Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.086
Filtrar
1.
Stem Cell Res Ther ; 15(1): 135, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715130

RESUMO

BACKGROUND: Biomaterials used in bone tissue engineering must fulfill the requirements of osteoconduction, osteoinduction, and osseointegration. However, biomaterials with good osteoconductive properties face several challenges, including inadequate vascularization, limited osteoinduction and barrier ability, as well as the potential to trigger immune and inflammatory responses. Therefore, there is an urgent need to develop guided bone regeneration membranes as a crucial component of tissue engineering strategies for repairing bone defects. METHODS: The mZIF-8/PLA membrane was prepared using electrospinning technology and simulated body fluid external mineralization method. Its ability to induce biomimetic mineralization was evaluated through TEM, EDS, XRD, FT-IR, zeta potential, and wettability techniques. The biocompatibility, osteoinduction properties, and osteo-immunomodulatory effects of the mZIF-8/PLA membrane were comprehensively evaluated by examining cell behaviors of surface-seeded BMSCs and macrophages, as well as the regulation of cellular genes and protein levels using PCR and WB. In vivo, the mZIF-8/PLA membrane's potential to promote bone regeneration and angiogenesis was assessed through Micro-CT and immunohistochemical staining. RESULTS: The mineralized deposition enhances hydrophilicity and cell compatibility of mZIF-8/PLA membrane. mZIF-8/PLA membrane promotes up-regulation of osteogenesis and angiogenesis related factors in BMSCs. Moreover, it induces the polarization of macrophages towards the M2 phenotype and modulates the local immune microenvironment. After 4-weeks of implantation, the mZIF-8/PLA membrane successfully bridges critical bone defects and almost completely repairs the defect area after 12-weeks, while significantly improving the strength and vascularization of new bone. CONCLUSIONS: The mZIF-8/PLA membrane with dual osteoconductive and immunomodulatory abilities could pave new research paths for bone tissue engineering.


Assuntos
Regeneração Óssea , Regeneração Óssea/efeitos dos fármacos , Animais , Osteogênese/efeitos dos fármacos , Engenharia Tecidual/métodos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Camundongos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Membranas Artificiais , Regeneração Tecidual Guiada/métodos , Alicerces Teciduais/química , Poliésteres/química , Poliésteres/farmacologia , Ratos
2.
ACS Biomater Sci Eng ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723173

RESUMO

The field of bone regeneration has always been a hot and difficult research area, and there is no perfect strategy at present. As a new type of biodegradable material, magnesium alloys have excellent mechanical properties and bone promoting ability. Compared with other inert metals, magnesium alloys have significant advantages and broad application prospects in the field of bone regeneration. By searching the official Web sites and databases of various funds, this paper summarizes the research status of magnesium composites in the field of bone regeneration and introduces the latest scientific research achievements and clinical transformations of scholars in various countries and regions, such as improving the corrosion resistance of magnesium alloys by adding coatings. Finally, this paper points out the current problems and challenges, aiming to provide ideas and help for the development of new strategies for the treatment of bone defects and fractures.

3.
Polymers (Basel) ; 16(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732711

RESUMO

This study investigates the effect of scaffold architecture on bone regeneration, focusing on 3D-printed polylactic acid-bioceramic calcium phosphate (PLA-bioCaP) composite scaffolds in rabbit femoral condyle critical defects. We explored two distinct scaffold designs to assess their influence on bone healing and scaffold performance. Structures with alternate (0°/90°) and helical (0°/45°/90°/135°/180°) laydown patterns were manufactured with a 3D printer using a fused deposition modeling technique. The scaffolds were meticulously characterized for pore size, strut thickness, porosity, pore accessibility, and mechanical properties. The in vivo efficacy of these scaffolds was evaluated using a femoral condyle critical defect model in eight skeletally mature New Zealand White rabbits. Then, the results were analyzed micro-tomographically, histologically, and histomorphometrically. Our findings indicate that both scaffold architectures are biocompatible and support bone formation. The helical scaffolds, characterized by larger pore sizes and higher porosity, demonstrated significantly greater bone regeneration than the alternate structures. However, their lower mechanical strength presented limitations for use in load-bearing sites.

4.
Polymers (Basel) ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732727

RESUMO

Oral bone defects occur as a result of trauma, cancer, infections, periodontal diseases, and caries. Autogenic and allogenic grafts are the gold standard used to treat and regenerate damaged or defective bone segments. However, these materials do not possess the antimicrobial properties necessary to inhibit the invasion of the numerous deleterious pathogens present in the oral microbiota. In the present study, poly(ε-caprolactone) (PCL), nano-hydroxyapatite (nHAp), and a commercial extract of Humulus lupulus L. (hops) were electrospun into polymeric matrices to assess their potential for drug delivery and bone regeneration. The fabricated matrices were analyzed using scanning electron microscopy (SEM), tensile analysis, thermogravimetric analysis (TGA), FTIR assay, and in vitro hydrolytic degradation. The antimicrobial properties were evaluated against the oral pathogens Streptococcus mutans, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans. The cytocompatibility was proved using the MTT assay. SEM analysis established the nanostructured matrices present in the three-dimensional interconnected network. The present research provides new information about the interaction of natural compounds with ceramic and polymeric biomaterials. The hop extract and other natural or synthetic medicinal agents can be effectively loaded into PCL fibers and have the potential to be used in oral applications.

5.
Front Bioeng Biotechnol ; 12: 1379679, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737542

RESUMO

Background: Diabetes mellitus is a systematic disease which exert detrimental effect on bone tissue. The repair and reconstruction of bone defects in diabetic patients still remain a major clinical challenge. This study aims to investigate the potential of bone tissue engineering approach to improve bone regeneration under diabetic condition. Methods: In the present study, decalcified bone matrix (DBM) scaffolds were seeded with allogenic fetal bone marrow-derived mesenchymal stem cells (BMSCs) and cultured in osteogenic induction medium to fabricate BMSC/DBM constructs. Then the BMSC/DBM constructs were implanted in both subcutaneous pouches and large femoral bone defects in diabetic (BMSC/DBM in DM group) and non-diabetic rats (BMSC/DBM in non-DM group), cell-free DBM scaffolds were implanted in diabetic rats to serve as the control group (DBM in DM group). X-ray, micro-CT and histological analyses were carried out to evaluate the bone regenerative potential of BMSC/DBM constructs under diabetic condition. Results: In the rat subcutaneous implantation model, quantitative micro-CT analysis demonstrated that BMSC/DBM in DM group showed impaired bone regeneration activity compared with the BMSC/DBM in non-DM group (bone volume: 46 ± 4.4 mm3 vs 58.9 ± 7.15 mm3, *p < 0.05). In the rat femoral defect model, X-ray examination demonstrated that bone union was delayed in BMSC/DBM in DM group compared with BMSC/DBM in non-DM group. However, quantitative micro-CT analysis showed that after 6 months of implantation, there was no significant difference in bone volume and bone density between the BMSC/DBM in DM group (199 ± 63 mm3 and 593 ± 65 mg HA/ccm) and the BMSC/DBM in non-DM group (211 ± 39 mm3 and 608 ± 53 mg HA/ccm). Our data suggested that BMSC/DBM constructs could repair large bone defects in diabetic rats, but with delayed healing process compared with non-diabetic rats. Conclusion: Our study suggest that biomaterial sacffolds seeded with allogenic fetal BMSCs represent a promising strategy to induce and improve bone regeneration under diabetic condition.

6.
J Transl Med ; 22(1): 437, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720345

RESUMO

BACKGROUND: Biological-derived hydroxyapatite is widely used as a bone substitute for addressing bone defects, but its limited osteoconductive properties necessitate further improvement. The osteo-immunomodulatory properties hold crucial promise in maintaining bone homeostasis, and precise modulation of macrophage polarization is essential in this process. Metabolism serves as a guiding force for immunity, and fluoride modification represents a promising strategy for modulating the osteoimmunological environment by regulating immunometabolism. In this context, we synthesized fluorinated porcine hydroxyapatite (FPHA), and has demonstrated its enhanced biological properties and osteogenic capacity. However, it remains unknown whether and how FPHA affects the immune microenvironment of the bone defects. METHODS: FPHA was synthesized and its composition and structural properties were confirmed. Macrophages were cultured with FPHA extract to investigate the effects of FPHA on their polarization and the related osteo-immune microenvironment. Furthermore, total RNA of these macrophages was extracted, and RNA-seq analysis was performed to explore the underlying mechanisms associated with the observed changes in macrophages. The metabolic states were evaluated with a Seahorse analyzer. Additionally, immunohistochemical staining was performed to evaluate the macrophages response after implantation of the novel bone substitutes in critical size calvarial defects in SD rats. RESULTS: The incorporation of fluoride ions in FPHA was validated. FPHA promoted macrophage proliferation and enhanced the expression of M2 markers while suppressing the expression of M1 markers. Additionally, FPHA inhibited the expression of inflammatory factors and upregulated the expression of osteogenic factors, thereby enhancing the osteogenic differentiation capacity of the rBMSCs. RNA-seq analysis suggested that the polarization-regulating function of FPHA may be related to changes in cellular metabolism. Further experiments confirmed that FPHA enhanced mitochondrial function and promoted the metabolic shift of macrophages from glycolysis to oxidative phosphorylation. Moreover, in vivo experiments validated the above results in the calvarial defect model in SD rats. CONCLUSION: In summary, our study reveals that FPHA induces a metabolic shift in macrophages from glycolysis to oxidative phosphorylation. This shift leads to an increased tendency toward M2 polarization in macrophages, consequently creating a favorable osteo-immune microenvironment. These findings provide valuable insights into the impact of incorporating an appropriate concentration of fluoride on immunometabolism and macrophage mitochondrial function, which have important implications for the development of fluoride-modified immunometabolism-based bone regenerative biomaterials and the clinical application of FPHA or other fluoride-containing materials.


Assuntos
Durapatita , Glicólise , Macrófagos , Fosforilação Oxidativa , Ratos Sprague-Dawley , Animais , Durapatita/química , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Ratos , Suínos , Proliferação de Células/efeitos dos fármacos , Masculino , Osteogênese/efeitos dos fármacos , Crânio/patologia , Crânio/efeitos dos fármacos , Camundongos , Microambiente Celular/efeitos dos fármacos , Células RAW 264.7 , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos
7.
ACS Biomater Sci Eng ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728538

RESUMO

Guided bone regeneration (GBR) membranes that reside at the interface between the bone and soft tissues for bone repair attract increasing attention, but currently developed GBR membranes suffer from relatively poor osteogenic and antibacterial effects as well as limited mechanical property and biodegradability. We present here the design and fabrication of a bifunctional Janus GBR membrane based on a shear flow-driven layer by a layer self-assembly approach. The Janus GBR membrane comprises a calcium phosphate-collagen/polyethylene glycol (CaP@COL/PEG) layer and a chitosan/poly(acrylic acid) (CHI/PAA) layer on different sides of a collagen membrane to form a sandwich structure. The membrane exhibits good mechanical stability and tailored biodegradability. It is found that the CaP@COL/PEG layer and CHI/PAA layer contribute to the osteogenic differentiation and antibacterial function, respectively. In comparison with the control group, the Janus GBR membrane displays a 2.52-time and 1.84-time enhancement in respective volume and density of newly generated bone. The greatly improved bone repair ability of the Janus GBR membrane is further confirmed through histological analysis, and it has great potential for practical applications in bone tissue engineering.

8.
Front Immunol ; 15: 1396759, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736888

RESUMO

Guided bone regeneration (GBR) is one of the most widely used and thoroughly documented alveolar bone augmentation surgeries. However, implanting GBR membranes inevitably triggers an immune response, which can lead to inflammation and failure of bone augmentation. It has been shown that GBR membranes may significantly improve in vivo outcomes as potent immunomodulators, rather than solely serving as traditional barriers. Macrophages play crucial roles in immune responses and participate in the entire process of bone injury repair. The significant diversity and high plasticity of macrophages complicate our understanding of the immunomodulatory mechanisms underlying GBR. This review provides a comprehensive summary of recent findings on the potential role of macrophages in GBR for bone defects in situ. Specifically, macrophages can promote osteogenesis or fibrous tissue formation in bone defects and degradation or fibrous encapsulation of membranes. Moreover, GBR membranes can influence the recruitment and polarization of macrophages. Therefore, immunomodulating GBR membranes are primarily developed by improving macrophage recruitment and aggregation as well as regulating macrophage polarization. However, certain challenges remain to be addressed in the future. For example, developing more rational and sophisticated sequential delivery systems for macrophage activation reagents; addressing the interference of bone graft materials and dental implants; and understanding the correlations among membrane degradation, macrophage responses, and bone regeneration.


Assuntos
Regeneração Óssea , Macrófagos , Humanos , Regeneração Óssea/imunologia , Macrófagos/imunologia , Animais , Regeneração Tecidual Guiada/métodos , Osteogênese
9.
J Oral Implantol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742461

RESUMO

Restoring periodontally compromised teeth in aesthetic zones through dental implant rehabilitation poses significant challenges due to the loss of supporting tissues. This case report describes a staged treatment strategy designed for a 48-year-old woman with advanced chronic periodontitis of the aesthetic zone. This approach combined various advanced techniques, including periodontal regeneration, orthodontic implant site development with labial root torque, guided bone regeneration, and soft tissue augmentation. The innovative orthodontic implant site development with labial root torque technique was employed to harness healthy palatal periodontal ligament cells by strategically applying labial root torque in the horizontal labial-palatal direction. This technique uses healthy palatal periodontal ligament cells, which benefits overall periodontal health. The procedure involved gradually shifting hopeless teeth at a rate of 2 mm per month using nickel-titanium wires, thereby maintaining overcorrection for two months before extraction. Following successful orthodontic implant site development with labial root torque, the next phase involved guided bone regeneration using a honeycomb-structured titanium membrane. This set the stage for implant placement six months later, ensuring a stable foundation for subsequent prosthetic intervention. Soft tissue augmentation was then meticulously performed using an artificial collagen dermis infused with fibroblast growth factor-2, contributing to the overall aesthetic outcome. Final prosthesis integration revealed a harmonious blend with the adjacent teeth and gums, underscoring the success of this multidisciplinary approach. This case report provides valuable insights into severe periodontitis in the aesthetic field. Our findings highlight the importance of continuously researching and improving procedures for optimal patient care.

10.
ACS Appl Mater Interfaces ; 16(19): 24384-24397, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709640

RESUMO

Vascularization and inflammation management are essential for successful bone regeneration during the healing process of large bone defects assisted by artificial implants/fillers. Therefore, this study is devoted to the optimization of the osteogenic microenvironment for accelerated bone healing through rapid neovascularization and appropriate inflammation inhibition that were achieved by applying a tantalum oxide (TaO)-based nanoplatform carrying functional substances at the bone defect. Specifically, TaO mesoporous nanospheres were first constructed and then modified by functionalized metal ions (Mg2+) with the following deferoxamine (DFO) loading to obtain the final product simplified as DFO-Mg-TaO. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the product was homogeneously dispersed hollow nanospheres with large specific surface areas and mesoporous shells suitable for loading Mg2+ and DFO. The biological assessments indicated that DFO-Mg-TaO could enhance the adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The DFO released from DFO-Mg-TaO promoted angiogenetic activity by upregulating the expressions of hypoxia-inducible factor-1 (HIF-1α) and vascular endothelial growth factor (VEGF). Notably, DFO-Mg-TaO also displayed anti-inflammatory activity by reducing the expressions of pro-inflammatory factors, benefiting from the release of bioactive Mg2+. In vivo experiments demonstrated that DFO-Mg-TaO integrated with vascular regenerative, anti-inflammatory, and osteogenic activities significantly accelerated the reconstruction of bone defects. Our findings suggest that the optimized DFO-Mg-TaO nanospheres are promising as multifunctional fillers to speed up the bone healing process.


Assuntos
Regeneração Óssea , Desferroxamina , Magnésio , Células-Tronco Mesenquimais , Óxidos , Tantálio , Desferroxamina/química , Desferroxamina/farmacologia , Regeneração Óssea/efeitos dos fármacos , Tantálio/química , Animais , Óxidos/química , Óxidos/farmacologia , Magnésio/química , Magnésio/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Camundongos , Ratos Sprague-Dawley , Proliferação de Células/efeitos dos fármacos , Angiogênese
11.
Int J Implant Dent ; 10(1): 25, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760582

RESUMO

PURPOSE: This retrospective cohort study evaluates the influence of connective tissue grafts (CTG) on bone regeneration at implant sites with total loss of the buccal bone wall treated with flapless immediate implant placement (IIP) and reconstruction with autogenous bone chips (AB) within a follow-up of up to 13 years. METHODS: Sixty implants were inserted in 55 patients in sites with total loss of the buccal bone wall between 2008 and 2021. The implants were inserted and the buccal gaps were grafted by AB. A subgroup of 34 sites was grafted additionally with CTG using tunnel technique. Primary outcome was the vertical bone regeneration in height and thickness. Secondary outcome parameters were interproximal marginal bone level, recession, soft tissue esthetics (PES), width of keratinized mucosa (KMW) and probing depths (PPD). RESULTS: Mean follow-up period was 60.8 months. In 55 sites a complete vertical bone regeneration was documented. The mean buccal bone level increased by 10.6 mm significantly. The thickness of the buccal bone wall ranged between 1.7 and 1.9 mm, and was significantly thicker in sites without CTG. Interproximal marginal bone level was at implant shoulder level. The mean recession improved significantly by 1.2 mm. In sites with CTG, recessions and PES improved significantly more. CONCLUSIONS: Additional CTG in extraction sites with total buccal bone loss followed by IIP with simultaneous AB grafting led to improved PES and recession, but also to a thinner buccal bone wall compared to sites grafted just with AB.


Assuntos
Tecido Conjuntivo , Carga Imediata em Implante Dentário , Humanos , Estudos Retrospectivos , Tecido Conjuntivo/transplante , Feminino , Masculino , Pessoa de Meia-Idade , Carga Imediata em Implante Dentário/métodos , Adulto , Transplante Ósseo/métodos , Idoso , Regeneração Óssea/fisiologia , Aumento do Rebordo Alveolar/métodos , Perda do Osso Alveolar/cirurgia
12.
ACS Biomater Sci Eng ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766805

RESUMO

The repair of critical-sized bone defects continues to pose a challenge in clinics. Strontium (Sr), recognized for its function in bone metabolism regulation, has shown potential in bone repair. However, the underlying mechanism through which Sr2+ guided favorable osteogenesis by modulating macrophages remains unclear, limiting their application in the design of bone biomaterials. Herein, Sr-incorporated bioactive glass (SrBG) was synthesized for further investigation. The release of Sr ions enhanced the immunomodulatory properties and osteogenic potential by modulating the polarization of macrophages toward the M2 phenotype. In vivo, a 3D-printed SrBG scaffold was fabricated and showed consistently improved bone regeneration by creating a prohealing immunological microenvironment. RNA sequencing was performed to explore the underlying mechanisms. It was found that Sr ions might enhance the mitochondrial function of macrophage by activating PI3K/AKT/mTOR signaling, thereby favoring osteogenesis. Our findings demonstrate the relationship between the immunomodulatory role of Sr ions and the mitochondrial function of macrophages. By focusing on the mitochondrial function of macrophages, Sr2+-mediated immunomodulation sheds light on the future design of biomaterials for tissue regenerative engineering.

13.
ACS Nano ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767151

RESUMO

Periodontitis, a prevalent chronic inflammatory disease worldwide, is triggered by periodontopathogenic bacteria, resulting in the progressive destruction of periodontal tissue, particularly the alveolar bone. To effectively address periodontitis, this study proposed a nanoformulation known as CuS@MSN-SCS. This formulation involves coating citrate-grafted copper sulfide (CuS) nanoparticles with mesoporous silica (MSNs), followed by surface modification using amino groups and sulfated chitosan (SCS) through electrostatic interactions. The objective of this formulation is to achieve efficient bacteria removal by inducing ROS signaling pathways mediated by Cu2+ ions. Additionally, it aims to promote alveolar bone regeneration through Cu2+-induced pro-angiogenesis and SCS-mediated bone regeneration. As anticipated, by regulating the surface charges, the negatively charged CuS nanoparticles capped with sodium citrate were successfully coated with MSNs, and the subsequent introduction of amine groups using (3-aminopropyl)triethoxysilane was followed by the incorporation of SCS through electrostatic interactions, resulting in the formation of CuS@MSN-SCS. The developed nanoformulation was verified to not only significantly exacerbate the oxidative stress of Fusobacterium nucleatum, thereby suppressing bacteria growth and biofilm formation in vitro, but also effectively alleviate the inflammatory response and promote alveolar bone regeneration without evident biotoxicity in an in vivo rat periodontitis model. These findings contribute to the therapeutic effect on periodontitis. Overall, this study successfully developed a nanoformulation for combating bacteria and facilitating alveolar bone regeneration, demonstrating the promising potential for clinical treatment of periodontitis.

14.
Front Cell Dev Biol ; 12: 1410861, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770152

RESUMO

Introduction: This study aimed to describe the evolution of bone regeneration in children with hip osteonecrosis associated with sickle cell disease, treated with bone marrow-derived mesenchymal stem cell implants at the Professor Edgar Santos University Hospital Complex. Materials and methods: A non-randomized clinical trial was conducted with 48 patients of both sexes, aged between 11 and 18 years, diagnosed with femoral head osteonecrosis secondary to sickle cell disease. Patient selection was based on strict criteria, including confirmed diagnosis of sickle cell anemia and a stage of osteonecrosis compatible with the proposed treatment. Bone regeneration assessment was performed through radiographic examinations and magnetic resonance imaging, following the Ficat & Arlet criteria and the Salter-Thompson classification. Results: Statistical analysis revealed a significant association between the patients' age and positive treatment outcomes, suggesting that autologous bone marrow cell implantation is a safe and effective approach in the early stages of osteonecrosis. The majority of patients (87.5%) reported complete pain relief, while 10.42% experienced significant symptom improvement. Only one patient (2.08%) did not observe improvement. The results indicate that cell therapy can regenerate or slow the progression of bone necrosis, reducing the need for more invasive surgical procedures. Conclusion: The study demonstrates the potential of bone marrow-derived mesenchymal stem cell implantation in treating hip osteonecrosis in children with sickle cell disease, emphasizing the importance of long-term monitoring of bone structure stability.

15.
Bioact Mater ; 38: 422-437, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38770427

RESUMO

Delayed bone-healing of senile osteoporotic fractures remains a clinical challenge due to the alterations caused by aging in bone and immune systems. The novel biomaterials that address the deficiencies in both skeletal cells and immune systems are required to effectively treat the bone injuries of older patients. Zinc (Zn) has shown promise as a biodegradable material for use in orthopedic implants. To address the bone-healing deficiencies in elderly patients with bone injuries, we developed a biodegradable Zn-based alloy (Zn-2Cu-0.5Zr) with enhanced mechanical properties, including a yield strength of 198.7 MPa and ultimate tensile strength of 217.6 MPa, surpassing those of pure Zn and Zn-2Cu alloys. Cytotoxicity tests conducted on bone marrow mesenchymal stem cells (BMSCs) and MC3T3-E1 cells demonstrated that the extracts from Zn-2Cu-0.5Zr alloy exhibited no observable cytotoxic effects. Furthermore, the extracts of Zn-2Cu-0.5Zr alloy exhibited significant anti-inflammatory effects through regulation of inflammation-related cytokine production and modulation of macrophage polarization. The improved immune-osteo microenvironment subsequently contributed to osteogenic differentiation of BMSCs. The potential therapeutic application of Zn-2Cu-0.5Zr in senile osteoporotic fracture was tested using a rat model of age-related osteoporosis. The Zn-2Cu-0.5Zr alloy met the requirements for load-bearing applications and accelerated the healing process in a tibial fracture in aged rats. The imaging and histological analyses showed that it could accelerate the bone-repair process and promote the fracture healing in senile osteoporotic rats. These findings suggest that the novel Zn-2Cu-0.5Zr alloy holds potential for influencing the immunomodulatory function of macrophages and facilitating bone repair in elderly individuals with osteoporosis.

16.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732198

RESUMO

Osteoporotic vertebral compression fractures (OVCFs) significantly increase morbidity and mortality, presenting a formidable challenge in healthcare. Traditional interventions such as vertebroplasty and kyphoplasty, despite their widespread use, are limited in addressing the secondary effects of vertebral fractures in adjacent areas and do not facilitate bone regeneration. This review paper explores the emerging domain of regenerative therapies, spotlighting stem cell therapy's transformative potential in OVCF treatment. It thoroughly describes the therapeutic possibilities and mechanisms of action of mesenchymal stem cells against OVCFs, relying on recent clinical trials and preclinical studies for efficacy assessment. Our findings reveal that stem cell therapy, particularly in combination with scaffolding materials, holds substantial promise for bone regeneration, spinal stability improvement, and pain mitigation. This integration of stem cell-based methods with conventional treatments may herald a new era in OVCF management, potentially improving patient outcomes. This review advocates for accelerated research and collaborative efforts to translate laboratory breakthroughs into clinical practice, emphasizing the revolutionary impact of regenerative therapies on OVCF management. In summary, this paper positions stem cell therapy at the forefront of innovation for OVCF treatment, stressing the importance of ongoing research and cross-disciplinary collaboration to unlock its full clinical potential.


Assuntos
Fraturas por Compressão , Fraturas por Osteoporose , Medicina Regenerativa , Fraturas da Coluna Vertebral , Humanos , Fraturas da Coluna Vertebral/terapia , Fraturas por Compressão/terapia , Fraturas por Osteoporose/terapia , Medicina Regenerativa/métodos , Regeneração Óssea , Animais , Transplante de Células-Tronco/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia
17.
Int J Mol Sci ; 25(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732241

RESUMO

Biodegradable (BP) poly(D,L-lactic acid) (PDLLA) membranes are widely used in tissue engineering. Here, we investigate the effects of varying concentrations of PDLLA/gelatin membranes electrospun in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP; C3H2F6O) solvent on their mechanical and physical properties as well as their biocompatibility. Regardless of the environmental conditions, increasing the gelatin content resulted in elevated stress and reduced strain at membrane failure. There was a remarkable difference in strain-to-failure between dry and wet PDLLA/gelatin membranes, with wet strains consistently higher than those of the dry membranes because of the hydrophilic nature of gelatin. A similar wet strain (εw = 2.7-3.0) was observed in PDLLA/gelatin membranes with a gelatin content between 10 and 40%. Both dry and wet stresses increased with increasing gelatin content. The dry stress on PDLLA/gelatin membranes (σd = 6.7-9.7 MPa) consistently exceeded the wet stress (σw = 4.5-8.6 MPa). The water uptake capacity (WUC) improved, increasing from 57% to 624% with the addition of 40% gelatin to PDLLA. PDLLA/gelatin hybrid membranes containing 10 to 20 wt% gelatin exhibited favorable wet mechanical properties (σw = 5.4-6.3 MPa; εw = 2.9-3.0); WUC (337-571%), degradability (11.4-20.2%), and excellent biocompatibility.


Assuntos
Gelatina , Membranas Artificiais , Poliésteres , Gelatina/química , Poliésteres/química , Materiais Biocompatíveis/química , Teste de Materiais , Engenharia Tecidual/métodos , Água/química , Estresse Mecânico , Humanos
18.
Biomater Adv ; 161: 213887, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38735199

RESUMO

Critical size bone defects cannot heal without aid and current clinical approaches exhibit some limitations, underling the need for novel solutions. Silk fibroin, derived from silkworms, is widely utilized in tissue engineering and regenerative medicine due to its remarkable properties, making it a promising candidate for bone tissue regeneration in vitro and in vivo. However, the clinical translation of silk-based materials requires refinements in 3D architecture, stability, and biomechanical properties. In earlier research, improved mechanical resistance and stability of chemically crosslinked methacrylate silk fibroin (Sil-Ma) sponges over physically crosslinked counterparts were highlighted. Furthermore, the influence of photo-initiator and surfactant concentrations on silk properties was investigated. However, the characterization of sponges with Sil-Ma solution concentrations above 10 % (w/V) was hindered by production optimization challenges, with only cell viability assessed. This study focuses on the evaluation of methacrylate sponges' suitability as temporal bone tissue regeneration scaffolds. Sil-Ma sponge fabrication at a fixed concentration of 20 % (w/V) was optimized and the impact of photo-initiator (LAP) concentrations and surfactant (Tween 80) presence/absence was studied. Their effects on pore formation, silk secondary structure, mechanical properties, and osteogenic differentiation of hBM-MSCs were investigated. We demonstrated that, by tuning silk sponges' composition, the optimal combination boosted osteogenic gene expression, offering a strategy to tailor biomechanical properties for effective bone regeneration. Utilizing Design of Experiment (DoE), correlations between sponge composition, porosity, and mechanical properties are established, guiding tailored material outcomes. Additionally, correlation matrices elucidate the microstructure's influence on gene expressions, providing insights for personalized approaches in bone tissue regeneration.

19.
J Clin Periodontol ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736143

RESUMO

AIM: To investigate the association between periodontal macrophage polarization states and the alveolar bone levels, and to assess whether glycosylated nano-hydroxyapatites (GHANPs) could improve bone regeneration in periodontitis by inducing macrophage M2 polarization. MATERIALS AND METHODS: The change of macrophage polarization state in inflammatory periodontal tissues (with bone loss) was examined using clinical gingival samples. The relationship between macrophage phenotype and bone level in periodontal bone loss and repair was evaluated using a mouse periodontitis model. The effect of GHANPs on macrophage polarization was assessed by the in vitro model of lipopolysaccharide (LPS)-stimulated inflammation. The polarization-related markers were detected by immunofluorescence staining, real-time polymerase chain reaction and enzyme-linked immunosorbent assay analysis. The therapeutic effect of GHANPs on alveolar bone loss was explored in experimental periodontitis by histological staining and micro-CT analysis. RESULTS: A lower macrophage M2/M1 ratio was observed in periodontitis-affected human gingival tissues. The results of animal experiments demonstrated a positive correlation between a lower Arg-1/iNOS ratio and accelerated alveolar bone loss; also, the proportion of Arg-1-positive macrophages increased during bone repair and regeneration. The administration of GHANPs partially restored M2 macrophage polarization after LPS stimulation. GHANPs increased alveolar bone repair and regeneration in experimental periodontitis induced by ligation, potentially related to their macrophage M2 transition regulation. CONCLUSIONS: The findings of this study indicate that the induction of macrophage M2 polarization can be considered a viable approach for enhancing inflammatory bone repair. Additionally, GHANPs show potential in the clinical treatment of periodontitis.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38727247

RESUMO

Background: Non-perforated Polytetrafluoroethylene (PTFE) membranes are effectively utilized in guided bone regeneration (GBR) but may hinder cell migration due to limited interaction with the periosteum. This study compared bone regeneration using occlusive or perforated membranes combined with acellular collagen sponge (ACS) and recombinant human bone morphogenic protein-2 (rhBMP-2) in a canine mandibular model. Material and Methods: Male beagle dogs (n=3) received two mandibular defects each to compare ACS/rhBMP-2 with experimental (perforated group) and control (non-perforated group) membranes (n=3 defects/group). Tissue healing was assessed histomorphologically, histomorphometrically and through volumetric reconstruction using microcomputed tomography. Results: The perforated group showed increased bone formation and reduced soft tissue formation compared to the non-perforated group. For the primary outcome, histomorphometric analysis revealed significantly greater total regenerated bone in the perforated group (67.08 ± 6.86%) relative to the nonperforated group (25.18 ± 22.44%) (p = 0.036). Perforated membranes had less soft tissue infiltration (32.91 ± 6.86%) compared to non-perforated membranes (74.82 ± 22.44%) (p = 0.036). Conclusion: The increased permeability of membranes in the perforated group potentially enabled periosteal precursor cells greater accessibility to rhBMP-2. The availability may have accelerated their differentiation into mature bone-forming cells, contributing to the stimulation of new bone production, relative to the non-perforated group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA