Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
Water Res ; 261: 121917, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39013231

RESUMO

Ozonation is used worldwide for drinking water disinfection and increasingly also for micropollutant abatement from wastewater. Identification of transformation products formed during the ozonation of micropollutants is challenging due to several factors including (i) the reactions of both oxidants, ozone and hydroxyl radicals with the micropollutants, as well as with intermediate transformation products, (ii) effects of the water matrix on the ozone and hydroxyl radical chemistry and (iii) the generation of oxidation by-products. In this study, a simple approach to achieve realistic ozonation conditions in the absence of dissolved organic matter has been developed. It is based on composing synthetic water matrices with low-molecular-weight scavenger compounds (phenol, methanol, acetate, and carbonate) that mimic the chemical interactions of ozone and hydroxyl radicals with real water matrices. Synthetic waters composed of only four low-molecular-weight compounds successfully replicated two lake waters and two secondary wastewater effluents, matching instantaneous ozone demand, ozone and hydroxyl radical exposures in the initial phase, as well as the ozone evolution in the second phase of the ozonation process. The synthetic water matrices also reproduced the effects of temperature and pH changes observed in real waters. The abatement of two micropollutants, bezafibrate and atrazine, and the formation of the corresponding transformation products during ozonation were in agreement for synthetic and real waters. Furthermore, the kinetics and extent of bromate formation during ozonation in synthetic water were comparable to real lake water and wastewater. This supports the robustness of the proposed approach because bromate formation is very sensitive to the interplay of ozone and hydroxyl radicals. Furthermore, with the novel reaction system, a significant effect of hydroxyl radicals scavenging by carbonate on bromate formation was demonstrated. Overall, the herein-developed approach based on synthetic water matrices allows to perform realistic ozonation studies including both oxidants, ozone and hydroxyl radicals, without the constraints of using dissolved organic matter.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Ozônio/química , Purificação da Água/métodos , Poluentes Químicos da Água/química , Radical Hidroxila/química , Águas Residuárias/química , Sequestradores de Radicais Livres/química , Peso Molecular
2.
Environ Sci Technol ; 58(26): 11649-11660, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38872439

RESUMO

Brominated byproducts and toxicity generation are critical issues for ozone application to wastewater containing bromide. This study demonstrated that ultraviolet/ozone (UV/O3, 100 mJ/cm2, 1 mg-O3/mg-DOC) reduced the cytotoxicity of wastewater from 14.2 mg of pentol/L produced by ozonation to 4.3 mg of pentol/L (1 mg/L bromide, pH 7.0). The genotoxicity was also reduced from 1.65 to 0.17 µg-4-NQO/L by UV/O3. Compared with that of O3 alone, adsorbable organic bromine was reduced from 25.8 to 5.3 µg/L by UV/O3, but bromate increased from 32.9 to 71.4 µg/L. The UV/O3 process enhanced the removal of pre-existing precursors (highly unsaturated and phenolic compounds and poly aromatic hydrocarbons), while new precursors were generated, yet the combined effect of UV/O3 on precursors did not result in a significant change in toxicity. Instead, UV radiation inhibited HOBr concentration through both rapid O3 decomposition to reduce HOBr production and decomposition of the formed HOBr, thus suppressing the AOBr formation. However, the hydroxyl radical-dominated pathway in UV/O3 led to a significant increase of bromate. Considering both organic bromine and bromate, the UV/O3 process effectively controlled both cytotoxicity and genotoxicity of wastewater to mammalian cells, even though an emphasis should be also placed on managing elevated bromate. Futhermore, other end points are needed to evaluate the toxicity outcomes of the UV/O3 process.


Assuntos
Bromo , Águas Residuárias , Bromo/química , Bromo/toxicidade , Bromatos/química , Processos Fotoquímicos , Raios Ultravioleta , Ozônio/química , Purificação da Água/métodos , Águas Residuárias/toxicidade , Mamíferos , Animais , Células CHO , Cricetulus
3.
Environ Res ; 258: 119419, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879107

RESUMO

Nano-zerovalent iron (nZVI) is a promising material for the removal of both organic and inorganic pollutants from contaminated water. This study investigates the potential of a novel composite of nZVI on a polymer-derived supporting ceramic (nZVI-PDC) synthesized via the liquid-phase reduction method for the simultaneous adsorption and Fenton-type reduction of bromate anion (BrO3-) in water. The nZVI nanoparticles were effectively anchored onto the PDC by impregnating high-yield carbon in a ferrous sulfate solution. The PDC facilitated the uniform dispersion of nZVI nanoparticles due to its multiple active sites distributed within mesocarbon cavities. The developed nZVI-PDC composite exhibited a high specific surface area of 837 m2 g-1 and an ordered mesoporous structure with a pore volume of 0.37 cm3 g-1. As an adsorbent, the nZVI-PDC composite exhibited a maximum adsorption capacity (qe) of 842 mg g-1 and a partition coefficient (KH) of 10.2 mg g-1 µM-1, as calculated by the pseudo-second-order model. As a catalyst, the composite demonstrated a reaction kinetic rate of 43.5 µmol g-1 h-1 within 6 h at pH 4, using a dosage of 60 mg L-1 nZVI-PDC and a concentration of 0.8 mmol L-1 H2O2. Comparatively, PDC exhibited a qe of 408 mg g-1, KH of 1.67 mg g-1 µM-1, and a reaction rate of 20.8 µmol g-1 h-1, while nZVI showed a qe of 456 mg g-1, KH of 2.30 mg g-1 µM-1, and a reaction rate of 27.2 µmol g-1 h-1. The modelling indicated that the nZVI-PDC composite followed pseudo-second-order kinetics. The remarkable removal efficiency of the nZVI-PDC composite was attributed to the synergistic effects between PDC and nZVI, where PDC facilitated charge transfer, promoting Fe2+ generation and the Fe3+/Fe2+ cycle. Overall, this work introduces a promising adsorption technology for the efficient removal of BrO3- from contaminated aqueous solutions, highlighting the significant potential of the nZVI-PDC composite in water purification applications.

4.
J Hazard Mater ; 471: 134257, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38636236

RESUMO

The widespread use of disinfectants during the global response to the 2019 coronavirus pandemic has increased the co-occurrence of disinfection byproducts (DBPs) and antibiotic resistance genes (ARGs). Although DBPs pose major threats to public health globally, there is limited knowledge regarding their biological effects on ARGs. This study aimed to investigate the effects of two inorganic DBPs (chlorite and bromate) on the conjugative transfer of RP4 plasmid among Escherichia coli strains at environmentally relevant concentrations. Interestingly, the frequency of conjugative transfer was initially inhibited when the exposure time to chlorite or bromate was less than 24 h. However, this inhibition transformed into promotion when the exposure time was extended to 36 h. Short exposures to chlorite or bromate were shown to impede the electron transport chain, resulting in an ATP shortage and subsequently inhibiting conjugative transfer. Consequently, this stimulates the overproduction of reactive oxygen species (ROS) and activation of the SOS response. Upon prolonged exposure, the resurgent energy supply promoted conjugative transfer. These findings offer novel and valuable insights into the effects of environmentally relevant concentrations of inorganic DBPs on the conjugative transfer of ARGs, thereby providing a theoretical basis for the management of DBPs.


Assuntos
Bromatos , Cloretos , Escherichia coli , Estresse Oxidativo , Plasmídeos , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Bromatos/toxicidade , Plasmídeos/genética , Cloretos/farmacologia , Desinfetantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Conjugação Genética/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Resposta SOS em Genética/efeitos dos fármacos
5.
Environ Res ; 252(Pt 3): 118870, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579994

RESUMO

In persulfate-based advanced oxidation processes (PS-AOPs), sulfate radicals (SO4•-) have been recognized to play more important roles in inducing bromate (BrO3-) formation rather than hydroxyl radicals (HO•) because of the stronger oxidation capacity of the former. However, this study reported an opposite result that HO• indeed dominated the formation of bromate instead of SO4•-. Quenching experiments were coupled with electron paramagnetic resonance (EPR) detection and chemical probe identification to elucidate the contributions of each radical species. The comparison of different thermal activated persulfates (PDS and PMS) demonstrated that the significant higher bromate formation in HEAT/PMS ([BrO3-]/[Br-]0 = 0.8), as compared to HEAT/PDS ([BrO3-]/[Br-]0 = 0.2), was attributable to the higher concentration of HO• radicals in HEAT/PMS. Similarly, the bromate formation in UV/PDS ([BrO3-]/[Br-]0 = 1.0), with a high concentration of HO•, further underscored the dominant role of HO•. As a result, we quantified that HO• and SO4•- radicals accounted 66.7% and 33.3% for bromate formation. This controversial result can be reconciled by considering the critical intermediate, hypobromic acid/hypobromate (HOBr/BrO-), involved in the transformation of Br- to BrO3-. HO• radicals have the chemical preference to induce the formation of HOBr/BrO- intermediates (contributing âˆ¼ 60%) relative to SO4•- radicals (contributing âˆ¼ 40%). This study highlighted the dominant role of HO• in the formation of bromate rather than SO4•- in PS-AOPs and potentially offered novel insights for reducing disinfection byproduct formation by controlling the radical species in AOPs.


Assuntos
Bromatos , Radical Hidroxila , Oxirredução , Sulfatos , Bromatos/química , Radical Hidroxila/química , Sulfatos/química , Espectroscopia de Ressonância de Spin Eletrônica
6.
ACS Appl Mater Interfaces ; 16(17): 21838-21848, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634144

RESUMO

Iron-based materials are effective for the reductive removal of the disinfection byproduct bromate in water, while the construction of highly stable and active Fe-based materials with wide pH adaptability remains greatly challenging. In this study, highly dispersed iron phosphide-decorated porous carbon (Fe2P(x)@P(z)NC-y) was prepared via the thermal hydrolysis of Fe@ZIF-8, followed by phosphorus doping (P-doping) and pyrolysis. The reduction performances of Fe2P(x)@P(z)NC-y for bromate reduction were evaluated. Characterization results showed that the Fe, P, and N elements were homogeneously distributed in the carbonaceous matrix. P-doping regulated the coordination environment of Fe atoms and enhanced the conductivity, porosity, and wettability of the carbonaceous matrix. As a result, Fe2P(x)@P(1.0)NC-950 exhibited enhanced reactivity and stability with an intrinsic reduction kinetic constant (kint) 1.53-1.85 times higher than Fe(x)@NC-950 without P-doping. Furthermore, Fe2P(0.125)@P(1.0)NC-950 displayed superior reduction efficiency and prominent stability with very low Fe leaching (4.53-22.98 µg L-1) in a wide pH range of 4.0-10.0. The used Fe2P(0.125)@P(1.0)NC-950 could be regenerated by phosphating, and the regenerated Fe2P(0.125)@P(1.0)NC-950 maintained 85% of its primary reduction activity after five reuse cycles. The study clearly demonstrates that Fe2P-decorated porous carbon can be applied as a robust and stable Fe-based material in aqueous bromate reduction.

7.
Food Chem ; 451: 139416, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663249

RESUMO

A reliable solid-liquid extraction protocol coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry in the negative-ion mode was developed and validated for illegal bromate determination in preliminary and bakery products. Crude and dried-treated samples were directly extracted with acetonitrile-water (4:1, v/v). Bromate was determined using a Phenomenex Synergi™ Polar reversed-phase column and MS/MS under multiple reaction monitoring. The chosen solvent efficiently extracted bromate with all applied extraction-assisting techniques (p > 0.05). Although this assay avoids cleanup procedures, matrix effect of <-11% was achieved. Rapid bromate separation in only 8 min was attained by a reversed-phase column. In both commodities, linearity range, R2, recovery%, repeatability, intermediate precision, LOD and LOQ results were 0.05-100 ng mL-1, >0.9999, 88.6-103%, 2.93-9.80% and 9.64-10.10%, 0.015 µg kg-1 and 0.05 µg kg-1, respectively. Out of 288 tested real samples, 13.9% of violations were observed. This high-sensitivity protocol offers effective oversight and consumer protection.


Assuntos
Bromatos , Contaminação de Alimentos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Contaminação de Alimentos/análise , Bromatos/análise , Bromatos/química , Aditivos Alimentares/análise , Aditivos Alimentares/isolamento & purificação , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão , Pão/análise , Limite de Detecção
8.
Water Res ; 254: 121402, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461600

RESUMO

Bromate, a carcinogenic contaminant generated in water disinfection, presents a pressing environmental concern. While biological bromate reduction is an effective remediation approach, its implementation often necessitates the addition of organics, incurring high operational costs. This study demonstrated the efficient biological bromate reduction using H2/CO2 mixture as the feedstock. A membrane biofilm reactor (MBfR) was used for the efficient delivery of gases. Long-term reactor operation showed a high-level bromate removal efficiency of above 95 %, yielding harmless bromide as the final product. Corresponding to the short hydraulic retention time of 0.25 d, a high bromate removal rate of 4 mg Br/L/d was achieved. During the long-term operation, in situ production of volatile fatty acids (VFAs) by gas fermentation was observed, which can be regulated by controlling the gas flow. Three sets of in situ batch tests and two groups of ex situ batch tests jointly unravelled the mechanisms underpinning the efficient bromate removal, showing that the microbial bromate reduction was primarily driven by the VFAs produced from in situ gas fermentation. Microbial community analysis showed an increased abundance of Bacteroidota group from 4.0 % to 18.5 %, which is capable of performing syngas fermentation, and the presence of heterotrophic denitrifiers (e.g., Thauera and Brachymonas), which are known to perform bromate reduction. Together these results for the first time demonstrated the feasibility of using H2/CO2 mixture for bromate removal coupled with in situ VFAs production. The findings can facilitate the development of cost-effective strategies for groundwater and drinking water remediation.


Assuntos
Reatores Biológicos , Dióxido de Carbono , Fermentação , Bromatos , Ácidos Graxos Voláteis , Biofilmes
9.
Water Res ; 253: 121227, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377921

RESUMO

The mechanisms and by-product formation of electrochemical oxidation (EO) for As(III) oxidation in drinking water treatment using groundwater was investigated. Experiments were carried out using a flowthrough system, with an RuO2/IrO2 MMO Ti anode electrode, fed with synthetic and natural groundwater containing As(III) concentrations in a range of around 75 and 2 µg/L, respectively. Oxidation was dependent on charge dosage (CD) [C/L] and current density [A/m2], with the latter showing plateau behaviour for increasing intensity. As(III) concentrations of <0.3 µg/L were obtained, indicating oxidation of 99.9 % of influent As(III). Achieving this required a higher charge dosage for the natural groundwater (>40 C/L) compared to the oxidation in the synthetic water matrix (20 C/L), indicating reaction with natural organic matter or other compounds. As(III) oxidation in groundwater required an energy consumption of 0.09 and 0.21 kWh/m3, for current densities of 20 and 60 A/m2, respectively. At EO settings relevant for As(III) oxidation, in the 30-100 C/L CD range, the formation of anodic by-products, as trihalomethanes (THMs) (0.11-0.75 µg/L) and bromate (<0.2 µg/L) was investigated. Interestingly, concentrations of the formed by-products did not exceed strictest regulatory standards of 1 µg/L, applicable to Dutch tap water. This study showed the promising perspective of EO as electrochemical advanced oxidation process (eAOP) in drinking water treatment as alternative for the conventional use of strong oxidizing chemicals.


Assuntos
Arsenitos , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/química , Oxirredução , Água Subterrânea/química
10.
Environ Sci Pollut Res Int ; 31(8): 11727-11734, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224435

RESUMO

Bromate is receiving increased attention as a typical disinfection by-product in aquatic environments, but bromate toxicity tests on invertebrate such as Brachionus calyciflorus rotifer are inadequate. In the present study, the long-term toxicity tests on B. calyciflorus were performed during 21 days under the exposure of different bromate concentrations and two algal density conditions. Furthermore, we evaluated the feeding behaviors of the rotifers under the impact of bromate. The maximum population density of rotifers was significantly reduced at 100 and 200 mg/L bromate exposure at the two algal density conditions. However, we observed that the maximum population density and population growth rate of rotifers were higher at 3.0 × 106 cells/mL algal density than those at 1.0 × 106 cells/mL under the same conditions of bromate exposure. These results suggest that higher food density may have alleviated the negative effects of bromate on rotifers. Meanwhile, the ingestion rate at an algal density of 3.0 × 106 cells/mL was higher than that at 1.0 × 106 cells/mL. The present study provides a basic reference to comprehensively evaluate the toxic effects of bromate on aquatic organisms.


Assuntos
Rotíferos , Poluentes Químicos da Água , Animais , Bromatos/toxicidade , Alimentos , Ingestão de Alimentos , Crescimento Demográfico , Poluentes Químicos da Água/toxicidade
11.
Ultrastruct Pathol ; 48(2): 81-93, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38017656

RESUMO

Potassium bromate is used in cheese production, beer making and is also used in pharmaceutical and cosmetic. It is a proven carcinogen as it is a strong oxidizing agent that generates free radicals during xenobiotic metabolism. Urtica dioica (Ud) (from the plants' family of Urticaceae) is a plant that has long been used as a medicinal plant in many parts of the world. It has been shown to have anti-inflammatory, antioxidant and immunosuppressive properties. So, this study aimed to clarify the effect of Potassium bromate on the histological structure of cerebral cortex of adult male albino rats, evaluate the possible protective role of Urtica dioica. Thirty adult healthy male albino rats were divided into three groups; group I (Control group), group II (KBrO3 treated group). Group III (KBrO3 and Urtica dioica treated group).At the end of the experiment, rats in all groups were anesthetized and specimens were processed for light and electron microscope. Morphometric and statistical analyses were also performed. Nerve cells of the treated group showed irregular contours, dark nuclei, irregular nuclear envelopes, dilated RER cisternae, and mitochondria with ruptured cristae. Vacuolated neuropil was also observed. Immunohistochemically, stained sections for GFAP showed strong positive reaction in the processes of astrocytes. Recovery group showed revealed nearly the same as the histological picture as the control group. In conclusion, potassium bromate induces degenerative effects on neurons of cerebral cortex and urtica dioica provide an important neuroprotective effects against these damaging impacts through their antioxidant properties.


Assuntos
Antioxidantes , Bromatos , Urtica dioica , Ratos , Animais , Antioxidantes/farmacologia , Urtica dioica/química , Extratos Vegetais/farmacologia , Córtex Cerebral
12.
Environ Pollut ; 339: 122726, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37844860

RESUMO

Bromate (BrO3-) is a disinfection byproduct formed during the chemical oxidation of water containing bromide. Due to the carcinogenic effect of bromate, its maximum permissible concentration in drinking water has been set to 10 µg/L by the World Health Organization. In this study, the removal of BrO3- ions from aqueous solutions via electrodeionization (EDI) was investigated. The removal rate of BrO3- varied with the applied potential, and at 10 V, a removal rate of 99% was achieved. However, further increasing the applied potential to 30 V had a negative effect on the removal rate. Additionally, a low bromate concentration in the product water was achieved by reducing Na2SO4 conductivity in the electrode compartment. The removal of BrO3- is pH dependent, and at pH 1, only 17.5% was removed. However, increasing the pH of the solution to 5 increased the removal rate to 99.6%. Increasing the operating time and number of cells in the EDI stack improved the removal rate of BrO3-, and its concentration decreased from 5 mg/L to 1.4 µg/L. The calculated flux for BrO3- was 2.17 × 10-5 mol/m2s, specific power consumption was 89.98-W/hg KBrO3, and mass-transfer coefficient was 5.4 × 10-4 m/s at 10 V.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Bromatos , Poluentes Químicos da Água/análise , Brometos
13.
Cell Biochem Funct ; 41(7): 868-875, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37573567

RESUMO

In the present study, we investigated the effect of the p-Coumaric acid (PCA), a phenolic acid, on potassium bromate (KBrO3 ) induced oxidative damage, Ras/Raf/MEK signaling, and apoptosis in HepG2 cells. Our findings showed that PCA-treated cells prevented cytotoxicity compared with KBrO3- treated cells. Furthermore, KBrO3 -induced oxidative stress and lipid peroxidation was attenuated by PCA and it also increased the antioxidant levels such as SOD, CAT, and GPX. Additionally, PCA inhibited the KBrO3 -induced DNA damage in HepG2 cells. Moreover, PCA treatment suppressed the activation of Ras/Raf/MEK signaling and increased the expression of PRDX-1. In addition, PCA prevented the KBrO3 -induced apoptosis cascade by altering the expression of proapoptotic, Bax, caspase-3, and antiapoptotic, Bcl-2 proteins. The present study proves that PCA inhibited the KBrO3 -induced oxidative stress, DNA damage, and apoptotic signaling cascade in HepG2 cells.


Assuntos
Antioxidantes , Estresse Oxidativo , Humanos , Células Hep G2 , Antioxidantes/farmacologia , Apoptose , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia
14.
Environ Sci Technol ; 57(47): 18499-18508, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37467303

RESUMO

The use of ozone/biofiltration advanced treatment has become more prevalent in recent years, with many utilities seeking an alternative to membrane/RO based treatment for water reuse. Ensuring efficient pathogen reduction while controlling disinfection byproducts and maximizing oxidation of trace organic contaminants remains a major barrier to implementing ozone in reuse applications. Navigating these challenges is imperative in order to allow for the more widespread application of ozonation. Here, we demonstrate the effectiveness of ozone for virus, coliform bacteria, and spore forming bacteria inactivation in unfiltered secondary effluent, all the while controlling the disinfection byproduct bromate. A greater than 6-log reduction of both male specific and somatic coliphages was seen at specific ozone doses as low as 0.75 O3:TOC. This study compared monochloramine and hydrogen peroxide as chemical bromate control measures in high bromide water (Br- = 0.35 ± 0.07 mg/L). On average, monochloramine and hydrogen peroxide resulted in an 80% and 36% decrease of bromate formation, respectively. Neither bromate control method had any appreciable impact on virus or coliform bacteria disinfection by ozone; however, the use of hydrogen peroxide would require a non-Ct disinfection framework. Maintaining ozone residual was shown to be critical for achieving disinfection of more resilient microorganisms, such as spore forming bacteria. While extremely effective at controlling bromate, monochloramine was shown to inhibit TrOC oxidation, whereas hydrogen peroxide enhanced TrOC oxidation.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Masculino , Humanos , Desinfecção/métodos , Água , Purificação da Água/métodos , Bromatos/química , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/análise
15.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446744

RESUMO

Potassium bromate (PB) is a general food additive, a significant by-product during water disinfection, and a carcinogen (Class II B). The compound emits toxicity depending on the extent of its exposure and dose through consumable items. The current study targeted disclosing the ameliorative efficacy of zinc oxide nanoparticles (ZnO NPs) prepared by green technology in PB-exposed Swiss albino rats. The rats were separated into six treatment groups: control without any treatment (Group I), PB alone (Group II), ZnO alone (Group III), ZnO NP alone (Group IV), PB + ZnO (Group V), and PB + ZnO NPs (Group VI). The blood and kidney samples were retrieved from the animals after following the treatment plan and kept at -20 °C until further analysis. Contrary to the control (Group I), PB-treated rats (Group II) exhibited a prominent trend in alteration in the established kidney function markers and disturbed redox status. Further, the analysis of the tissue and nuclear DNA also reinforced the biochemical results of the same treatment group. Hitherto, Groups III and IV also showed moderate toxic insults. However, Group VI showed a significant improvement from the PB-induced toxic insults compared to Group II. Hence, the present study revealed the significant therapeutic potential of the NPs against PB-induced nephrotoxicity in vivo, pleading for their usage in medicines having nephrotoxicity as a side effect or in enhancing the safety of the industrial use of PB.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Nanopartículas , Óxido de Zinco , Ratos , Animais , Óxido de Zinco/química , Bromatos/toxicidade , Estresse Oxidativo , Nanopartículas/química , Oxirredução , Potássio/farmacologia
16.
Water Res ; 242: 120173, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37320878

RESUMO

High energy consumption and formation of harmful byproducts are two challenges faced by advanced oxidation processes (AOPs). While much research efforts have been devoted to improving the treatment efficiency, byproduct formation and control calls for more attention. In this study, the underlying mechanism of bromate formation inhibition during a novel plasmon-enhanced catalytic ozonation process with silver-doped spinel ferrite (0.5wt%Ag/MnFe2O4) as the catalysts was investigated. By scrutinizing the effects of each factor (i.e. irradiation, catalyst, ozone) as well as the combinations of different factors on major Br species involved in bromate formation, examining the distribution of Br species, and probing the reactive oxygen species partaking in the reactions, it was found that accelerated ozone decomposition which inhibited two main bromate formation pathways and surface reduction of Br species (e.g. HOBr/OBr- and BrO3-) contributed to the inhibition of bromate formation, both of which can be enhanced by the plasmonic effects of Ag and the good affinity between Ag and Br. A kinetic model was developed by simultaneously solving 95 reactions to predict the aqueous concentrations of Br species during different ozonation processes. The good agreement between the model prediction and experimental data further corroborated the hypothesized reaction mechanism.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Prata , Bromatos , Poluentes Químicos da Água/análise
17.
Environ Sci Technol ; 57(47): 18393-18409, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37363871

RESUMO

Ozone is a commonly applied disinfectant and oxidant in drinking water and has more recently been implemented for enhanced municipal wastewater treatment for potable reuse and ecosystem protection. One drawback is the potential formation of bromate, a possible human carcinogen with a strict drinking water standard of 10 µg/L. The formation of bromate from bromide during ozonation is complex and involves reactions with both ozone and secondary oxidants formed from ozone decomposition, i.e., hydroxyl radical. The underlying mechanism has been elucidated over the past several decades, and the extent of many parallel reactions occurring with either ozone or hydroxyl radicals depends strongly on the concentration, type of dissolved organic matter (DOM), and carbonate. On the basis of mechanistic considerations, several approaches minimizing bromate formation during ozonation can be applied. Removal of bromate after ozonation is less feasible. We recommend that bromate control strategies be prioritized in the following order: (1) control bromide discharge at the source and ensure optimal ozone mass-transfer design to minimize bromate formation, (2) minimize bromate formation during ozonation by chemical control strategies, such as ammonium with or without chlorine addition or hydrogen peroxide addition, which interfere with specific bromate formation steps and/or mask bromide, (3) implement a pretreatment strategy to reduce bromide and/or DOM prior to ozonation, and (4) assess the suitability of ozonation altogether or utilize a downstream treatment process that may already be in place, such as reverse osmosis, for post-ozone bromate abatement. A one-size-fits-all approach to bromate control does not exist, and treatment objectives, such as disinfection and micropollutant abatement, must also be considered.


Assuntos
Água Potável , Ozônio , Poluentes Químicos da Água , Purificação da Água , Humanos , Bromatos/química , Brometos , Ecossistema , Radical Hidroxila , Oxidantes , Poluentes Químicos da Água/análise
18.
Water Res ; 242: 120179, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37302178

RESUMO

Ozonation is a viable option to improve the removal of micropollutants (MPs) in wastewater treatment plants (WWTPs). Nevertheless, the application of ozonation is hindered by its high energy requirements and by the uncertainties regarding the formation of toxic transformation products in the process. Energy requirements of ozonation can be reduced with a pre-ozone treatment, such as a biological activated carbon (BAC) filter, that removes part of the effluent organic matter before ozonation. This study investigated a combination of BAC filtration followed by ozonation (the BO3 process) to remove MPs at low ozone doses and low energy input, and focused on the formation of toxic organic and inorganic products during ozonation. Effluent from a WWTP was collected, spiked with MPs (approximately 1 µg/L) and treated with the BO3 process. Different flowrates (0.25-4 L/h) and specific ozone doses (0.2-0.6 g O3/g TOC) were tested and MPs, ecotoxicity and bromate were analyzed. For ecotoxicity assessment, three in vivo (daphnia, algae and bacteria) and six in vitro CALUX assays (Era, GR, PAH, P53, PR, andNrf2 CALUX) were used. Results show that the combination of BAC filtration and ozonation has higher MP removal and higher ecotoxicity removal than only BAC filtration and only ozonation. The in vivo assays show a low ecotoxicity in the initial WWTP effluent samples and no clear trend with increasing ozone doses, while most of the in vitro assays show a decrease in ecotoxicity with increasing ozone dose. This suggests that for the tested bioassays, feed water and ozone doses, the overall ecotoxicity of the formed transformation products during ozonation was lower than the overall ecotoxicity of the parent compounds. In the experiments with bromide spiking, relevant formation of bromate was observed above specific ozone doses of approximately 0.4 O3/g TOC and more bromate was formed for the samples with BAC pre-treatment. This indirectly indicates the effectivity of the pre-treatment in removing organic matter and making ozone more available to react with other compounds (such as MPs, but also bromide), but also underlines the importance of controlling the ozone dose to be below the threshold to avoid formation of bromate. It was concluded that treatment of the tested WWTP effluent in the BO3 process at a specific ozone dose of 0.2 g O3/g TOC, results in high MP removal at limited energy input while no increase in ecotoxicity, nor formation of bromate was observed under this condition. This indicates that the hybrid BO3 process can be implemented to remove MPs and improve the ecological quality of this WWTP effluent with a lower energy demand than conventional MP removal processes such as standalone ozonation.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Carvão Vegetal , Bromatos , Brometos , Poluentes Químicos da Água/análise
19.
Environ Sci Technol ; 57(47): 18991-18999, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37243626

RESUMO

This study explores the formation of bromate (BrO3-) in the copresence of Fe(VI) and bromide (Br-). It challenges previous beliefs about the role of Fe(VI) as a green oxidant and highlights the crucial role of intermediates Fe(V) and Fe(IV) in the conversion of Br- to BrO3-. The results show that the maximum concentration of BrO3- of 48.3 µg/L was obtained at 16 mg/L Br- and that the contribution of Fe(V)/Fe(IV) to the conversion was positively related to pH. The study suggests that a single-electron transfer from Br- to Fe(V)/Fe(IV) along with the generation of reactive bromine radicals is the first step of Br- conversion, followed by the formation of OBr- which was then oxidized to BrO3- by Fe(VI) and Fe(V)/Fe(IV). Some common background water constituents (e.g., DOM, HCO3-, and Cl-) significantly inhibited BrO3- formation by consuming Fe(V)/Fe(IV) and/or scavenging the reactive bromine species. While investigations proposing to promote Fe(V)/Fe(IV) formation in Fe(VI)-based oxidation to enhance its oxidation capacity have been rapidly accumulated recently, this work called attention to the considerable formation of BrO3- in this process.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Brometos , Bromo , Bromatos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Oxirredução
20.
Water Res ; 240: 120100, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37247439

RESUMO

Solar photolysis of free chlorine (solar/chlorine) in bromide-containing water occurs under various scenarios, such as chlorinated reservoirs and outdoor swimming pools, and the formation of chlorate and bromate is an important issue in the system. We reported unexpected trends for the formation of chlorate and bromate in the solar/chlorine system. Excess chlorine inhibited the formation of bromate, i.e., increasing chlorine dosages from 50 to 100 µM reduced the bromate yield from 6.4 to 1.2 µM in solar/chlorine at 50 µM bromide and pH 7. The yield of bromate in solar/chlorine at 100 µM chlorine and 50 µM bromide in 240 min was 18.8% of that at 50 µM bromine only. The underlying mechanism was that HOCl can react with bromite (BrO2-) to form HOClOBrO-, whose multi-step transformation finally formed chlorate as the major product and bromate as the minor product. This reaction overwhelmed the oxidation of bromite to form bromate by reactive species, such as •OH, BrO• and ozone. On the other hand, the presence of bromide greatly enhanced the formation of chlorate. Increasing bromide concentrations from 0 to 50 µM enhanced the chlorate yields from 2.2 to 7.0 µM at 100 µM chlorine. The absorbance of bromine was higher than that of chlorine, thus the photolysis of bromine formed higher levels of bromite at higher bromide concentrations. Then, bromite rapidly reacted with HOCl to form HOClOBrO- and it further transformed to chlorate. Additionally, 1 mg L-1 NOM had a negligible effect on bromate yields in solar/chlorine at 50 µM bromide, 100 µM chlorine and pH 7. This study demonstrated a new pathway of chlorate and bromate formation in the solar/chlorine system with bromide.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Brometos , Cloro , Água , Cloratos , Bromo , Bromatos , Fotólise , Cloretos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA