 supplementation increased. On day 28, serum IgA level was higher (P < 0.05) linearly and the complement 3 (C3) level was reduced (P < 0.05) linearly as dietary supplementation of 25OHD3 increased. The mucosal GSH-Px activity of the small intestine was higher (quadratic effect, P < 0.05) with increasing 25OHD3 supplementation. Jejunal villus height (P = 0.06) and villus height to crypt depth ratio (P = 0.07) tended to increase quadratically, and the villus height to crypt-depth ratio of the ileum increased (P < 0.05) linearly and quadratically with increasing 25OHD3 supplementation. Dietary supplementation with an increasing level of 25OHD3 increased breaking strength of tibias and femurs (quadratic effect, P < 0.05). CONCLUSION: Increasing dietary 25OHD3 supplementation partly improved performance, immunity, antioxidant status, intestinal morphology, and bone properties of weaned piglets. © 2020 Society of Chemical Industry.
Assuntos
Antioxidantes/metabolismo , Osso e Ossos/efeitos dos fármacos , Calcifediol/administração & dosagem , Suplementos Nutricionais/análise , Intestino Delgado/crescimento & desenvolvimento , Suínos/imunologia , Animais , Osso e Ossos/química , Osso e Ossos/metabolismo , Feminino , Glutationa Peroxidase/sangue , Imunoglobulina A/sangue , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/metabolismo , Intestino Delgado/anatomia & histologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Masculino , Suínos/sangue , Suínos/crescimento & desenvolvimento , DesmameRESUMO
Bones self-optimize their mechanical behavior in response to mechanical stimulus. The objective of this research was to develop an integrated bone remodeling and stress binning algorithms into a finite element environment to elucidate the evolution of the bone properties as a function of loading. The bone remodeling algorithm was used to calculate the change in the density and elastic modulus based on the strain energy stimulus. The stress-binning procedure seeks to assign the properties to each element based on the levels of stress from the previous cycle, eliminating pseudo-lazy-zoning and stress dilation effects. The developed algorithms were used to analyze the response skull to loading associated with orthodontic devices. Specifically, a load was applied between the roots of the canine teeth and the first premolars while constraining the foramen magnum. Full-field contours of the displacement, strain, and strain energy were extracted after each remodeling cycle at nine commonly cephalometric landmarks. The results indicate that the overall mechanical response and the associated properties reached a steady-state behavior after nearly 50 cycles of applying the algorithm, where different zones within the skull exhibited unique evolution based on the locations from the loading and boundary sites. When approaching this steady-state condition, it was found that the upper incisor displacement is reduced by 72%, and the density is reduced by almost 7.5%. The finite element approach can be used in defining the treatment process by dynamically changing the loads. Future research will focus on integrating the time-dependent behavior of the bone.
RESUMO
Xylo-oligosaccharides (XOS), non-digestible oligosaccharides, have the potential to regulate intestinal microorganisms, and thus, improve host health, but little evidence exists for the prebiotic effects on bone health. This study evaluates the dose-response effect of XOS supplementation on bone properties, the morphology of the intestine, cecum pH, and cecum wall weight, as well as the related calcium transporters. Ninety-six 28-day-old male mice were randomized into one of four groups, fed the same commercial diet, and given different types of deionized water containing 0, 1, 2, or 4% XOS by concentration for 30 days. Eight mice were randomly selected to accomplish particular tasks every 10 days. No significant differences in serum Ca and P levels and growth performance were observed among the four studied groups. XOS intervention significantly decreased cecum pH and increased cecum wall weight in a dose-dependent manner. At the late growth stage, compared with 0% XOS, the bone mineral density (BMD) and bone-breaking strength in 4% XOS were significantly higher. The bone crystallinity with 4% XOS, measured by Raman spectrum, was significantly enhanced compared to that with 0% XOS during later growth. The villus height and villus height to crypt depth (VH:CD) were enhanced with an increase of XOS concentration during the later stage of growth. The expression of transient receptor potential vanillin receptor 6 (TRPV6) and Na+/Ca2+ exchanger 1 (NCX1) in the duodenum were enhanced by XOS supplementation. XOS exerted a positive influence on bone properties by decreasing the cecum pH, increasing the cecum wall and villus structure, and upregulating the expression of related calcium transporters.
Assuntos
Osso e Ossos/efeitos dos fármacos , Cálcio/metabolismo , Água Potável/administração & dosagem , Oligossacarídeos/administração & dosagem , Oligossacarídeos/metabolismo , Ração Animal , Animais , Densidade Óssea/efeitos dos fármacos , Masculino , Camundongos , Modelos AnimaisRESUMO
To determine the effects of normal and low dietary calcium (Ca) and phosphorus (P) levels and 25-hydroxycholecalciferol (25-OH-D3) supplementation on performance, serum antioxidant status, meat quality, and bone properties of broilers, 224 1-day-old Arbor Acre male broilers were used in this study. Broilers were allotted randomly to 1 of 4 treatments in a 2 × 2 factorial arrangement that included normal or low Ca and P diet with or without 69 µg/kg 25-OH-D3. The trial consists of a starter phase from day 1 to 21 and a grower phase from day 22 to 42. Dietary 25-OH-D3 supplementation increased (P < 0.05) average daily weight gain from day 22 to 42 and decreased feed conversation ratio from day 22 to 42 and day 0 to 42. On day 21, 25-OH-D3 increased serum concentrations of total antioxidant capacity (T-AOC), catalase (CAT), and glutathione peroxidase in broilers fed low Ca and P diet (Interaction, P < 0.05). 25-hydroxycholecalciferol significantly decreased serum malondialdehyde concentration. Dietary Ca and P deficiencies significantly decreased serum Ca and P concentrations and increased serum parathyroid hormone (PTH) concentration, and serum Ca and 25-OH-D3 concentrations were significantly increased by 25-OH-D3 supplementation. On day 42, serum T-AOC and CAT concentrations were decreased by dietary Ca and P deficiencies without 25-OH-D3 (Interaction, P < 0.05) and unaffected by dietary Ca and P deficiencies with 25-OH-D3. Dietary Ca and P deficiencies significantly decreased Ca, P, and alkaline phosphatase concentrations and increased PTH concentration in serum. Dietary 25-OH-D3 increased (P < 0.05) serum Ca and 25-OH-D3 concentrations and decreased (P < 0.05) serum tartrate-resistant acid phosphatase concentration. The interaction between CaP level and 25-OH-D3 was observed (P < 0.05) for tibial Ca content and femoral bone density. 25-hydroxycholecalciferol significantly increased tibial breaking strength. These data indicated that 25-OH-D3 supplementation at 69 µg/kg increased growth performance in some periods, enhanced serum antioxidant capacity, and improved bone mineralization and breaking strength of broilers.
Assuntos
Antioxidantes , Calcifediol , Cálcio , Galinhas , Suplementos Nutricionais , Carne , Fósforo , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Osso e Ossos/efeitos dos fármacos , Calcifediol/farmacologia , Cálcio/farmacologia , Dieta/veterinária , Masculino , Carne/normas , Fósforo/farmacologiaRESUMO
Prediction of primary stability is a major challenge in the surgical planning of dental and orthopedic implants. Computational methods become attractive to estimate primary stability from clinical CT images, but implicit finite element analysis of implant press-fit faces convergence issues due to contact and highly distorted elements. This study aims to develop and validate an explicit finite element method to simulate the insertion and primary stability of a rigid implant in a deformable bone while accounting for damage occurring at the bone-implant interface. Accordingly, a press-fit experiment of a conical implant into predrilled bovine trabecular bone was designed and realized for six samples. A displacement-driven cyclic protocol was used to quantify the reaction force and stiffness of the bone-implant system. Homogenized finite element analyses of the experiments were performed by modeling contact with friction and converting an existing constitutive model with elasto-plasticity and damage of bone tissue to be applicable to an explicit time integration scheme where highly distorted elements get deleted. The computed reaction forces and unloading stiffnesses showed high correlations (R2 = 0.95 and R2 = 0.94) with the experiment. Friction between bone and implant exhibited a strong influence on both reaction force and stiffness. In conclusion, the developed explicit finite element approach with frictional contact and element deletion accounts properly for bone damage during press-fit and will help optimizing dental or orthopedic implant design towards maximal primary stability.
Assuntos
Osso Esponjoso , Implantes Dentários , Animais , Interface Osso-Implante , Osso Esponjoso/diagnóstico por imagem , Bovinos , Análise de Elementos Finitos , Fricção , Próteses e Implantes , Estresse MecânicoRESUMO
Purpose: Muscle weakness and bone deterioration in the elderly are related to falls and fractures, resulting in decreased mobility. Knee osteoarthritis also may contribute to falls and fractures and thereby affect mortality rates. The Kellgren-Lawrence (KL) classification is widely used in the radiographic evaluation of knee osteoarthritis. Aims: This study aimed to evaluate the quadriceps strength and bone properties of the calcaneus for each KL grade, and to clarify the impact of knee osteoarthritis grade on quadriceps strength and bone properties. Methods: This prospective cross-sectional study included data on 108 male patients (213 knees), aged ≥80 years, who could walk independently. A handheld dynamometer was used to measure quadriceps strength. Bone properties were evaluated using broadband ultrasound attenuation with a portable bone densitometer. Weight-bearing standing knee radiographs were evaluated using KL classification. Quadriceps strength and bone properties were evaluated for each KL grade and the correlations between the grade and quadriceps strength and bone properties were assessed simultaneously. Results: The numbers of participants in KL grades I-IV were 46, 102, 45, and 20, respectively. There were no differences among grades for either quadriceps strength or bone properties. Conclusions: Participants exhibited good quadriceps strength and bone properties regardless of their KL grade. Relatively high mechanical loading of muscle and bone incurred while walking independently, likely explaining this result. Clinically, this study demonstrated the absence of correlations between KL grade and quadriceps strength and bone properties, as was previously reported in studies showing the absence of a correlation between KL grade and pain.
Assuntos
Calcâneo , Força Muscular , Osteoartrite do Joelho , Músculo Quadríceps , Caminhada , Idoso de 80 Anos ou mais , Calcâneo/fisiologia , Estudos Transversais , Humanos , Articulação do Joelho/patologia , Masculino , Força Muscular/fisiologia , Osteoartrite do Joelho/classificação , Osteoartrite do Joelho/patologia , Estudos Prospectivos , Músculo Quadríceps/fisiologiaRESUMO
To systematically review available evidence related to the characteristics of bone changes post-stroke and the relationship between various aspects of muscle function (e.g., strength, spasticity) and bone properties after stroke onset. An extensive online database search was undertaken (last search in January 2019). Articles that examined the bone properties in stroke patients were included. The quality of the studies was evaluated with the National Institutes of Health (NIH) Study Quality Assessment Tools. Publication bias of meta-analyses was assessed using the Egger's regression asymmetry test. The selection and evaluation of the articles were conducted by two independent researchers. Fifty-nine studies were identified. In subacute and chronic stroke studies, the skeletal sites in the paretic limbs sustained a more pronounced decline in bone quality than did their counterparts in the non-paretic limbs. The rate of changes showed a decelerating trend as post-stroke duration increased, but the timing of achieving the steady rate differed across skeletal sites. The magnitude of bone changes in the paretic upper limb was more pronounced than the paretic lower limb. There was a strong relationship between muscle strength/mass and bone density/strength index. Muscle spasticity seemed to have a negative impact on bone integrity in the paretic upper limb, but its influence on bone properties in the paretic lower limb was uncertain. Substantial bone changes in the paretic limbs occurred particularly in the first few months after stroke onset. Early intervention, muscle strength training, and long-term management strategies may be important to enhance bone health post-stroke. This review has also revealed the knowledge gaps which should be addressed in future research.
Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Adulto , Densidade Óssea , Humanos , Espasticidade Muscular , Força Muscular , Músculo Esquelético , Acidente Vascular Cerebral/fisiopatologiaRESUMO
Vitamin D deficiency and quantitative ultrasound measurements are associated with bone fragility. We assessed these parameters and their correlates. 87.7% of the population has vitamin D inadequacy and this correlated with lifestyle factors. These results contribute to epidemiological data needed for population guidelines for bone health. PURPOSE: Vitamin D deficiency and quantitative ultrasound (QUS) parameters are among the most important clinical risk factors of bone fragility. Few data are available for Greek population. The aim of the study was to evaluate the serum 25-hydroxyvitamin D [25(OH)D] level and their determinants, as well as QUS parameters in Greek population. METHODS: OSTEOS is an observational cross-sectional study conducted from June 2010 to July 2012. Nine hundred seventy adults were recruited from rural and urban areas throughout Greece and completed the appropriate questionnaire. Serum 25(OH)D measured by enzyme immunoassay, QUS parameters, broadband ultrasound attenuation (BUA), speed of sound (SOS) and stiffness index (SI), was assessed with an Achilles device. Univariate Analysis of Variance was used for the assessment of serum 25(OH)D determinants. RESULTS: Mean serum 25(OH)D of the total population was 20,00 ± 8,00 ng/mL. Females had lower levels than males. The negative determinants of serum 25(OH)D in the total population were the female sex and the winter-spring season of sampling while age proved negative association solely in obese subjects. Positive determinants of vitamin D status were summer sun exposure and organized physical activity as expected. Urban had lower SOS and SI than rural residents. Individuals with 25(OH)D ≥ 20 ng/mL had higher SOS than those with 25(OH)D < 20 ng/mL. BUA, SOS, and SI are positively correlated with organized physical activity and negatively with PTH. CONCLUSIONS: This study reports that vitamin D deficiency is highly prevalent among healthy Greek men and women, demonstrates the multifactorial causation of 25(OH)D levels, and points out that further research is required to determine more factors related to vitamin D status and bone health.
Assuntos
Osteoporose/etiologia , Ultrassonografia/estatística & dados numéricos , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/diagnóstico por imagem , Vitamina D/análogos & derivados , Adulto , Idoso , Estudos Transversais , Exercício Físico , Feminino , Grécia/epidemiologia , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Estado Nutricional , Osteoporose/epidemiologia , Fatores de Risco , Estações do Ano , Fatores Sexuais , Vitamina D/sangue , Deficiência de Vitamina D/complicaçõesRESUMO
OBJECTIVE: To investigate the influence of implant design on the change in the natural frequency of bone-implant system during osseointegration by means of a modal 3D finite element analysis. METHODS: Six implants were considered. Solid models were obtained by means of reverse engineering techniques. The mandibular bone geometry was built-up from a CT scan dataset through image segmentation. Each implant was virtually implanted in the mandibular bone. Two different models have been considered, differing in the free length of the mandibular branch ('long branch' and 'short branch') in order to simulate the variability of boundary conditions when performing vibrometric analyses. Modal analyses were carried out for each model, and the first three resonance frequencies were assessed with the respective vibration modes. RESULTS: With reference to the 'long branch' model, the first three modes of vibration are whole bone vibration with minimum displacement of the implant relative to bone, with the exception of the initial condition (1% bone maturation) where the implant is not osseointegrated. By contrast, implant displacements become relevant in the 'short branch' model, unless osseointegration level is beyond 20%. The difference between resonance frequency at whole bone maturation and resonance frequency at 1% bone maturation remained lower than 6.5% for all modes, with the exception of the third mode of vibration in the 'D' implant where this difference reached 9.7%. With reference to the 'short branch', considering the first mode of vibration, 61-68% of the frequency increase was achieved at 10% osseointegration; 72-79% was achieved at 20%; 89-93% was achieved at 50% osseointegration. The pattern of the natural frequency versus the osseointegration level is similar among different modes of vibration. SIGNIFICANCE: Resonance frequencies and their trends towards osseointegration level may differ between implant designs, and in different boundary conditions that are related to implant position inside the mandible; tapered implants are the most sensitive to bone maturation levels, small implants have very little sensitivity. Resonance frequencies are less sensitive to bone maturation level beyond 50%.
Assuntos
Implantes Dentários , Planejamento de Prótese Dentária , Retenção em Prótese Dentária , Interface Osso-Implante , Simulação por Computador , Desenho Assistido por Computador , Materiais Dentários/química , Análise do Estresse Dentário/métodos , Análise de Elementos Finitos , Osseointegração/fisiologia , Análise de Frequência de Ressonância , Tomografia Computadorizada por Raios X , VibraçãoRESUMO
OBJECTIVE: To assess the influence of implant thread shape and inclination on the mechanical behaviour of bone-implant systems. The study assesses which factors influence the initial and full osseointegration stages. METHODS: Point clouds of the original implant were created using a non-contact reverse engineering technique. A 3D tessellated surface was created using Geomagic Studio® software. From cross-section curves, generated by intersecting the tessellated model and cutting-planes, a 3D parametric CAD model was created using SolidWorks® 2017. By the permutation of three thread shapes (rectangular, 30° trapezoidal, 45° trapezoidal) and three thread inclinations (0°, 3° or 6°), nine geometric configurations were obtained. Two different osseointegration stages were analysed: the initial osseointegration and a full osseointegration. In total, 18 different FE models were analysed and two load conditions were applied to each model. The mechanical behaviour of the models was analysed by Finite Element (FE) Analysis using ANSYS® v. 17.0. Static linear analyses were also carried out. RESULTS: ANOVA was used to assess the influence of each factor. Models with a rectangular thread and 6° inclination provided the best results and reduced displacement in the initial osseointegration stages up to 4.58%. This configuration also reduced equivalent VM stress peaks up to 54%. The same effect was confirmed for the full osseointegration stage, where 6° inclination reduced stress peaks by up to 62%. SIGNIFICANCE: The FE analysis confirmed the beneficial effect of thread inclination, reducing the displacement in immediate post-operative conditions and equivalent VM stress peaks. Thread shape does not significantly influence the mechanical behaviour of bone-implant systems but contributes to reducing stress peaks in the trabecular bone in both the initial and full osseointegration stages.
Assuntos
Interface Osso-Implante/fisiologia , Implantes Dentários , Planejamento de Prótese Dentária , Osseointegração/fisiologia , Fenômenos Biomecânicos , Simulação por Computador , Análise de Elementos Finitos , SoftwareRESUMO
Previous studies have demonstrated a negative correlation between intestinal alkaline phosphatase (IAP) activity and calcium (Ca) absorption in the gut, as IAP acts as a protective mechanism inhibiting high Ca entry into enterocytes, preventing Ca overload. Here we evaluated Ca absorption and bone properties in knockout mice (KO) completely devoid of duodenal IAP (Akp3 -/- mice). Female C57BL/6 control mice (WT, n = 7) and KO mice (n = 10) were used to determine Ca absorption in vivo and by in situ isolated duodenal loops followed by histomorphometric analysis of duodenal villi and crypts. Bone mineral density, morphometry, histomorphometry and trabecular connectivity and biomechanical properties were measured on bones. We observed mild atrophy of the villi with lower absorption surface and a significantly higher Ca uptake in KO mice. While no changes were seen in cortical bone, we found better trabecular connectivity and biomechanical properties in the femurs of KO mice compared to WT mice. Our data indicate that IAP KO mice display higher intestinal Ca uptake, which over time appears to correlate with a positive effect on the biomechanical properties of trabecular bone.