Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
1.
Sci Rep ; 14(1): 23291, 2024 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375394

RESUMO

In the field of Brain Machine Interface (BMI), the process of translating motor intention into a machine command is denoted as decoding. However, despite recent advancements, decoding remains a formidable challenge within BMI. The utilization of current decoding algorithms in the field of BMI often involves computational complexity and requires the use of computers. This is primarily due to the reliance on mathematical models to address the decoding issue and perform subsequent output calculations. Unfortunately, computers are not feasible for implantable BMI systems due to their size and power consumption. To address this predicament, this study proposes a pioneering approach inspired by hyperdimensional computing. This approach first involves identifying the pattern of each stimulus by considering the normal firing rate distribution of each neuron. Subsequently, the newly observed firing pattern for each input is compared with the patterns detected at each moment for each neuron. The algorithm, which shares similarities with hyperdimensional computing, identifies the most similar pattern as the final output. This approach reduces the dependence on mathematical models. The efficacy of this method is assessed through the utilization of an authentic dataset acquired from the Frontal Eye Field (FEF) of two male rhesus monkeys. The output space encompasses eight possible angles. The results demonstrate an accuracy rate of 51.5% while exhibiting significantly low computational complexity, involving a mere 2050 adder operators. Furthermore, the proposed algorithm is implemented on a field-programmable gate array (FPGA) and as an ASIC designe in a standard CMOS 180 nm technology, underscoring its suitability for real-time implantable BMI applications. The implementation required only 2.3 Kbytes of RAM, occupied an area of 2.2 mm2, and consumed 9.32 µW at a 1.8 V power supply. Consequently, the proposed solution represents an accurate, low computational complexity, hardware-friendly, and real-time approach.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Macaca mulatta , Animais , Neurônios/fisiologia , Masculino , Humanos
2.
Bioact Mater ; 42: 531-549, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39308547

RESUMO

In vivo implantation of microelectrodes opens the door to studying neural circuits and restoring damaged neural pathways through direct electrical stimulation and recording. Although some neuroprostheses have achieved clinical success, electrode material properties, inflammatory response, and glial scar formation at the electrode-tissue interfaces affect performance and sustainability. Those challenges can be addressed by improving some of the materials' mechanical, physical, chemical, and electrical properties. This paper reviews materials and designs of current microelectrodes and discusses perspectives to advance neuroprosthetics performance.

3.
Bioengineering (Basel) ; 11(9)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39329659

RESUMO

Noninvasive brain signal measurement techniques are crucial for understanding human brain function and brain-machine interface applications. Conventionally, noninvasive brain signal measurement techniques, such as electroencephalography, magnetoencephalography, functional magnetic resonance imaging, and near-infrared spectroscopy, have been developed. However, currently, there is no practical noninvasive technique to measure brain function with high temporal and spatial resolution using one instrument. We developed a novel noninvasive brain signal measurement technique with high temporal and spatial resolution by biasing a static magnetic field emitted from a coil on the head to the brain. In this study, we applied this technique to develop a groundbreaking system for noninvasive whole-head brain function measurement with high spatiotemporal resolution across the entire head. We validated this system by measuring movement-related brain signals evoked by a right index finger extension movement and demonstrated that the proposed system can measure the dynamic activity of brain regions involved in finger movement with high spatiotemporal accuracy over the whole brain.

4.
Front Neurol ; 15: 1376782, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144712

RESUMO

Background: After a stroke, damage to the part of the brain that controls movement results in the loss of motor function. Brain-computer interface (BCI)-based stroke rehabilitation involves patients imagining movement without physically moving while the system measures the perceptual-motor rhythm in the motor cortex. Visual feedback through virtual reality and functional electrical stimulation is provided simultaneously. The superiority of real BCI over sham BCI in the subacute phase of stroke remains unclear. Therefore, we aim to compare the effects of real and sham BCI on motor function and brain activity among patients with subacute stroke with weak wrist extensor strength. Methods: This is a double-blinded randomized controlled trial. Patients with stroke will be categorized into real BCI and sham BCI groups. The BCI task involves wrist extension for 60 min/day, 5 times/week for 4 weeks. Twenty sessions will be conducted. The evaluation will be conducted four times, as follows: before the intervention, 2 weeks after the start of the intervention, immediately after the intervention, and 4 weeks after the intervention. The assessments include a clinical evaluation, electroencephalography, and electromyography using motor-evoked potentials. Discussion: Patients will be categorized into two groups, as follows: those who will be receiving neurofeedback and those who will not receive this feedback during the BCI rehabilitation training. We will examine the importance of motor imaging feedback, and the effect of patients' continuous participation in the training rather than their being passive.Clinical Trial Registration: KCT0008589.

5.
Cogn Neurodyn ; 18(1): 147-164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39170600

RESUMO

Brain-machine interface (BMI) can convert electroencephalography signals (EEGs) into the control instructions of external devices, and the key of control performance is the accuracy and efficiency of decoder. However, the performance of different decoders obtaining control instructions from complex and variable EEG signals is very different and irregular in the different neural information transfer model. Aiming at this problem, the off-line and on-line performance of eight decoders based on the improved single-joint information transmission (SJIT) model is compared and analyzed in this paper, which can provide a theoretical guidance for decoder design. Firstly, in order to avoid the different types of neural activities in the decoding process on the decoder performance, eight decoders based on the improved SJIT model are designed. And then the off-line decoding performance of these decoders is tested and compared. Secondly, a closed-loop BMI system which combining by the designed decoder and the random forest encoder based on the improved SJIT model is constructed. Finally, based on the constructed closed-loop BMI system, the on-line decoding performance of decoders is compared and analyzed. The results show that the LSTM-based decoder has better on-line decoding performance than others in the improved SJIT model.

6.
Ann Med ; 56(1): 2386516, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39140323

RESUMO

OBJECTIVE: We hypothesized that patients with amyotrophic lateral sclerosis (ALS) face a dilemma between motivation to live and difficulty in living, and brain-machine interfaces (BMIs) can reduce this dilemma. This study aimed to investigate the present situation of patients with ALS and their expectations from BMIs. MATERIALS AND METHODS: Our survey design consisted of an anonymous mail-in questionnaire comprising questions regarding the use of tracheostomy positive pressure ventilation (TPPV), motivation to live, anxiety about the totally locked-in state (TLS), anxiety about caregiver burden, and expectations regarding the use of BMI. Primary outcomes were scores for motivation to live and anxiety about caregiver burden and the TLS. Outcomes were evaluated using the visual analogue scale. RESULTS: Among 460 participants, 286 (62.6%) were already supported by or had decided to use TPPV. The median scores for motivation to live, anxiety about TLS, and anxiety about caregiver burden were 8.0, 9.0, and 7.0, respectively. Overall, 49% of patients intended to use BMI. Among patients who had refused TPPV, 15.9% intended to use BMI and TPPV. Significant factors for the use of BMI were motivation to live (p = .003), anxiety about TLS (p < .001), younger age (p < .001), and advanced disease stage (p < .001). CONCLUSIONS: These results clearly revealed a serious dilemma among patients with ALS between motivation to live and their anxiety about TLS and caregiver burden. Patients expected BMI to reduce this dilemma. Thus, the development of better BMIs may meet these expectations.


Assuntos
Esclerose Lateral Amiotrófica , Ansiedade , Interfaces Cérebro-Computador , Cuidadores , Motivação , Humanos , Esclerose Lateral Amiotrófica/psicologia , Esclerose Lateral Amiotrófica/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Inquéritos e Questionários , Cuidadores/psicologia , Ansiedade/psicologia , Ansiedade/etiologia , Adulto , Traqueostomia , Sobrecarga do Cuidador/psicologia , Síndrome do Encarceramento/psicologia
7.
J Neural Eng ; 21(4)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39134021

RESUMO

Objective.A crucial goal in brain-machine interfacing is the long-term stability of neural decoding performance, ideally without regular retraining. Long-term stability has only been previously demonstrated in non-human primate experiments and only in primary sensorimotor cortices. Here we extend previous methods to determine long-term stability in humans by identifying and aligning low-dimensional structures in neural data.Approach.Over a period of 1106 and 871 d respectively, two participants completed an imagined center-out reaching task. The longitudinal accuracy between all day pairs was assessed by latent subspace alignment using principal components analysis and canonical correlations analysis of multi-unit intracortical recordings in different brain regions (Brodmann Area 5, Anterior Intraparietal Area and the junction of the postcentral and intraparietal sulcus).Main results.We show the long-term stable representation of neural activity in subspaces of intracortical recordings from higher-order association areas in humans.Significance.These results can be practically applied to significantly expand the longevity and generalizability of brain-computer interfaces.Clinical TrialsNCT01849822, NCT01958086, NCT01964261.


Assuntos
Interfaces Cérebro-Computador , Imaginação , Movimento , Lobo Parietal , Adulto , Feminino , Humanos , Masculino , Imaginação/fisiologia , Movimento/fisiologia , Lobo Parietal/fisiologia , Pessoa de Meia-Idade , Estudos de Caso Único como Assunto
8.
J Neural Eng ; 21(4)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38986465

RESUMO

Objective.Micro-electrocorticographic (µECoG) arrays are able to record neural activities from the cortical surface, without the need to penetrate the brain parenchyma. Owing in part to small electrode sizes, previous studies have demonstrated that single-unit spikes could be detected from the cortical surface, and likely from Layer I neurons of the neocortex. Here we tested the ability to useµECoG arrays to decode, in rats, body position during open field navigation, through isolated single-unit activities.Approach. µECoG arrays were chronically implanted onto primary motor cortex (M1) of Wistar rats, and neural recording was performed in awake, behaving rats in an open-field enclosure. The signals were band-pass filtered between 300-3000 Hz. Threshold-crossing spikes were identified and sorted into distinct units based on defined criteria including waveform morphology and refractory period. Body positions were derived from video recordings. We used gradient-boosting machine to predict body position based on previous 100 ms of spike data, and correlation analyses to elucidate the relationship between position and spike patterns.Main results.Single-unit spikes could be extracted during chronic recording fromµECoG, and spatial position could be decoded from these spikes with a mean absolute error of prediction of 0.135 and 0.090 in the x- and y- dimensions (of a normalized range from 0 to 1), and Pearson's r of 0.607 and 0.571, respectively.Significance. µECoG can detect single-unit activities that likely arise from superficial neurons in the cortex and is a promising alternative to intracortical arrays, with the added benefit of scalability to cover large cortical surface with minimal incremental risks. More studies should be performed in human related to its use as brain-machine interface.


Assuntos
Eletrocorticografia , Eletrodos Implantados , Córtex Motor , Ratos Wistar , Animais , Ratos , Eletrocorticografia/métodos , Eletrocorticografia/instrumentação , Córtex Motor/fisiologia , Masculino , Microeletrodos , Potenciais de Ação/fisiologia , Desenho de Equipamento/métodos , Navegação Espacial/fisiologia , Interfaces Cérebro-Computador , Análise de Falha de Equipamento/métodos
9.
Comput Methods Programs Biomed ; 255: 108332, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39053352

RESUMO

BACKGROUND AND OBJECTIVE: Brain-Machine Interfaces (BMIs) based on a motor imagination paradigm provide an intuitive approach for the exoskeleton control during gait. However, their clinical applicability remains difficulted by accuracy limitations and sensitivity to false activations. A proposed improvement involves integrating the BMI with methods based on detecting Error Related Potentials (ErrP) to self-tune erroneous commands and enhance not only the system accuracy, but also its usability. The aim of the current research is to characterize the ErrP at the beginning of the gait with a lower limb exoskeleton to reduce the false starts in the BMI system. Furthermore, this study is valuable for determining which type of feedback, Tactile, Visual, or Visuo-Tactile, achieves the best performance in evoking and detecting the ErrP. METHODS: The initial phase of the research concentrates on detecting ErrP at the beginning of gait to improve the efficiency of an asynchronous BMI based on motor imagery (BMI-MI) to control a lower limb exoskeleton. Initially, an experimental protocol is designed to evoke ErrP at the start of gait, employing three different stimuli: Tactile, Visual, and Visuo-Tactile. An iterative selection process is then utilized to characterize ErrP in both time and frequency domains and fine-tune various parameters, including electrode distribution, feature combinations, and classifiers. A generic classifier with 6 subjects is employed to configure an ensemble classification system for detecting ErrP and reducing the false starts. RESULTS: The ensembled system configured with the selected parameters yields an average correction of false starts of 72.60 % ± 10.23, highlighting its corrective efficacy. Tactile feedback emerges as the most effective stimulus, outperforming Visual and Visuo-Tactile feedback in both training types. CONCLUSIONS: The results suggest promising prospects for reducing the false starts when integrating ErrP with BMI-MI, employing Tactile feedback. Consequently, the security of the system is enhanced. Subsequent, further research efforts will focus on detecting error potential during movement for gait stop, in order to limit undesired stops.


Assuntos
Interfaces Cérebro-Computador , Exoesqueleto Energizado , Marcha , Extremidade Inferior , Humanos , Extremidade Inferior/fisiologia , Masculino , Marcha/fisiologia , Adulto , Eletroencefalografia , Adulto Jovem , Feminino
10.
Front Neurosci ; 18: 1406814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962177

RESUMO

Introduction: Decoding an individual's hidden brain states in responses to musical stimuli under various cognitive loads can unleash the potential of developing a non-invasive closed-loop brain-machine interface (CLBMI). To perform a pilot study and investigate the brain response in the context of CLBMI, we collect multimodal physiological signals and behavioral data within the working memory experiment in the presence of personalized musical stimuli. Methods: Participants perform a working memory experiment called the n-back task in the presence of calming music and exciting music. Utilizing the skin conductance signal and behavioral data, we decode the brain's cognitive arousal and performance states, respectively. We determine the association of oxygenated hemoglobin (HbO) data with performance state. Furthermore, we evaluate the total hemoglobin (HbT) signal energy over each music session. Results: A relatively low arousal variation was observed with respect to task difficulty, while the arousal baseline changes considerably with respect to the type of music. Overall, the performance index is enhanced within the exciting session. The highest positive correlation between the HbO concentration and performance was observed within the higher cognitive loads (3-back task) for all of the participants. Also, the HbT signal energy peak occurs within the exciting session. Discussion: Findings may underline the potential of using music as an intervention to regulate the brain cognitive states. Additionally, the experiment provides a diverse array of data encompassing multiple physiological signals that can be used in the brain state decoder paradigm to shed light on the human-in-the-loop experiments and understand the network-level mechanisms of auditory stimulation.

11.
Front Neurol ; 15: 1440752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966087
12.
Bioengineering (Basel) ; 11(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39061777

RESUMO

As both the proportion of older people and the length of life increases globally, a rise in age-related degenerative diseases, disability, and prolonged dependency is projected. However, more sophisticated biomedical materials, as well as an improved understanding of human disease, is forecast to revolutionize the diagnosis and treatment of conditions ranging from osteoarthritis to Alzheimer's disease as well as impact disease prevention. Another, albeit quieter, revolution is also taking place within society: human augmentation. In this context, humans seek to improve themselves, metamorphosing through self-discipline or more recently, through use of emerging medical technologies, with the goal of transcending aging and mortality. In this review, and in the pursuit of improved medical care following aging, disease, disability, or injury, we first highlight cutting-edge and emerging materials-based neuroprosthetic technologies designed to restore limb or organ function. We highlight the potential for these technologies to be utilized to augment human performance beyond the range of natural performance. We discuss and explore the growing social movement of human augmentation and the idea that it is possible and desirable to use emerging technologies to push the boundaries of what it means to be a healthy human into the realm of superhuman performance and intelligence. This potential future capability is contrasted with limitations in the right-to-repair legislation, which may create challenges for patients. Now is the time for continued discussion of the ethical strategies for research, implementation, and long-term device sustainability or repair.

13.
Neurosci Res ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897235

RESUMO

Recent advances in machine learning have led to revolutionary breakthroughs in computer games, image and natural language understanding, and scientific discovery. Foundation models and large-scale language models (LLMs) have recently achieved human-like intelligence thanks to BigData. With the help of self-supervised learning (SSL) and transfer learning, these models may potentially reshape the landscapes of neuroscience research and make a significant impact on the future. Here we present a mini-review on recent advances in foundation models and generative AI models as well as their applications in neuroscience, including natural language and speech, semantic memory, brain-machine interfaces (BMIs), and data augmentation. We argue that this paradigm-shift framework will open new avenues for many neuroscience research directions and discuss the accompanying challenges and opportunities.

14.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931769

RESUMO

The complexity of information processing in the brain requires the development of technologies that can provide spatial and temporal resolution by means of dense electrode arrays paired with high-channel-count signal acquisition electronics. In this work, we present an ultra-low noise modular 512-channel neural recording circuit that is scalable to up to 4096 simultaneously recording channels. The neural readout application-specific integrated circuit (ASIC) uses a dense 8.2 mm × 6.8 mm 2D layout to enable high-channel count, creating an ultra-light 350 mg flexible module. The module can be deployed on headstages for small animals like rodents and songbirds, and it can be integrated with a variety of electrode arrays. The chip was fabricated in a TSMC 0.18 µm 1.8 V CMOS technology and dissipates a total of 125 mW. Each DC-coupled channel features a gain and bandwidth programmable analog front-end along with 14 b analog-to-digital conversion at speeds up to 30 kS/s. Additionally, each front-end includes programmable electrode plating and electrode impedance measurement capability. We present both standalone and in vivo measurements results, demonstrating the readout of spikes and field potentials that are modulated by a sensory input.


Assuntos
Processamento de Sinais Assistido por Computador , Animais , Eletrofisiologia/métodos , Eletrofisiologia/instrumentação , Neurônios/fisiologia , Fenômenos Eletrofisiológicos , Eletrodos , Desenho de Equipamento
15.
Front Neurosci ; 18: 1383319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919909

RESUMO

In recent years, with the shift of focus in metaverse research toward content exchange and social interaction, breaking through the current bottleneck of audio-visual media interaction has become an urgent issue. The use of brain-machine interfaces for sensory simulation is one of the proposed solutions. Currently, brain-machine interfaces have demonstrated irreplaceable potential as physiological signal acquisition tools in various fields within the metaverse. This study explores three application scenarios: generative art in the metaverse, serious gaming for healthcare in metaverse medicine, and brain-machine interface applications for facial expression synthesis in the virtual society of the metaverse. It investigates existing commercial products and patents (such as MindWave Mobile, GVS, and Galea), draws analogies with the development processes of network security and neurosecurity, bioethics and neuroethics, and discusses the challenges and potential issues that may arise when brain-machine interfaces mature and are widely applied. Furthermore, it looks ahead to the diverse possibilities of deep and varied applications of brain-machine interfaces in the metaverse in the future.

16.
Ann Med Surg (Lond) ; 86(6): 3535-3542, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38846893

RESUMO

The brain-machine interface (BMI), a crucial conduit between the human brain and computers, holds transformative potential for various applications in neuroscience. This manuscript explores the role of micro-engineered neuronal networks (MNNs) in advancing BMI technologies and their therapeutic applications. As the interdisciplinary collaboration intensifies, the need for innovative and user-friendly BMI technologies becomes paramount. A comprehensive literature review sourced from reputable databases (PubMed Central, Medline, EBSCOhost, and Google Scholar) aided in the foundation of the manuscript, emphasizing the pivotal role of MNNs. This study aims to synthesize and analyze the diverse facets of MNNs in the context of BMI technologies, contributing insights into neural processes, technological advancements, therapeutic potentials, and ethical considerations surrounding BMIs. MNNs, exemplified by dual-mode neural microelectrodes, offer a controlled platform for understanding complex neural processes. Through case studies, we showcase the pivotal role of MNNs in BMI innovation, addressing challenges, and paving the way for therapeutic applications. The integration of MNNs with BMI technologies marks a revolutionary stride in neuroscience, refining brain-computer interactions and offering therapeutic avenues for neurological disorders. Challenges, ethical considerations, and future trends in BMI research necessitate a balanced approach, leveraging interdisciplinary collaboration to ensure responsible and ethical advancements. Embracing the potential of MNNs is paramount for the betterment of individuals with neurological conditions and the broader community.

17.
Front Neurosci ; 18: 1371107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707591

RESUMO

When learning to use a brain-machine interface (BMI), the brain modulates neuronal activity patterns, exploring and exploiting the state space defined by their neural manifold. Neurons directly involved in BMI control (i.e., direct neurons) can display marked changes in their firing patterns during BMI learning. However, the extent of firing pattern changes in neurons not directly involved in BMI control (i.e., indirect neurons) remains unclear. To clarify this issue, we localized direct and indirect neurons to separate hemispheres in a task designed to bilaterally engage these hemispheres while animals learned to control the position of a platform with their neural signals. Animals that learned to control the platform and improve their performance in the task shifted from a global strategy, where both direct and indirect neurons modified their firing patterns, to a local strategy, where only direct neurons modified their firing rate, as animals became expert in the task. Animals that did not learn the BMI task did not shift from utilizing a global to a local strategy. These results provide important insights into what differentiates successful and unsuccessful BMI learning and the computational mechanisms adopted by the neurons.

18.
Cureus ; 16(4): e58243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38745805

RESUMO

In recent years, scientific discoveries in the field of neuroscience combined with developments in the field of artificial intelligence have led to the development of a range of neurotechnologies. Advances in neuroimaging systems, neurostimulators, and brain-computer interfaces (BCIs) are leading to new ways of enhancing, controlling, and "reading" the brain. In addition, although BCIs were developed and used primarily in the medical field, they are now increasingly applied in other fields (entertainment, marketing, education, defense industry). We conducted a literature review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to provide background information about ethical issues related to the use of BCIs. Among the ethical issues that emerged from the thematic data analysis of the reviewed studies included questions revolving around human dignity, personhood and autonomy, user safety, stigma and discrimination, privacy and security, responsibility, research ethics, and social justice (including access to this technology). This paper attempts to address the various aspects of these concerns. A variety of distinct ethical issues were identified, which, for the most part, were in line with the findings of prior research. However, we identified two nuances, which are related to the empirical research on ethical issues related to BCIs and the impact of BCIs on international relationships. The paper also highlights the need for the cooperation of all stakeholders to ensure the ethical development and use of this technology and concludes with several recommendations. The principles of bioethics provide an initial guiding framework, which, however, should be revised in the current artificial intelligence landscape so as to be responsive to challenges posed by the development and use of BCIs.

19.
Front Neurosci ; 18: 1393206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784093

RESUMO

In recent years, thanks to the development of integrated circuits, clinical medicine has witnessed significant advancements, enabling more efficient and intelligent treatment approaches. Particularly in the field of neuromedical, the utilization of brain-machine interfaces (BMI) has revolutionized the treatment of neurological diseases such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. The BMI acquires neural signals via recording circuits and analyze them to regulate neural stimulator circuits for effective neurological treatment. However, traditional BMI designs, which are often isolated, have given way to closed-loop brain-machine interfaces (CL-BMI) as a contemporary development trend. CL-BMI offers increased integration and accelerated response speed, marking a significant leap forward in neuromedicine. Nonetheless, this advancement comes with its challenges, notably the stimulation artifacts (SA) problem inherent to the structural characteristics of CL-BMI, which poses significant challenges on the neural recording front-ends (NRFE) site. This paper aims to provide a comprehensive overview of technologies addressing artifacts in the NRFE site within CL-BMI. Topics covered will include: (1) understanding and assessing artifacts; (2) exploring the impact of artifacts on traditional neural recording front-ends; (3) reviewing recent technological advancements aimed at addressing artifact-related issues; (4) summarizing and classifying the aforementioned technologies, along with an analysis of future trends.

20.
Adv Healthc Mater ; 13(23): e2400836, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38757738

RESUMO

Implantable neural electrodes are indispensable tools for recording neuron activity, playing a crucial role in neuroscience research. However, traditional neural electrodes suffer from limited electrochemical performance, compromised biocompatibility, and tentative stability, posing great challenges for reliable long-term studies in free-moving animals. In this study, a novel approach employing a hybrid film composed of poly(3,4-ethylenedioxythiophene)/functional gold nanoparticles (PEDOT/3-MPA-Au) to improve the electrode-neural interface is presented. The deposited PEDOT/3-MPA-Au demonstrates superior cathodal charge storage capacity, reduced electrochemical impedance, and remarkable electrochemical and mechanical stability. Upon implantation into the cortex of mice for a duration of 12 weeks, the modified electrodes exhibit notably decreased levels of glial fibrillary acidic protein and increased neuronal nuclei immunostaining compared to counterparts utilizing poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate). Additionally, the PEDOT/3-MPA-Au modified electrodes consistently capture high-quality, stable long-term electrophysiological signals in vivo, enabling continuous recording of target neurons for up to 16 weeks. This innovative modification strategy offers a promising solution for fabricating low-impedance, tissue-friendly, and long-term stable neural interfaces, thereby addressing the shortcomings of conventional neural electrodes. These findings mark a significant advancement toward the development of more reliable and efficacious neural interfaces, with broad implications for both research and clinical applications.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Ouro , Nanopartículas Metálicas , Polímeros , Ouro/química , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Polímeros/química , Nanopartículas Metálicas/química , Camundongos , Neurônios/metabolismo , Eletrodos Implantados , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA