Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Neurocrit Care ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886326

RESUMO

BACKGROUND: Head elevation is recommended as a tier zero measure to decrease high intracranial pressure (ICP) in neurocritical patients. However, its quantitative effects on cerebral perfusion pressure (CPP), jugular bulb oxygen saturation (SjvO2), brain tissue partial pressure of oxygen (PbtO2), and arteriovenous difference of oxygen (AVDO2) are uncertain. Our objective was to evaluate the effects of head elevation on ICP, CPP, SjvO2, PbtO2, and AVDO2 among patients with acute brain injury. METHODS: We conducted a systematic review and meta-analysis on PubMed, Scopus, and Cochrane Library of studies comparing the effects of different degrees of head elevation on ICP, CPP, SjvO2, PbtO2, and AVDO2. RESULTS: A total of 25 articles were included in the systematic review. Of these, 16 provided quantitative data regarding outcomes of interest and underwent meta-analyses. The mean ICP of patients with acute brain injury was lower in group with 30° of head elevation than in the supine position group (mean difference [MD] - 5.58 mm Hg; 95% confidence interval [CI] - 6.74 to - 4.41 mm Hg; p < 0.00001). The only comparison in which a greater degree of head elevation did not significantly reduce the ICP was 45° vs. 30°. The mean CPP remained similar between 30° of head elevation and supine position (MD - 2.48 mm Hg; 95% CI - 5.69 to 0.73 mm Hg; p = 0.13). Similar findings were observed in all other comparisons. The mean SjvO2 was similar between the 30° of head elevation and supine position groups (MD 0.32%; 95% CI - 1.67% to 2.32%; p = 0.75), as was the mean PbtO2 (MD - 1.50 mm Hg; 95% CI - 4.62 to 1.62 mm Hg; p = 0.36), and the mean AVDO2 (MD 0.06 µmol/L; 95% CI - 0.20 to 0.32 µmol/L; p = 0.65).The mean ICP of patients with traumatic brain injury was also lower with 30° of head elevation when compared to the supine position. There was no difference in the mean values of mean arterial pressure, CPP, SjvO2, and PbtO2 between these groups. CONCLUSIONS: Increasing degrees of head elevation were associated, in general, with a lower ICP, whereas CPP and brain oxygenation parameters remained unchanged. The severe traumatic brain injury subanalysis found similar results.

2.
Brain Commun ; 6(3): fcae166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938620

RESUMO

Huntington's disease is a neurodegenerative disorder in which neuronal death leads to chorea and cognitive decline. Individuals with ≥40 cytosine-adenine-guanine repeats on the interesting transcript 15 gene develop Huntington's disease due to a mutated huntingtin protein. While the associated structural and molecular changes are well characterized, the alterations in neurovascular function that lead to the symptoms are not yet fully understood. Recently, the neurovascular unit has gained attention as a key player in neurodegenerative diseases. The mutant huntingtin protein is known to be present in the major parts of the neurovascular unit in individuals with Huntington's disease. However, a non-invasive assessment of neurovascular unit function in Huntington's disease has not yet been performed. Here, we investigate neurovascular interactions in presymptomatic (N = 13) and symptomatic (N = 15) Huntington's disease participants compared to healthy controls (N = 36). To assess the dynamics of oxygen transport to the brain, functional near-infrared spectroscopy, ECG and respiration effort were recorded. Simultaneously, neuronal activity was assessed using EEG. The resultant time series were analysed using methods for discerning time-resolved multiscale dynamics, such as wavelet transform power and wavelet phase coherence. Neurovascular phase coherence in the interval around 0.1 Hz is significantly reduced in both Huntington's disease groups. The presymptomatic Huntington's disease group has a lower power of oxygenation oscillations compared to controls. The spatial coherence of the oxygenation oscillations is lower in the symptomatic Huntington's disease group compared to the controls. The EEG phase coherence, especially in the α band, is reduced in both Huntington's disease groups and, to a significantly greater extent, in the symptomatic group. Our results show a reduced efficiency of the neurovascular unit in Huntington's disease both in the presymptomatic and symptomatic stages of the disease. The vasculature is already significantly impaired in the presymptomatic stage of the disease, resulting in reduced cerebral blood flow control. The results indicate vascular remodelling, which is most likely a compensatory mechanism. In contrast, the declines in α and γ coherence indicate a gradual deterioration of neuronal activity. The results raise the question of whether functional changes in the vasculature precede the functional changes in neuronal activity, which requires further investigation. The observation of altered dynamics paves the way for a simple method to monitor the progression of Huntington's disease non-invasively and evaluate the efficacy of treatments.

3.
Exp Brain Res ; 242(7): 1807-1819, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839618

RESUMO

Mental fatigue (MF) and hypoxia impair cognitive performance through changes in brain hemodynamics. We want to elucidate the role of prefrontal cortex (PFC)-oxygenation in MF. Twelve participants (22.9 ± 3.5 years) completed four experimental trials, (1) MF in (normobaric) hypoxia (MF_HYP) (3.800 m; 13.5%O2), (2) MF in normoxia (MF_NOR) (98 m; 21.0%O2), (3) Control task in HYP (CON_HYP), (4) Control in NOR (CON_NOR). Participants performed a 2-back task, Digit Symbol Substitution test and Psychomotor Vigilance task before and after a 60-min Stroop task or an emotionally neutral documentary. Brain oxygenation was measured through functional Near Infrared Spectroscopy. Subjective feelings of MF and physiological measures (heart rate, oxygen saturation, blood glucose and hemoglobin) were recorded. The Stroop task resulted in increased subjective feelings of MF compared to watching the documentary. 2-back accuracy was lower post task compared to pre task in MF_NOR and CON_NOR, while no differences were found in the other cognitive tasks. The fraction of inspired oxygen did not impact feelings of MF. Although performing the Stroop resulted in higher subjective feelings of MF, hypoxia had no effect on the severity of self-reported MF. Additionally, this study could not provide evidence for a role of oxygenation of the PFC in the build-up of MF.


Assuntos
Hipóxia , Fadiga Mental , Córtex Pré-Frontal , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Masculino , Adulto , Adulto Jovem , Feminino , Hipóxia/fisiopatologia , Hipóxia/metabolismo , Fadiga Mental/fisiopatologia , Fadiga Mental/metabolismo , Desempenho Psicomotor/fisiologia , Teste de Stroop , Oxigênio/sangue , Oxigênio/metabolismo , Frequência Cardíaca/fisiologia , Testes Neuropsicológicos
4.
Sensors (Basel) ; 24(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38676247

RESUMO

Frequency-domain near-infrared spectroscopy (FD-NIRS) has been used for non-invasive assessment of cortical oxygenation since the late 1990s. However, there is limited research demonstrating clinical validity and general reproducibility. To address this limitation, recording duration for adequate validity and within- and between-day reproducibility of prefrontal cortical oxygenation was evaluated. To assess validity, a reverse analysis of 10-min-long measurements (n = 52) at different recording durations (1-10-min) was quantified via coefficients of variation and Bland-Altman plots. To assess within- and between-day within-subject reproducibility, participants (n = 15) completed 2-min measurements twice a day (morning/afternoon) for five consecutive days. While 1-min recordings demonstrated sufficient validity for the assessment of oxygen saturation (StO2) and total hemoglobin concentration (THb), recordings ≥4 min revealed greater clinical utility for oxy- (HbO) and deoxyhemoglobin (HHb) concentration. Females had lower StO2, THb, HbO, and HHb values than males, but variability was approximately equal between sexes. Intraclass correlation coefficients ranged from 0.50-0.96. The minimal detectable change for StO2 was 1.15% (95% CI: 0.336-1.96%) and 3.12 µM for THb (95% CI: 0.915-5.33 µM) for females and 2.75% (95%CI: 0.807-4.70%) for StO2 and 5.51 µM (95%CI: 1.62-9.42 µM) for THb in males. Overall, FD-NIRS demonstrated good levels of between-day reliability. These findings support the application of FD-NIRS in field-based settings and indicate a recording duration of 1 min allows for valid measures; however, data recordings of ≥4 min are recommended when feasible.


Assuntos
Hemoglobinas , Oxigênio , Córtex Pré-Frontal , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Masculino , Feminino , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/metabolismo , Adulto , Reprodutibilidade dos Testes , Oxigênio/metabolismo , Oxigênio/análise , Hemoglobinas/análise , Hemoglobinas/metabolismo , Saturação de Oxigênio/fisiologia , Adulto Jovem , Oxiemoglobinas/metabolismo , Oxiemoglobinas/análise
5.
Brain Sci ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38391692

RESUMO

Traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) are critical neurological conditions that necessitate specialized care in the Intensive Care Unit (ICU). Managing cerebral perfusion pressure (CPP) and mean arterial pressure (MAP) is of primary importance in these patients. To maintain targeted MAP and CPP, vasopressors and/or inotropes are commonly used. However, their effects on cerebral oxygenation are not fully understood. The aim of this review is to provide an up-to date review regarding the current uses and pathophysiological issues related to the use of vasopressors and inotropes in TBI and SAH patients. According to our findings, despite achieving similar hemodynamic parameters and CPP, the effects of various vasopressors and inotropes on cerebral oxygenation, local CBF and metabolism are heterogeneous. Therefore, a more accurate understanding of the cerebral activity of these medications is crucial for optimizing patient management in the ICU setting.

6.
Surg Neurol Int ; 14: 395, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053714

RESUMO

Background: Cerebral microdialysis (CMD) is an FDA-approved multimodal invasive monitoring technique that provides local brain metabolism measurements through continuous interstitial brain fluid sampling at the bedside. The past applications in traumatic brain injury and subarachnoid hemorrhage show that acute brain injury (ABI) can lead to a metabolic crisis reflected by changes in cerebral glucose, pyruvate, and lactate. However, limited literature exists on CMD in spontaneous intracerebral hemorrhage (ICH). Case Description: A 45-year-old woman presented with a Glasgow Coma Scale of 8T and left frontal ICH with a 6 mm midline shift. She underwent craniotomy and ICH evacuation. Intraoperatively, CMD, brain tissue oxygenation (PbtO2), intracranial pressure (ICP), and cerebral blood flow (CBF) catheters were placed, targeted toward the peri-hematoma region. Postoperatively, ICP was normal; however, PbtO2, CBF, glucose, and lactate/ pyruvate ratio were abnormal. Due to concern for the metabolic crisis, poor examination, and hydrocephalus on computed tomography of the head (CTH), she underwent external ventricular drainage (EVD). Post-EVD, all parameters normalized (P < 0.05 on Student's t-test). Monitors were removed, and she was discharged to a nursing facility with a modified Rankin scale of 4. Conclusion: Here, we demonstrate the safe implementation of CMD in ICH and the use of CMD in tandem with PbtO2/ICP/CBF to guide treatment in ICH. Despite a normal ICP, numerous cerebral metabolic derangements existed and improved after cerebrospinal fluid diversion. A normal ICP may not reflect underlying metabolic-substrate demands of the brain during ABI. CMD and PbtO2/CBF monitoring augment traditional ICP monitoring in brain injury. Further prospective studies will be needed to understand further the interplay between ICP, PbtO2, CBF, and CMD values in ABI.

7.
Front Neurosci ; 17: 1268955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027522

RESUMO

There is growing evidence of mitochondrial dysfunction and prefrontal cortex (PFC) hypometabolism in bipolar disorder (BD). Older adults with BD exhibit greater decline in PFC-related neurocognitive functions than is expected for age-matched controls, and clinical interventions intended for mood stabilization are not targeted to prevent or ameliorate mitochondrial deficits and neurocognitive decline in this population. Transcranial infrared laser stimulation (TILS) is a non-invasive form of photobiomodulation, in which photons delivered to the PFC photo-oxidize the mitochondrial respiratory enzyme, cytochrome-c-oxidase (CCO), a major intracellular photon acceptor in photobiomodulation. TILS at 1064-nm can significantly upregulate oxidized CCO concentrations to promote differential levels of oxygenated vs. deoxygenated hemoglobin (HbD), an index of cerebral oxygenation. The objective of this controlled study was to use non-invasive broadband near-infrared spectroscopy to assess if TILS to bilateral PFC (Brodmann area 10) produces beneficial effects on mitochondrial oxidative energy metabolism (oxidized CCO) and cerebral oxygenation (HbD) in older (≥50 years old) euthymic adults with BD (N = 15). As compared to sham, TILS to the PFC in adults with BD increased oxidized CCO both during and after TILS, and increased HbD concentrations after TILS. By significantly increasing oxidized CCO and HbD concentrations above sham levels, TILS has the potential ability to stabilize mitochondrial oxidative energy production and prevent oxidative damage in the PFC of adults with BD. In conclusion, TILS was both safe and effective in enhancing metabolic function and subsequent hemodynamic responses in the PFC, which might help alleviate the accelerated neurocognitive decline and dysfunctional mitochondria present in BD.

8.
Kardiochir Torakochirurgia Pol ; 20(2): 83-93, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37564964

RESUMO

Introduction: Near-infrared spectroscopy (NIRS) is a non-invasive method of regional tissue oxygenation measurement. Intraoperative use of NIRS to monitor brain oxygenation (BO) during surgery might be beneficial to identify cerebral desaturations. Aim: To compare peripheral blood saturation (SpO2) with BO measurements and evaluate the utility of BO in thoracic surgery. Material and methods: We took BO and SpO2 measurements in a group of 100 patients undergoing standard thoracic surgery. Measurements were made every 15 minutes. The Mann-Whitney U test was used to compare study groups. Spearman's rank correlation coefficient was used to determine correlation between studied parameters. Results: We found a negative correlation between patients' age and BO at the beginning of surgery. Operations lasted between 30 and 200 minutes. We found a positive correlation between BO and SpO2 between 15 and 90 minutes of surgery. Subsequently, BO remained at a low level while SpO2 returned to baseline values. Higher minimum SpO2 values were noted in patients undergoing left-sided procedures. Conclusions: Cerebral oxygenation does not return to baseline values until the end of the surgery as opposed to the SpO2. Furthermore, both SpO2 and BO correlate negatively with the overall duration of thoracic surgery. In addition, after 90 minutes of surgery, SpO2 stopped reflecting brain oxygenation.

9.
MAGMA ; 36(6): 975-984, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37556086

RESUMO

OBJECTIVE: Monitoring brain oxygenation is critical in brain tumors, as low oxygenation influences tumor growth, pathological angiogenesis, and treatment resistance. This study examined the ability of the streamlined quantitative (sq)BOLD MRI technique to detect oxygenation changes in healthy individuals, as well as its potential application in a clinical setting. METHODS: We used the asymmetric spin echo (ASE) technique with FLAIR preparation, along with model-based Bayesian inference to quantify the reversible transverse relaxation rate (R2') and oxygen extraction fraction (OEF) across the brain at baseline and during visual stimulation in eight healthy participants at 3T; and two patients with glioma at rest only. RESULTS: Comparing sqBOLD-derived parameters between baseline and visual stimulation revealed a decrease in OEF from 0.56 ± 0.09 at baseline to 0.54 ± 0.07 at the activated state (p = 0.04, paired t test) within a functional localizer-defined volume of interest, and a decline in R2' from 6.5 ± 1.3s-1 at baseline to 6.2 ± 1.4s-1 at the activated state (p = 0.006, paired t test) in the visual cortex. CONCLUSION: The sqBOLD technique is sensitive enough to detect and quantify changes in oxygenation in the healthy brain and shows potential for integration into clinical settings to provide valuable information on oxygenation in glioma.


Assuntos
Glioma , Oxigênio , Humanos , Voluntários Saudáveis , Teorema de Bayes , Encéfalo , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem
10.
World Neurosurg ; 178: 101-113, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37479026

RESUMO

OBJECTIVE: Gunshot wounds to the head (GSWH) are a cause of severe penetrating traumatic brain injury (TBI). Although multimodal neuromonitoring has been increasingly used in blunt pediatric TBI, its role in the pediatric population with GSWH is not known. We report on 3 patients who received multimodal neuromonitoring as part of clinical management at our institution and review the existing literature on pediatric GSWH. METHODS: We identified 3 patients ≤18 years of age who were admitted to a quaternary children's hospital from 2005 to 2021 with GSWH and received invasive intracranial pressure (ICP) and Pbto2 (brain tissue oxygenation) monitoring with or without noninvasive near-infrared spectroscopy (NIRS). We analyzed clinical and demographic characteristics, imaging findings, and ICP, Pbto2, cerebral perfusion pressure, and rSo2 (regional cerebral oxygen saturation) NIRS trends. RESULTS: All patients were male with an average admission Glasgow Coma Scale score of 4. One patient received additional NIRS monitoring. Episodes of intracranial hypertension (ICP ≥20 mm Hg) and brain tissue hypoxia (Pbto2 <15 mm Hg) or hyperemia (Pbto2 >35 mm Hg) frequently occurred independently of each other, requiring unique targeted treatments. rSo2 did not consistently mirror Pbto2. All children survived, with favorable Glasgow Outcome Scale-Extended score at 6 months after injury. CONCLUSIONS: Use of ICP and Pbto2 multimodality neuromonitoring enabled specific management for intracranial hypertension or brain tissue hypoxia episodes that occurred independently of one another. Multimodality neuromonitoring has not been studied extensively in pediatric GSWH; however, its use may provide a more complete picture of patient injury and prognosis without significant added procedural risk.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismos Cranianos Penetrantes , Hipóxia Encefálica , Hipertensão Intracraniana , Ferimentos por Arma de Fogo , Humanos , Criança , Masculino , Feminino , Oxigênio , Ferimentos por Arma de Fogo/diagnóstico por imagem , Ferimentos por Arma de Fogo/terapia , Pressão Intracraniana , Encéfalo/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/terapia , Hipertensão Intracraniana/diagnóstico , Hipertensão Intracraniana/etiologia , Hipertensão Intracraniana/terapia , Traumatismos Cranianos Penetrantes/diagnóstico por imagem , Traumatismos Cranianos Penetrantes/terapia
11.
Neonatology ; 120(4): 508-516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37285816

RESUMO

INTRODUCTION: We aimed to investigate the cerebral fractional tissue oxygen extraction (FtOE) during kangaroo care (KC) in premature infants and compare cardiorespiratory stability and hypoxic or bradycardic events between KC and incubator care. METHODS: A single-center prospective observational study was carried out at the NICU of a level 3 perinatal center. Preterm infants <32 weeks gestational age were subjected to KC. Patients were subjected to continuous monitoring of regional cerebral oxygen saturation (rScO2), peripheral oxygen saturation (SpO2), and heart rate (HR) during KC, before KC (pre-KC), and after KC (post-KC). The monitoring data were stored and exported to MATLAB for synchronization and signal analysis including the calculation of the FtOE and events analysis (i.e., desaturations and bradycardias counts and anormal values). Furthermore, the event counts and the mean SpO2, HR, rScO2, and FtOE were compared between studied periods employing the Wilcoxon rank-sum test and the Friedman test, respectively. RESULTS: A total of forty-three KC sessions with their corresponding pre-KC and post-KC segments were analyzed. The distributions of the SpO2, HR, rScO2, and FtOE showed different patterns according to the respiratory support, but not differences between the studied periods were detected. Accordingly, no significant differences in monitoring events were evidenced. However, cerebral metabolic demand (FtOE) was significantly lower during KC compared with post-KC (p = 0.019). CONCLUSION: Premature infants remain clinically stable during KC. Moreover, cerebral oxygenation is significantly higher and cerebral tissular oxygen extraction is significantly lower during KC compared with incubator care in post-KC. No differences in HR and SpO2 were shown. This novel data analysis methodology could be expanded to other clinical situations.


Assuntos
Recém-Nascido Prematuro , Método Canguru , Recém-Nascido , Humanos , Gravidez , Feminino , Criança , Oxigênio/metabolismo , Método Canguru/métodos , Idade Gestacional , Hipóxia , Bradicardia
12.
Lupus ; 32(6): 727-736, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36989458

RESUMO

OBJECTIVES: Depression is highly prevalent among systemic lupus erythematosus (SLE) patients. Brain hypoperfusion in neuropsychiatric SLE patients might be associated with emotional difficulties. However, no previous study examined possible associations of depression with brain oxygenation during a mild physical stress in non-neuropsychiatric SLE patients. Our study aimed to identify possible differences in cerebral oxygenation during exercise in SLE patients with and without depressive symptoms using near-infrared spectroscopy (NIRS) and examine possible underlying mechanisms through evaluation of vascular cell adhesion molecule 1 (VCAM-1) levels. METHODS: SLE patients without a known neuropsychiatric history or treatment with antidepressants or antipsychotic drugs were enrolled. Participants were assigned into groups based on Beck's Depression Inventory I (BDI-I). Patients with BDI-I score ≥10 comprised the SLE-depression group and those with BDI-I score <9 the SLE-non-depression group. All participants underwent a protocol involving a seated rest, a 3-min handgrip exercise (at 30% of maximal strength), and a 3-min recovery. NIRS was used to monitor changes in cerebral oxygenated hemoglobin (O2Hb), deoxygenated (HHb), and total hemoglobin (tHb). VCAM-1 levels were measured in serum samples. RESULTS: Twenty-three patients were enrolled. During exercise, the SLE-depression group exhibited a significantly lower increase in cerebral O2Hb [(peak-O2Hb (p = 0.039); O2Hb-area under the curve, AUC, p = 0.027) vs. SLE-non-depression group. BDI-I score was inversely correlated with AUC (rho = -0.493, p = 0.017) and positively correlated with VCAM-1 levels (rho = 0.501, p = 0.034). CONCLUSION: This study suggests a possible association between emotional abnormalities and microvascular impairment (cerebral oxygenation and endothelial dysfunction) in SLE However, larger studies are needed to confirm these results.


Assuntos
Lúpus Eritematoso Sistêmico , Vasculite Associada ao Lúpus do Sistema Nervoso Central , Humanos , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/psicologia , Microcirculação , Força da Mão , Molécula 1 de Adesão de Célula Vascular , Vasculite Associada ao Lúpus do Sistema Nervoso Central/complicações , Hemoglobinas
13.
J Crit Care ; 75: 154260, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36773368

RESUMO

Cerebral oxygenation represents the balance between oxygen delivery, consumption and utilization by the brain, and therefore reflects the adequacy of cerebral perfusion. Different factors can influence the amount of oxygen to the brain including arterial blood pressure, hemoglobin levels, systemic oxygenation, and transfer of oxygen from blood to the cerebral microcirculation. A mismatch between cerebral oxygen supply and demand results in cerebral hypoxia/ischemia, and is associated with secondary brain damage and worsened outcome after acute brain injury. Therefore, monitoring and prompt treatment of cerebral oxygenation compromise is warranted in both neuro and general intensive care unit populations. Several tools have been proposed for the assessment of cerebral oxygenation, including non-invasive/invasive or indirect/direct methods, including Jugular Venous Oxygen Saturation (SjO2), Partial Brain Tissue Oxygen Tension (PtiO2), Near infrared spectroscopy (NIRS), Transcranial Doppler, electroencephalography and Computed Tomography. In this manuscript, we aim to review the pathophysiology of cerebral oxygenation, describe monitoring technics, and generate recommendations for avoiding brain hypoxia in settings with low availability of resources for direct brain oxygen monitoring.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Hipóxia Encefálica , Humanos , Circulação Cerebrovascular/fisiologia , Encéfalo/diagnóstico por imagem , Oxigênio , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/terapia , Consumo de Oxigênio/fisiologia
14.
Crit Care Nurs Clin North Am ; 35(1): 83-94, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36774009

RESUMO

With advances in technology, the options to manage patients with neurologic injuries are often complex. Critical care management of neurologic injury has historically focused on the prevention of secondary ischemic injury through aggressive management of intracranial pressure (ICP) and maintenance of adequate cerebral perfusion pressure (CPP). However, ICP monitoring alone does not identify ischemic changes that herald patient deterioration. Advocates of multimodality monitoring cite the value of early detection of changes in brain oxygenation levels and brain metabolism as advantageous in optimizing stroke outcomes. ICP monitoring alone should not be the sole source of information on which therapy is guided but should be incorporated into the arsenal of emerging and promising invasive neuromonitoring devices.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Humanos , Monitorização Fisiológica , Microdiálise , Encéfalo/metabolismo , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/prevenção & controle , Pressão Intracraniana , Circulação Cerebrovascular
15.
Crit Care ; 27(1): 13, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635711

RESUMO

To ensure neuronal survival after severe traumatic brain injury, oxygen supply is essential. Cerebral tissue oxygenation represents the balance between oxygen supply and consumption, largely reflecting the adequacy of cerebral perfusion. Multiple physiological parameters determine the oxygen delivered to the brain, including blood pressure, hemoglobin level, systemic oxygenation, microcirculation and many factors are involved in the delivery of oxygen to its final recipient, through the respiratory chain. Brain tissue hypoxia occurs when the supply of oxygen is not adequate or when for some reasons it cannot be used at the cellular level. The causes of hypoxia are variable and can be analyzed pathophysiologically following "the oxygen route." The current trend is precision medicine, individualized and therapeutically directed to the pathophysiology of specific brain damage; however, this requires the availability of multimodal monitoring. For this purpose, we developed the acronym "THE MANTLE," a bundle of therapeutical interventions, which covers and protects the brain, optimizing the components of the oxygen transport system from ambient air to the mitochondria.


Assuntos
Lesões Encefálicas Traumáticas , Hipóxia Encefálica , Humanos , Hipóxia Encefálica/etiologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/terapia , Encéfalo , Oxigênio/uso terapêutico , Hipóxia/complicações , Circulação Cerebrovascular/fisiologia , Consumo de Oxigênio/fisiologia
16.
Ultrasound Obstet Gynecol ; 61(2): 215-223, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35638228

RESUMO

OBJECTIVES: Most human in-vivo placental imaging techniques are unable to distinguish and characterize various placental compartments, such as the intervillous space (IVS), placental vessels (PV) and placental tissue (PT), limiting their specificity. We describe a method that employs T2* and diffusion-weighted magnetic resonance imaging (MRI) data to differentiate automatically placental compartments, quantify their oxygenation properties and identify placental lesions (PL) in vivo. We also investigate the association between placental oxygenation patterns and fetal brain oxygenation. METHODS: This was a prospective study conducted between 2018 and 2021 in which dual-contrast clinical MRI data (T2* and diffusion-weighted MRI) were acquired from patients between 20 and 38 weeks' gestation. We trained a fuzzy clustering method to analyze T2* and diffusion-weighted MRI data and assign placental voxels to one of four clusters, based on their distinct imaging domain features. The new method divided automatically the placenta into IVS, PV, PT and PL compartments and characterized their oxygenation changes throughout pregnancy. RESULTS: A total of 27 patients were recruited, of whom five developed pregnancy complications. Total placental oxygenation level and T2* did not demonstrate a statistically significant temporal correlation with gestational age (GA) (R2 = 0.060, P = 0.27). In contrast, the oxygenation level reflected by T2* values in the placental IVS (R2 = 0.51, P = 0.0002) and PV (R2 = 0.76, P = 1.1 × 10-7 ) decreased significantly with advancing GA. Oxygenation levels in the PT did not show any temporal change during pregnancy (R2 = 0.00044, P = 0.93). A strong spatial-dependent correlation between PV oxygenation level and GA was observed. The strongest negative correlation between PV oxygenation and GA (R2 = 0.73, P = 4.5 × 10-7 ) was found at the fetal-vessel-dominated region close to the chorionic plate. The location and extent of the placental abnormality were automatically delineated and quantified in the five women with clinically confirmed placental pathology. Compared to the averaged total placental oxygenation, placental IVS oxygenation level best reflected fetal brain oxygenation level during fetal development. CONCLUSION: Based on clinically feasible dual-MRI, our method enables accurate spatiotemporal quantification of placental compartment and fetal brain oxygenation across different GAs. This information should improve our knowledge of human placenta development and its relationship with normal and abnormal pregnancy. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.


Assuntos
Doenças Placentárias , Complicações na Gravidez , Gravidez , Feminino , Humanos , Placenta/diagnóstico por imagem , Placenta/patologia , Estudos Prospectivos , Doenças Placentárias/diagnóstico por imagem , Doenças Placentárias/patologia , Imageamento por Ressonância Magnética/métodos , Placentação , Complicações na Gravidez/patologia , Encéfalo/diagnóstico por imagem
17.
J Emerg Trauma Shock ; 16(4): 150-155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38292279

RESUMO

Introduction: Adequate sedation and analgesia are two crucial factors affecting recovery of intensive care patients. Improper use of sedation and analgesia in intensive care patients may adversely lead to brain oxygen desaturation. This study aims to determine cerebral oxygenation as measured by near-infrared spectroscopy (NIRS) and inotropic interventions received among mechanically ventilated children in the pediatric intensive care unit (PICU). Methods: This study is a nested case - control study in the PICU of Indonesian tertiary hospital. Children aged 1 month to 17 years on mechanical ventilation and were given sedation and analgesia were included in the study. Subjects were divided into two groups according to the protocol of the main study (Clinical Trial ID NCT04788589). Cerebral oxygenation was measured by NIRS at five time points (before sedation, 5-min, 1, 6, and 12 h after sedation). Results: Thirty-nine of the 69 subjects were categorized into the protocol group and the rest were in the control group. A decrease of >20% NIRS values was found among subjects in the protocol group at 5-min (6.7%), 1-h (11.1%), 6-h (26.3%), and 12-h (23.8%) time-point. The mean NIRS value was lower and the inotropic intervention was more common in the control group (without protocol), although not statistically significant. Conclusion: This study found that mechanically ventilated children who received sedation and analgesia based on the protocol had a greater decrease of >20% NIRS values compared to the other group. The use of sedation and analgesia protocols must be applied in selected patients after careful consideration.

18.
Adv Exp Med Biol ; 1395: 165-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36527632

RESUMO

Near-infrared optical tomography (NIROT), a promising imaging modality for early detection of oxygenation in the brain of preterm infants, requires data acquisition at the tissue surface and thus an image reconstruction adaptable to cephalometric variations and surface topologies. Widely used model-based reconstruction methods come with the drawback of huge computational cost. Neural networks move this computational load to an offline training phase, allowing much faster reconstruction. Our aim is a data-driven volumetric image reconstruction that generalises well to different surfaces, increases reconstruction speed, localisation accuracy and image quality. We propose a hybrid convolutional neural network (hCNN) based on the well-known V-net architecture to learn inclusion localisation and absorption coefficients of heterogenous arbitrary shapes via a joint cost function. We achieved an average reconstruction time of 30.45 s, a time reduction of 89% and inclusion detection with an average Dice score of 0.61. The CNN is flexible to surface topologies and compares well in quantitative metrics with the traditional model-based (MB) approach and state-of-the-art neuronal networks for NIROT. The proposed hCNN was successfully trained, validated and tested on in-silico data, excels MB methods in localisation accuracy and provides a remarkable increase in reconstruction speed.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Óptica , Recém-Nascido , Humanos , Processamento de Imagem Assistida por Computador/métodos , Recém-Nascido Prematuro , Redes Neurais de Computação , Algoritmos
19.
Front Aging Neurosci ; 14: 1012779, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225888

RESUMO

Alzheimer's disease has various potential etiologies, all culminating in the accumulation of beta -amyloid derivatives and significant cognitive decline. Vascular-related pathology is one of the more frequent etiologies, especially in persons older than 65 years, as vascular risk factors are linked to both cerebrovascular disease and the development of AD. The vascular patho-mechanism includes atherosclerosis, large and small vessel arteriosclerosis, cortical and subcortical infarcts, white matter lesions, and microbleeds. These insults cause hypoperfusion, tissue ischemia, chronic inflammation, neuronal death, gliosis, cerebral atrophy, and accumulation of beta-amyloid and phosphorylated tau proteins. In preclinical studies, hyperbaric oxygen therapy has been shown to reverse brain ischemia, and thus alleviate inflammation, reverse the accumulation of beta-amyloid, induce regeneration of axonal white matter, stimulate axonal growth, promote blood-brain barrier integrity, reduce inflammatory reactions, and improve brain performance. In this perspective article we will summarize the patho-mechanisms induced by brain ischemia and their contribution to the development of AD. We will also review the potential role of interventions that aim to reverse brain ischemia, and discuss their relevance for clinical practice.

20.
Front Neurol ; 13: 963562, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928138

RESUMO

Introduction: Tissue hypoxia and insufficient energy delivery is one of the mechanisms behind the occurrence of several complications in acute brain injured patients. Several interventions can improve cerebral oxygenation; however, the effects of inotropic agents remain poorly characterized. Methods: Retrospective analysis including patients suffering from acute brain injury and monitored with brain oxygen pressure (PbtO2) catheter, in whom inotropic agents were administered according to the decision of the treating physician's decision; PbtO2 values were collected before, 1 and 2 h after the initiation of therapy from the patient data monitoring system. PbtO2 "responders" were patients with a relative increase in PbtO2 from baseline values of at least 20%. Results: A total of 35 patients were included in this study. Most of them (31/35, 89%) suffered from non-traumatic subarachnoid hemorrhage (SAH). Compared with baseline values [20 (14-24) mmHg], PbtO2 did not significantly increase over time [19 (15-25) mmHg at 1 h and 19 (17-25) mmHg at 2 h, respectively; p = 0.052]. A total of 12/35 (34%) patients were PbtO2 "responders," in particular if low PbtO2 was observed at baseline. A PbtO2 of 17 mmHg at baseline had a sensibility of 84% and a specificity of 91% to predict a PbtO2 responder. A significant direct correlation between changes in PbtO2 and cardiac output [r = 0.496 (95% CI 0.122 to 0.746), p = 0.01; n = 25] and a significant negative correlation between changes in PbtO2 and cerebral perfusion pressure [r = -0.389 (95% CI -0.681 to -0.010), p = 0.05] were observed. Conclusions: In this study, inotropic administration significantly increased brain oxygenation in one third of brain injured patients, especially when tissue hypoxia was present at baseline. Future studies should highlight the role of inotropic agents in the management of tissue hypoxia in this setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA