Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 277(Pt 3): 134310, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094863

RESUMO

In unmanned aircraft applications, electromagnetic wave (EMW) absorbers suffer from defects in narrow absorption bands and poor mechanical properties. To solve the problems, a lightweight multilayer stealth structure with wide broadband absorption performance and excellent mechanical properties was designed and prepared by adjusting microscopically the number of multi-walled carbon nanotubes (MWCNT) and modulating macroscopically the thickness-matching relationship of the structure to promote the absorption of EMW synergistically. Under the MWCNT of 30 wt% and the depletion layer with the thickness of 0.2 mm, the effective absorption bandwidth (EAB) covers the entire Ku-band while maintaining a minimum reflection loss (RL) of -15 dB. Besides, the radar cross-sectional area attenuation is as high as 23.1 dBm2, as well as the mechanical properties of the radar absorbing structures (RAS) were improved significantly due to the reducing structural density from balsa wood and the enhancement effect of glass fiber mats (GFM). The study constructed balsa-based RAS with excellent EMW absorbing and mechanical properties from both micro-nano scale and macro-structure, providing a research route for designing high-performance and lightweight stealth structures.


Assuntos
Vidro , Nanotubos de Carbono , Madeira , Nanotubos de Carbono/química , Madeira/química , Vidro/química , Fenômenos Mecânicos
2.
Small ; : e2405351, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162121

RESUMO

The construction of stable and efficient nanocomposites with low addition and light weight has always been the goal pursued in the field of electromagnetic wave (EMW) absorption. In this study, the Co@CNTs nanocomposites with Co nanoparticles (13 nm) nanoconfined in the carbon nanotube (CNT) are successfully synthesized by a simple hydrothermal method and phenolic assisted pyrolysis method. The degree of graphitization of CNTs and the microstructure of Co nanoparticles can be effectively regulated by controlling the calcination temperature. The sample calcined at 700 °C can obtain excellent absorption performance at a low filling capacity of 10 wt.%: the minimum reflection loss (RL) is -41.2 dB and the effective absorption bandwidth (EAB) reaches a maximum width of 14.2 GHz. When the sample thickness is only 2.2 mm, the EAB of <-20 dB reaches 8.3 GHz, which is the maximum EAB of most current Co-based absorbers. In particular, the polarization and ferromagnetic coupling behaviors are elucidated in depth with the aid of electromagnetic field simulations using the High-Frequency Structure Simulator (HFSS). This work provides a new nanoconfinement strategy for constructing the Co@CNTs nanocomposites as lightweight and ultra-broadband absorbing materials for EMW protection and EMW pollution control.

3.
Micromachines (Basel) ; 15(8)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39203617

RESUMO

Based on the unique insulator-metal phase transition property of vanadium dioxide (VO2), we propose an integrated metasurface with a switchable mechanism between ultra-broadband absorption and polarization conversion, operating in the terahertz (THz) frequency range. The designed metasurface device is constructed using a stacked structure composed of VO2 quadruple rings, a dielectric layer, copper stripes, VO2 film, a dielectric layer, and a copper reflection layer. Our numerical simulations demonstrate that our proposed design, at high temperatures (above 358 K), exhibits an ultra-broadband absorption ranging from 4.95 to 18.39 THz, maintaining an absorptivity greater than 90%, and achieves a relative absorption bandwidth of up to 115%, significantly exceeding previous research records. At room temperature (298 K), leveraging VO2's insulating state, our proposed structure transitions into an effective polarization converter, without any alteration to its geometry. It enables efficient conversion between orthogonal linear polarizations across 3.51 to 10.26 THz, with cross-polarized reflection exceeding 90% and a polarization conversion ratio over 97%. More importantly, its relative bandwidth reaches up to 98%. These features highlight its wide-angle, extensive bandwidth, and high-efficiency advantages for both switching functionalities. Such an ultra-broadband convertible design offers potential applications in optical switching, temperature dependent optical sensors, and other tunable THz devices in various fields.

4.
Micromachines (Basel) ; 15(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39203632

RESUMO

In this article, a miniaturized and highly stable frequency-selective rasorber (FSR) incorporating an embedded transmission window is designed. This FSR consists of a lossy layer loaded with resistors, an air layer, and a bandpass layer. The lossy layer is provided with a rectangular, square ring structure loaded with four 180 Ω resistors and four quadrilateral metal plates. The four metal plates are connected to the four corners of the inner ring around the square ring and are radially distributed along the diagonal. The bandpass layer is a square metal patch that a cross-ring slot structure is loaded inside of, and the cross points lie in the direction along the diagonal of the unit. The inner boundary of the cross-ring is composed of two mutually perpendicular and long rectangular elements. This FSR shows an embedded transmission window from 3.63 GHz to 3.80 GHz and has a transmission rate of 93% at 3.72 GHz. Moreover, both sides of the transmission band, namely, 1.86-3.35 GHz and 3.99-8.28 GHz, have an absorption rate of more than 80% and bilateral relative bandwidth of more than 50%. In addition, this structure exhibits excellent miniaturization performance, polarization insensitivity, and angular stability. Finally, a prototype of the designed FSR is processed and measured. The measured results are basically consistent with the simulation results.

5.
Adv Sci (Weinh) ; : e2404010, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166399

RESUMO

Dewdrops, the droplets of water naturally occurring on leaves and carapaces of insects, are a fascinating phenomenon in nature. Here, a man-made array of dewdrops with arbitrary shapes and arrangements, which can function as an electromagnetic metasurface, is demonstrated. The realization of the dewdrop array is enabled by a surface covered by a tailored pattern of hydrophilic and hydrophobic coatings, where tiny droplets of water can aggregate and form dewdrops on the former. Interestingly, this metasurface made of dewdrops can be modulated by the condensation and evaporation process. By increasing relative humidity and decreasing temperature, the dewdrop metasurface is gradually formed with increasing amounts of water. While the reverse operation can make it completely disappear. This idea is demonstrated through two examples with different functions of dynamically controllable microwave absorption and scattering. The work shows a principle to construct functional electromagnetic devices with dewdrops, as well as a mechanism of dynamic control based on condensation and evaporation, promising unprecedented applications.

6.
Nanomicro Lett ; 16(1): 245, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995472

RESUMO

Broadband electromagnetic (EM) wave absorption materials play an important role in military stealth and health protection. Herein, metal-organic frameworks (MOFs)-derived magnetic-carbon CoNiM@C (M = Cu, Zn, Fe, Mn) microspheres are fabricated, which exhibit flower-like nano-microstructure with tunable EM response capacity. Based on the MOFs-derived CoNi@C microsphere, the adjacent third element is introduced into magnetic CoNi alloy to enhance EM wave absorption performance. In term of broadband absorption, the order of efficient absorption bandwidth (EAB) value is Mn > Fe = Zn > Cu in the CoNiM@C microspheres. Therefore, MOFs-derived flower-like CoNiMn@C microspheres hold outstanding broadband absorption and the EAB can reach up to 5.8 GHz (covering 12.2-18 GHz at 2.0 mm thickness). Besides, off-axis electron holography and computational simulations are applied to elucidate the inherent dielectric dissipation and magnetic loss. Rich heterointerfaces in CoNiMn@C promote the aggregation of the negative/positive charges at the contacting region, forming interfacial polarization. The graphitized carbon layer catalyzed by the magnetic CoNiMn core offered the electron mobility path, boosting the conductive loss. Equally importantly, magnetic coupling is observed in the CoNiMn@C to strengthen the magnetic responding behaviors. This study provides a new guide to build broadband EM absorption by regulating the ternary magnetic alloy.

7.
Materials (Basel) ; 17(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38730908

RESUMO

All-silicon terahertz absorbers have attracted considerable interest. We present a design and numerical study of an all-silicon polarization-insensitive terahertz metamaterial absorber. The meta-atoms of the metamaterial absorber are square silicon rings which can be viewed as gratings. By properly optimizing the structure of the meta-atom, we achieve a broadband absorptivity that is above 90% ranging from 0.77 THz to 2.53 THz, with a relative bandwidth of 106.7%. Impedance matching reduces the reflection of the terahertz waves and the (0, ±1)-order diffraction induce the strong absorption. The absorption of this absorber is insensitive to the polarization of the terahertz wave and has a large incident angle tolerance of up to 60 degrees. The all-silicon metamaterial absorber proposed here provides an effective way to obtain broadband absorption in the terahertz regime. Metamaterial absorbers have outstanding applications in terahertz communication and imaging.

8.
Nanotechnology ; 35(30)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38648779

RESUMO

Fifty percents absorption by thin film, with thickness is much smaller than the skin depth and optical thickness much smaller than the wavelength, is a well-known concept of classical electrodynamics. This is a valuable feature that has been numerously widely explored for metal films, while chemically inert nanomembranes are a real fabrication challenge. Here we report the 20 nm thin pyrolyzed carbon film (PyC) placed on 300 nm thick silicon nitride (Si3N4) membrane demonstrating an efficient broadband absorption in the terahertz and near infrared ranges. While the bare Si3N4membrane is completely transparent in the THz range, the 20 nm thick PyC layer increases the absorption of the PyC coated Si3N4membrane to 40%. The reflection and transmission spectra in the near infrared region reveal that the PyC film absorption persists to a level of at least 10% of the incident power. Such a broadband absorption of the PyC film opens new pathways toward broadband bolometric radiation detectors.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38593330

RESUMO

With the continuous development of electromagnetic wave-absorbing materials, the design of artificial structures for electromagnetic absorbers based on the concept of metamaterials is becoming more abundant. However, in the design process, it is difficult to further broaden the effective absorption band due to the limitation that the traditional single-size structure responds to electromagnetic waves only in specific frequency bands. Therefore, in this paper, based on the moth-eye bionic hexagonal structure absorber with antireflection performance, an Archimedean tiling structure is designed to optimize it, and through the introduction of a variety of primitives with large differences in dimensions, a multifrequency band-response mechanism is achieved to enhance the multireflection mechanism, which can effectively broaden the absorption band and improve the wave absorption performance. Ultimately, the moth-eye bionic structure absorber optimized by (3.4.6.4) can achieve an effective absorption of 10.26 GHz at a thickness of 2 mm. This work presents a new idea for the design work of electromagnetic wave-absorbing metamaterials, which has a broad application prospect in the aerospace, electronic information countermeasures, communication, and detection industries.

10.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38607115

RESUMO

Efficient solar thermal conversion is crucial for renewable clean energy technologies such as solar thermal power generation, solar thermophotovoltaic and seawater desalination. To maximize solar energy conversion efficiency, a solar selective absorber with tailored absorption properties designed for solar applications is indispensable. In this study, we propose a broadband selective absorber based on amorphous carbon (a-C) metamaterials that achieves high absorption in the ultraviolet (UV), visible (Vis) and near-infrared (NIR) spectral ranges. Additionally, through metal doping, the optical properties of carbon matrix materials can be modulated. We introduce Ti@a-C thin film into the nanostructure to enhance light absorption across most of the solar spectrum, particularly in the NIR wavelength band, which is essential for improving energy utilization. The impressive solar absorptivity and photothermal conversion efficiency reach 97.8% and 95.6%, respectively. Notably, these superior performances are well-maintained even at large incident angles with different polarized states. These findings open new avenues for the application of a-C matrix materials, especially in fields related to solar energy harvesting.

11.
Materials (Basel) ; 17(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38473629

RESUMO

The field of P-band (0.3-1 GHz) absorption has witnessed rapid development in metamaterial absorbers due to their exceptional designability and the absence of restrictions imposed by the one-fourth wavelength rule. In this study, we combined carbonyl iron powder (CIP) composites with a periodic structure composed of metal capacitive patterns and employed a genetic algorithm (GA) to optimize the electromagnetic parameters of the CIP substrate. By selecting the appropriate shape and material for the units of pattern based on transmission line theory, as well as regulating relevant structural parameters, we successfully designed an ultra-thin broadband metamaterial absorber for the P-band. Experimental results demonstrate that within the range of 0.3-0.85 GHz, the reflection loss of our absorber remains below -5 dB, with a maximum value of -9.54 dB occurring at 0.45 GHz. Remarkably, this absorber possesses a thickness equivalent to only 1/293 of its working wavelength. Then, we conducted analyses on electric field distribution, magnetic field distribution, and energy loss density. Our findings suggest that high-performance absorption in metamaterials can be attributed to λ/4 resonant or coupling effects between structural units or diffraction phenomena. This absorber offers several advantages, including broad low-frequency absorption capability, ultra-thin profile, and convenient fabrication process, thus providing valuable theoretical insights for designing metamaterial structures.

12.
Nano Lett ; 24(8): 2652-2660, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38364102

RESUMO

Ideal radar absorbing materials (RAMs) require instantaneous, programmable, and spontaneous adaptability to cope with a complex electromagnetic (EM) environment across the full working frequency. Despite various material systems and adaptive mechanisms having been demonstrated, it remains a formidable challenge to integrate these benefits simultaneously. Here, we present a pneumatic matrix that couples morphable MXene/elastomer conductors with dielectric spacers, which leverages controllable airflow to reconfigure the spatial structure between a flat sheet and a hemispherical crown while maintaining resistance stability via wrinkle folding and unfolding. The interdimensional reconfigurations drastically induce multiple resonance behavior, enabling the matrix remarkable frequency tunability (144.5%), ultrawide bandwidth (15 GHz), weak angular dependence (45° incidence), ultrafast responsiveness (∼30 ms), and excellent reproducibility (1000 cycles). With multichannel fluidic and conceptual automated control systems, the final pneumatic device demonstrates a multiplexed, programmable, and autonomous transformable mode that builds a promising platform for smart radar cloaking.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38018144

RESUMO

Silver thin film mirrors are attractive candidates for use as specular back reflectors to enhance broadband light absorption via strong optical interference in ultrathin film semiconductor photoabsorbers. However, deposition of metal-oxide absorbers often requires exposure to high temperature in an oxygen atmosphere, conditions that cause thermal etching and degrade the specular reflectance of silver films. Here, we overcome this challenge and demonstrate that epitaxial growth of silver mitigates thermal etching under the high-temperature oxygen-containing environments that cause polycrystalline films to degrade. The degree of thermal etching resistance is related to the epitaxial film structure, where high-quality films completely prevent thermal etching, allowing for direct deposition of metal-oxide thin film photoabsorbers at elevated temperatures without any degradation of the optical properties of the silver layer. As a proof of concept for device applications, a metal-oxide photoanode for photoelectrochemical water splitting is fabricated by directly growing epitaxial SnO2 and Ti-doped α-Fe2O3 (hematite) thin films onto stabilized silver reflectors by pulsed laser deposition. The photoanode displays enhanced broadband light absorption due to strong interference effects enabled by the highly reflective silver film and demonstrates stable operation in a photoelectrochemical cell under conditions of water photo-oxidation in alkaline electrolyte.

14.
Materials (Basel) ; 16(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37445033

RESUMO

A bifunctional terahertz meta-material absorber with three layers is designed. The surface of the bifunctional meta-material absorber is a periodically patterned array composed of hybrid structures of vanadium dioxide (VO2) and metallic resonators; the middle layer is a nondestructive TOPAS film, and the bottom layer is a continuous metallic plane. Utilizing the phase-transition property of VO2, the responses of the meta-material absorber could be dynamically switched between triple-band absorption and ultra-broadband absorption. When VO2 is in the metallic state, an ultra-broadband absorption covering the bandwidth of 6.62 THz is achieved over the range from 4.71 THz to 11.33 THz. When VO2 is in the di-electric state, three absorption peaks resonated at 10.57 THz, 12.68 THz, and 13.91 THz. The physical mechanisms of the bifunctional meta-material absorber were explored by analyzing their near-field distributions. The effects of varying structural parameters on triple-band and ultra-broadband absorption were investigated. It is revealed that by optimizing the structure parameters, the number of absorption peaks could be increased for a certain sacrifice of absorption bandwidth. FDTD Solutions and CST Microwave Studio were used to simulate the data of the absorber, and similar results were obtained.

15.
Discov Nano ; 18(1): 41, 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-37382713

RESUMO

Optical anisotropy of α-MoO3 in its reststrahlen (RS) bands provides exciting opportunities for constructing the polarization-dependent devices. However, achieving broadband anisotropic absorptions through the same α-MoO3 arrays is still challenging. In this study, we demonstrate that selective broadband absorption can be achieved by using the same α-MoO3 square pyramid arrays (SPAs). For both the x and y polarizations, the absorption responses of the α-MoO3 SPAs calculated by using the effective medium theory (EMT) agreed well with those of the FDTD, indicating the excellent selective broadband absorption of the α-MoO3 SPAs are associated with the resonant hyperbolic phonon polaritons (HPhPs) modes assisted by the anisotropic gradient antireflection (AR) effect of the structure. The near-field distribution of the absorption wavelengths of the α-MoO3 SPAs shows that the magnetic-field enhancement of the lager absorption wavelength tends to shift to the bottom of the α-MoO3 SPAs due to the lateral Fabry-Pérot (F-P) resonance, and the electric-field distribution exhibits the ray-like light propagation trails due to the resonance nature of the HPhPs modes. In addition, broadband absorption of the α-MoO3 SPAs can be maintained if the width of the bottom edge of the α-MoO3 pyramid is large than 0.8 µm, and excellent anisotropic absorption performances are almost immune to the variations of the thickness of the spacer and the height of the α-MoO3 pyramid.

16.
J Colloid Interface Sci ; 645: 841-849, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37178561

RESUMO

Low complex permittivity and easy magnetic agglomeration prevent ferrites from achieving high-efficiency electromagnetic wave (EMW) absorption owing to the resultant narrow absorption bandwidth. Existing composition- and morphology-controlled strategies have made limited progress in fundamentally improving the intrinsic complex permittivity and absorption performance of pure ferrite. In this study, Cu/CuFe2O4 composites were synthesized using a facile and low-energy sol-gel self-propagating combustion, and the metallic Cu content was adjusted by changing the ratio of the reductant (citric acid) to the oxidant (ferric nitrate). The symbiosis and coexistence of metallic Cu with ferritic CuFe2O4 increases the intrinsic complex permittivity of CuFe2O4, which can be regulated by changing the metallic Cu content. Moreover, the unique ant-nest-like microstructure overcomes the issue of magnetic agglomeration. Because of the favorable impedance matching and strong dielectric loss (interfacial polarization and conduction loss) provided by the moderate metallic Cu content, S0.5 concurrently displays broadband absorption with an effective absorption bandwidth (EAB) of 6.32 GHz at an ultrathin thickness of 1.7 mm and strong absorption relying on minimum reflection loss (RLmin) of -48.81 dB at 4.08 GHz and 4.0 mm. This study provides a new perspective for improving the EMW absorption performance of ferrites.

17.
Discov Nano ; 18(1): 35, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36884144

RESUMO

Broadband high absorption of long-wavelength infrared light for rough submicron active material films is quite challenging to achieve. Unlike conventional infrared detection units, with over three-layer complex structures, a three-layer metamaterial with mercury cadmium telluride (MCT) film sandwiched between an Au cuboid array and Au mirror is studied through theory and simulations. The results show that propagated/localized surface plasmon resonance simultaneously contribute to broadband absorption under the TM wave of the absorber, while the Fabry-Perot (FP) cavity resonance causes absorption of the TE wave. As surface plasmon resonance concentrates most of the TM wave on the MCT film, 74% of the incident light energy is absorbed by the submicron thickness MCT film within the 8-12 µm waveband, which is approximately 10 times than that of the rough same thickness MCT film. In addition, by replacing the Au mirror with Au grating, the FP cavity along the y-axis direction was destroyed, and the absorber exhibited excellent polarization-sensitive and incident angle-insensitive properties. For the corresponding conceived metamaterial photodetector, as carrier transit time across the gap between Au cuboid is much less than that of other paths, the Au cuboids simultaneously act as microelectrodes to collect photocarriers generated in the gap. Thus the light absorption and photocarrier collection efficiency are hopefully improved simultaneously. Finally, the density of the Au cuboids is increased by adding the same arranged cuboids perpendicular to the original direction on the top surface or by replacing the cuboids with crisscross, which results in broadband polarization-insensitive high absorption by the absorber.

18.
J Colloid Interface Sci ; 641: 449-458, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36948100

RESUMO

Biomass derived carbon has attracted extensive attention in the field of microwave absorption because of its sustainability and porous structure beneficial to microwave attenuation. In this study, 3D lamellar skeletal network porous carbon was successfully obtained from hull of water chestnut using biomass waste as raw material by controlling the ratio of KOH and precursors in a one-step carbonization process. The optimization of biomass carbon morphology was achieved and its microwave absorption properties were investigated. At the temperature of 600 °C, when the ratio of hull of water chestnut to KOH is 1:1, the porous carbon material with filling ratio of 35% can reach the effective absorption bandwidth (RL < -10 dB) of 6.0 GHz (12-18 GHz) at the matching thickness of 1.90 mm, covering the whole Ku band. When the thickness is 2.97 mm, the optimal reflection loss reaches -60.76 dB. The surface defects, interface polarization and dipole polarization of 3D porous skeleton network structure derived from hull of water chestnut contribute to the excellent reflection loss and bandwidth of porous carbon materials. The porous carbon with low density, low cost and simple preparation method has broad application prospects in the preparation of biomass-derived microwave absorbers.

19.
J Low Temp Phys ; 209(5-6): 1249-1257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467123

RESUMO

Typical materials for optical Microwave Kinetic Inductance Detetectors (MKIDs) are metals with a natural absorption of ∼ 30-50% in the visible and near-infrared. To reach high absorption efficiencies (90-100%) the KID must be embedded in an optical stack. We show an optical stack design for a 60 nm TiN film. The optical stack is modeled as sections of transmission lines, where the parameters for each section are related to the optical properties of each layer. We derive the complex permittivity of the TiN film from a spectral ellipsometry measurement. The designed optical stack is optimised for broadband absorption and consists of, from top (illumination side) to bottom: 85 nm SiO2, 60 nm TiN, 23 nm of SiO2, and a 100 nm thick Al mirror. We show the modeled absorption and reflection of this stack, which has >80% absorption from 400 to 1550 nm and near-unity absorption for 500-800 nm. We measure transmission and reflection of this stack with a commercial spectrophotometer. The results are in good agreement with the model.

20.
Nanomaterials (Basel) ; 12(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36234605

RESUMO

We designed an infrared ultra-broadband metal-insulator-metal (MIM)-based absorber which is composed of a top layer with four different chromium (Cr) nano-rings, an intermediate media of aluminum trioxide (Al2O3), and a bottom layer of tungsten (W). By using the finite-difference time-domain (FDTD), the absorption performance of the absorber was studied theoretically. The results indicate that the average absorption of the absorber can reach 94.84% in the wavelength range of 800-3000 nm. The analysis of the electric and magnetic field indicates that the ultra-broadband absorption rate results from the effect of local surface plasmon resonance (LSPR). After that, the effect of structural parameters, metal and dielectric materials on the absorptivity of the absorber was also discussed. Finally, the effect of incidence angle on absorption was investigated. It was found that it is not sensitive to incidence angle; even when incidence angle is 30°, average absorptivity can reach 90%. The absorber is easy to manufacture and simple in structure, and can be applied in infrared detection and optical imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA