Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.569
Filtrar
1.
J Environ Sci (China) ; 148: 399-408, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095175

RESUMO

A mixed oxidant of chlorine dioxide (ClO2) and NaClO was often used in water treatment. A novel UVA-LED (365 nm)-activated mixed ClO2/NaClO process was proposed for the degradation of micropollutants in this study. Carbamazepine (CBZ) was selected as the target pollutant. Compared with the UVA365/ClO2 process, the UVA365/ClO2/NaClO process can improve the degradation of CBZ, with the rate constant increasing from 2.11×10-4 sec-1 to 2.74×10-4 sec-1. In addition, the consumption of oxidants in the UVA365/ClO2/NaClO process (73.67%) can also be lower than that of UVA365/NaClO (86.42%). When the NaClO ratio increased, both the degradation efficiency of CBZ and the consumption of oxidants can increase in the UVA365/ClO2/NaClO process. The solution pH can affect the contribution of NaClO in the total oxidant ratio. When the pH range of 6.0-8.0, the combination process can generate more active species to promote the degradation of CBZ. The change of active species with oxidant molar ratio was investigated in the UVA365/ClO2/NaClO process. When ClO2 acted as the main oxidant, HO• and Cl• were the main active species, while when NaClO was the main oxidant, ClO• played a role in the system. Both chloride ion (Cl-), bicarbonate ion (HCO3-), and nitrate ion (NO3-) can promote the reaction system. As the concentration of NaClO in the reaction solution increased, the generation of chlorates will decrease. The UVA365/ClO2/NaClO process can effectively control the formation of volatile disinfection by-products (DBPs), and with the increase of ClO2 dosage, the formation of DBPs can also decrease.


Assuntos
Carbamazepina , Compostos Clorados , Óxidos , Raios Ultravioleta , Poluentes Químicos da Água , Purificação da Água , Carbamazepina/química , Poluentes Químicos da Água/química , Compostos Clorados/química , Purificação da Água/métodos , Óxidos/química , Cinética , Hipoclorito de Sódio/química , Modelos Químicos
2.
Food Chem X ; 23: 101625, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100251

RESUMO

Cherry kernels are a by-product of cherries that are usually discarded, leading to waste and pollution. In this study, the chemical composition of 21 batches of cherry kernels from two different cherry species was analyzed using untargeted metabolomics. The in vitro antioxidant activity, cellular antioxidant activity, and antiproliferative activity of these kernel extracts were also determined, and a correlation analysis was conducted between differential compounds and biological activity. A total of 49 differential compounds were screened. The kernels of Prunus tomentosa were found to have significantly higher total phenol, total flavonoid content, and biological activity than those of Prunus pseudocerasus (P < 0.05). Correlation analysis showed that flavonoids had the greatest contribution to biological activity. The study suggests that both species of cherry kernel, particularly Prunus tomentosa, could be a potential source of bioactive compounds that could be used in the pharmaceutical, cosmetic, and food industries.

3.
Sci Total Environ ; 950: 175317, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39111448

RESUMO

The latent potential of active ingredients derived from agro-industrial waste remains largely untapped and offers a wealth of unexplored resources. While these types of materials have applications in various fields, their ability to benefit human health needs to be further explored and investigated. This systematic review was conducted to systematically evaluate non-clinical studies that have investigated the biological effects of fractions, extracts and bioactive compounds from agro-industrial wastes and their potential therapeutic applications. Articles were selected via PubMed, Embase and Medline using the descriptors (by-products[title/abstract]) AND (agro-industrial[title/abstract]). The systematic review was registered in the International Prospective Register of Systematic Reviews (Prospero) under the number CRD42024491021. After a detailed analysis based on inclusion and exclusion criteria, a total of 38 articles were used for data extraction and discussion of the results. Information was found from in vitro and in vivo experiments investigating a variety of residues from the agro-industry. The studies investigated peels, pomace/bagasse, pulp, seeds, aerial parts, cereals/grains and other types of waste. The most studied activities include mainly antioxidant and anti-inflammatory effects, but other activities such as antimicrobial, cytotoxic, antiproliferative, antinociceptive, hypoglycemic, antihyperglycemic and anticoagulant effects have also been described. Finally, the studies included in this review demonstrate the potential of agro-industrial waste and can drive future research with a focus on clinical application.


Assuntos
Agricultura , Resíduos Industriais , Agricultura/métodos , Antioxidantes , Humanos , Animais
4.
Food Chem X ; 23: 101656, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39113738

RESUMO

Corn gluten meal-corn husk mixes (CCM) are an inexpensive and readily available agricultural by-product. This study explores a novel technique by converting CCM into high-value livestock feed protein sources through fermentation with Aspergillus niger AAX and Lactobacillus fermentum LLS, aiming to sustainably meet future global protein needs. The process of fermentation significantly altered the structural composition of high molecular weight proteins, zein, and dietary fibers. This transformation resulted in a marked elevation in the concentrations of peptides, free amino acids, and polyphenols. The acidic environment produced during fermentation prevented lipid oxidation in CCM, thereby extending its storability. After fermentation, the content of anti-nutritional factors decreased, while its antioxidant capacity increased. In vitro simulated digestion suggested that fermentation improved the digestibility of CCM protein. In vivo animal experiments showed that fermented CCM (FCCM) promoted growth and gut health in chicks. This study provides new insights into the utilization of CCM.

5.
Wei Sheng Yan Jiu ; 53(4): 553-560, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39155222

RESUMO

OBJECTIVE: To clarify the effect of iodoacetic acid(IAA) on the blood system and electrolyte balance, hence further study the intrinsic relation of blood routine parameters and electrolyte levels, major hematological toxicity effects and their pattern after IAA treatment. METHODS: Forty-eight 21-day-old male SPF grade Sprague-Dawley(SD) rats were gavaged with 0, 6.25, 12.5 and 25 mg/kg IAA for 31 days. After detections of blood routine and plasma inorganic ion levels, Spearman correlation coefficients were performed to evaluate their relationship. Changes in ferritin, transferrin, hepcidin, C-reactive protein and glyceraldehyde-3-phosphate dehydrogenase(GAPDH) were assessed by enzyme-linked immunosorbent assays. The EDock bioinformatics tool was applied to docking model of IAA and GAPDH. RESULTS: Compared to the control, high-dose IAA exposure had obvious inhibition effect on rat leukocytes with the total number declined by 51.12%, and neutrophils were particularly sensitive to IAA with the number reduced by 73.66%(P<0.01), and rat erythrocytes exhibited a small cell low pigment effect with hemoglobin and hematocrit decreased by 8.60% and 8.70%, respectively(P<0.05). But IAA had little effects on the platelet. Plasma iron, phosphorus, zinc and potassium levels were repressed significantly, while chlorine, sodium and magnesium levels were elevated obviously through IAA exposure. However, plasma calcium levels were hardly affected by IAA. In comparison with the control, iron levels declined by 67.09%, whereas magnesium levels increased by 131.82% in the high-dose group(P<0.01). Overall, correlation analyses uncovered that plasma iron metabolism was most strongly and positively correlated with levels of leukocyte, erythrocyte and platelet system parameters after IAA exposure, and the correlation coefficients of leukocyte number, mean hemoglobin content and mean erythrocyte volume were 0.637, 0.410 and 0.365, respectively(P<0.05). Compared to the control, in the high-dose IAA group, the plasma content of C-reactive protein was significantly upregulated by 13.30%(P<0.05), and plasma levels of transferrin and ferromodulin were also respectively elevated by 12.73% and 11.02%(P<0.05). But plasma levels of ferritin and GAPDH did not differ between groups. The docking model exhibited that IAA could bind to the 150 Cys active site of rat GAPDH did. CONCLUSION: IAA not only had toxic effects on rat leukocytes and the plasma electrolyte balance, but also generated inflammation and iron deficiency, leading to smaller erythrocytes and lower pigment.


Assuntos
Ácido Iodoacético , Ratos Sprague-Dawley , Animais , Ratos , Masculino , Ácido Iodoacético/toxicidade , Desinfetantes/toxicidade , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Proteína C-Reativa/metabolismo , Leucócitos/efeitos dos fármacos , Ferritinas/sangue , Desinfecção/métodos , Transferrina , Hepcidinas/sangue
6.
Environ Res ; 262(Pt 1): 119758, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117056

RESUMO

The removal of algal organic matter (AOM) through water treatment processes is a major approach of reducing the formation of disinfection by-products (DBP). Here, the formation of DBP from AOM in karst water under different combination of potassium permanganate (KMnO4) and polyaluminium chloride (PACl) was investigated. The effect of divalent ions (Ca2+ and Mg2+) on DBP formation was traced by AOM chemistry variations. For DBP formation after KMnO4 preoxidation, total carbonaceous DBPs (C-DBPs) decreased by 12.9% but nitrogen-containing DBPs (N-DBPs) increased by 18.8%. Conversely, the C-DBPs further increased by 3.3% but N-DBPs reduced by 10.7% after the addition of PACl besides KMnO4 preoxidation. The variations of aromatic protein-like, soluble microbial products-like compounds and ultraviolet absorbance at 254 nm (UV254) were highly correlated with the formation of DBPs, which suggest aromatic substances strongly affect DBP behaviors at different treatment conditions. In the presence of divalent ions (Ca2+ = 135.86 mg/L, Mg2+ = 18.51 mg/L), the combination of KMnO4 and PACl was more effective in controlling DBP formation compared to the situation without Ca2+ and Mg2+. Specifically, trichloromethane formation was largely inhibited compared to the other tested DBPs, which may refer to complexation of electron-donating groups via divalent ions. While Ca2+ and Mg2+ may not affect the nature of α-carbon and amine groups, so the variation of haloacetonitriles (HANs) was not obvious. The study enhances the understanding of the DBP formation patterns, transformation of carbon and nitrogen by preoxidation-coagulation (KMnO4-PACl) treatment in algae-laden karst water.

7.
Chemosphere ; 364: 143092, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39146986

RESUMO

Halocyclopentadienes (HCPDs) are an emerging class of alicyclic disinfection by-products (DBPs) with high toxicity in disinfected drinking water. However, their potential precursors remain unclear, which hinders the understanding of their formation and further development of control strategies. In this study, two HCPDs, 1,2,3,4-tetrachloro-1,3-cyclopentadiene (TCC) and 1,2,3,4,5,5-hexachloro-1,3-cyclopentadiene (HCC), were identified in chlorinated lignin and tannic acid samples for the first time. The chlorination of four lignin-like and two tannic-like phenolic model compounds confirmed that guaiacol and digallic acid can produce HCPDs. According to their structures, ortho-substituents of phenolic compounds were speculated to be crucial for HCPDs formation. The simulated disinfection of catechol, 2-ethoxyphenol (2-EOP), 2-propoxyphenol (2-POP) and 3,4-dihydroxy-5-methoxybenzoic acid (DH-5-MBA) with different ortho-substituents demonstrated that three of these compounds can generate HCPDs, except catechol, which further indicates that ortho-substituents, such as the methoxy, ethoxy and propoxy groups, contribute to HCPDs generation. Guaiacol was the simplest compound for generating HCPDs, and possible formation pathways during chlorination were proposed. Seven hydroxy-chlorocyclopentadienes were tentatively identified and are likely important intermediates of HCPDs formation. Additionally, TCC and HCC were confirmed in tap water and chlorinated SRNOM samples with total concentrations up to 11.07 ng/L and 65.66 ng/L, respectively, further demonstrating the wide existence of HCPDs and their precursors. This study reports the clear precursors of HCPDs and provides a theoretical foundation for controlling HCPDs formation in disinfected drinking water.

8.
Int J Biol Macromol ; 278(Pt 1): 134374, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098671

RESUMO

The consumption of animal products has witnessed a significant increase over the years, leading to a growing need for industries to adopt strict waste control measures to mitigate environmental impacts. The disposal of animal waste in landfill can result in diverse and potentially hazardous decomposition by-products. Animal by-products, derived from meat, poultry, seafood and fish industries, offer a substantial raw material source for collagen and gelatin production due to their high protein content. Collagen, being a major protein component of animal tissues, represents an abundant resource that finds application in various chemical and material industries. The demand for collagen-based products continues to grow, yet the availability of primary material remains limited and insufficient to meet projected needs. Consequently, repurposing waste materials that contain collagen provides an opportunity to meet this need while at the same time minimizing the amount of waste that is dumped. This review examines the potential to extract value from the collagen content present in animal-derived waste and by-products. It provides a systematic evaluation of different species groups and discusses various approaches for processing and fabricating repurposed collagen. This review specifically focuses on collagen-based research, encompassing an examination of its physical and chemical properties, as well as the potential for chemical modifications. We have detailed how the research and knowledge built on collagen structure and function will drive the new initiatives that will lead to the development of new products and opportunities in the future. Additionally, it highlights emerging approaches for extracting high-quality protein from waste and discusses efforts to fabricate collagen-based materials leading to the development of new and original products within the chemical, biomedical and physical science-based industries.

9.
Molecules ; 29(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124938

RESUMO

Citrus medica L. is a traditional citrus fruit that is rich in bioactive compounds and has the potential to be used as a natural source of food additives. This study aims to evaluate the antioxidant capacity and characterize the phenolic compounds present in the peels (including flavedo and albedo), pulp, and seeds of citron. The results showed that, compared to the other parts, the pulp had a substantially higher Antioxidant Activity Coefficient (AAC) of 168.2. The albedo and the seeds had significantly lower AAC values, while the green and yellow flavedo showed noteworthy results. O-coumaric acid was the predominant phenolic acid in all of the citron fractions; it was found in the highest concentration in albedo (37.54 µg/g FW). Flavanones and flavanols were the primary flavonoids in the pulp, peel, and seeds, with total flavonoid concentration ranging from ~9 µg/g FW in seeds to 508 µg/g FW in the pulp. This research offers significant insights into the antioxidant properties of this ancient fruit, emphasizing its potential applications as a natural source of antioxidants to be used in different applications.


Assuntos
Antioxidantes , Citrus , Flavonoides , Frutas , Fenóis , Extratos Vegetais , Sementes , Citrus/química , Antioxidantes/química , Antioxidantes/farmacologia , Fenóis/análise , Fenóis/química , Sementes/química , Frutas/química , Flavonoides/análise , Flavonoides/química , Extratos Vegetais/química
10.
Molecules ; 29(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39124955

RESUMO

Sea buckthorn leaves (SBT_LVs) form notable by-product during harvesting and post-harvest management of the berries. It is already known that sea buckthorn berries are important for their chemical composition and based on this, they occupy a wide field in nutrition. SBT_LVs also have a rich chemical composition, like the berries. The aim of this study was to describe these by-products in the context of protein and complex carbohydrates-dietary fiber fractions, including qualitative and quantitative composition of amino acids. Proximate composition, amino acids, nutritional values of the protein, and dietary fiber fractions of SBT_LVs of four cultivars (cvs.) Ascola, Habego, Hergo, and Leikora were assessed. SBT_LVs from different years of the study had statistically different levels of crude protein, ether extract, crude ash, and nitrogen-free extract (NFE), confirming that the quality of the raw material (leaves) can be significantly modified by habitat conditions. The largest fraction of dietary fiber was neutral detergent fiber (NDF), including the sum of hemicellulose, cellulose, and lignin, followed by the acid detergent fiber fraction (ADF), consisting of lignin and cellulose. The content of essential amino acids in SBT_LV protein was high. Overall, this study confirms that SBT_LVs hold promise as a valuable resource for use as a food ingredient, functional food, and dietary supplement for both humans and animals.


Assuntos
Aminoácidos , Fibras na Dieta , Hippophae , Valor Nutritivo , Folhas de Planta , Hippophae/química , Folhas de Planta/química , Fibras na Dieta/análise , Aminoácidos/análise , Aminoácidos/química , Proteínas de Plantas/análise
11.
Ultrason Sonochem ; 109: 107015, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142027

RESUMO

In the present study, non-conventional and green technology (ultrasonication) was utilized to recover bioactive compounds from the small, medium and large sized defatted date seed powder (DDSP) particles. Bioactive compounds recovered from DDSP and the remaining fiber-rich residue were incorporated as functional ingredient in the biscuit dough to enhance the functionality and the quality characteristics of the dough and biscuit. The polyphenolic extract and 2.5 %, 5 % and 7.5 % substitution levels of fiber-rich extraction residue were incorporated in formulations followed by investigating the effect on rheological, physical and microstructural properties of dough and biscuit. Loss and storage moduli, G'' and G', respectively, of dough increased with decreasing particle size and increasing substitution level while tan δ decreased with increasing substitution level of fiber-rich extraction residue. The smallest particles at 7.5 % substitution level resulted in the lowest creep strain value in dough. Hardness of the dough and biscuit increased with decreasing particle size and increasing substitution level of the residue. The 7.5 % substitution level of the smallest particle size resulted in the darkest dough and biscuit. Spread ratio and diameter of the biscuit decreased with increasing substitution level of the residue. The smallest diameter of 50.61 mm and spread ratio of 8.36 was observed in the biscuits substituted with the largest particle size with 7.5 % substitution level. Microstructural images of dough and biscuit revealed that the continuity of the gluten network was disrupted by the incorporation of the fiber-rich extraction residue. This study provided valuable insights into extracting bioactive components from date by-products using green ultrasonication technique and utilizing such compounds to improve functional attributes of bakery products, as a sustainable approach for valorizing date by-products.


Assuntos
Reologia , Sementes , Sementes/química , Tamanho da Partícula , Sonicação , Pão/análise , Farinha/análise , Manipulação de Alimentos/métodos , Fenômenos Físicos , Qualidade dos Alimentos
12.
Pest Manag Sci ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172057

RESUMO

BACKGROUND: Stilbenoid extracts, such as those originating from grapevine by-products (e.g. canes), are of interest for use as biopesticides in vineyard owing to their antimicrobial activities. However, stilbenoids are unstable in the environment, especially under light. This study aimed to chemically characterize the effect of UV light on stilbenoids present in a grapevine cane extract (CE), and to evaluate the antimicrobial activities against two major grapevine pathogens (Plasmopara viticola and Botrytis cinerea) of grapevine extracts exposed to UV. RESULTS: Treatment with UV (365 nm) on a grapevine CE led to degradation of stilbenoids (up to 71% after 1 h). The stilbenoid stability depended on their chemical structure: only those possessing CC, as trans-resveratrol and trans-ε-viniferin, were affected with first their isomerization and secondly their oxidation/cyclization. As a consequence, UV-exposed extracts (UV-CEs) showed reduced antimicrobial activities against the two pathogens (mycelium and spores). For instance, regarding P. viticola, an UV-CE exposed during 4 h showed an almost total loss of its activity on oomycete development and a 2.4-fold inhibition of zoospore mobility in comparison to CE. For B. cinerea, the inhibition capacity of the same UV-CE was reduced by only 1.1-fold on mycelial development and by 3.2-fold on conidial germination compared to CE. CONCLUSION: UV light triggered modifications on the structure of bioactive stilbenoids, resulting in losses of their antimicrobial activities. Photoprotection of stilbenoids has to be considered in the perspective of using them in vineyards as biopesticides. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

13.
Chempluschem ; : e202400263, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172058

RESUMO

Ruthenium is relevant for a broad range of applications, including catalysis and electronics. Like other metals of the platinum group, ruthenium stands out as one of the rarest elements in the Earth's crust. The demand for Ru from the industry is putting pressure on its availability. Hence, its recovery from secondary sources is imperative. Fashion solid residues of the plating industry are an important waste stream for Ru. Within this context, we propose a novel approach to Ru recovery for its safe, sustainable, and economically affordable upcycling. The approach is based on peeling from waste metal wires by a green oxidizing agent, H2O2, in an environment acidic by lactic acid, a by-product of the food industry. Peeled flakes were characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy for their structure and (surface) chemical composition and bonding. Inductively Coupled Plasma Optical Emission Spectroscopy shows the ultra-low concentration of noble metals in the leachate, thereby suggesting their quantitative recovery in their metallic state. Further, we observed the colloidal nature of the washing water of the peeled flakes. Therefore, we hypothesized the presence of nanoparticles in the washing water and went for their characterization.

14.
Heliyon ; 10(15): e35186, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39165951

RESUMO

Background: The recent interest among consumers in industrial hemp due to health and wellness benefits has led to several products from industrial hemp, including cannabidiol (CBD) oil. CBD oil extraction from hemp buds and flowers generates by-product biomass (hemp flakes), often posing disposal challenges and with little or no applications. We hypothesized that hemp flakes possess residual compounds with nutritional and health value that could be used to improve utilization. Methods: Locally sourced hemp flakes were compared to three commercial hemp protein products. The nutritional composition (proximate analysis), heavy metals (Al, Cu, As, Pb, Co, Cd), and functional composition (phenolic and antioxidant properties-total phenolic compounds (TPC), total flavonoid compounds (TFC), ferric reducing antioxidant potential (FRAP), 1,1-diphenyl-1-picrylhydrazyl (DPPH), Trolox equivalent antioxidant capacity (TEAC)), (CBD, cannabiodiolic acid-CBDA, cannabichromene-CBC, cannabigerol-CBG, and cannabinol-CBN) contents were determined and compared. Findings: Hemp flakes had a similar nutritional composition to commercial hemp protein products, with heavy metal levels within FDA allowed limits. The by-product had significantly higher CBDA levels than commercial products. Overall, hemp flakes had comparable nutrient composition and antioxidant capabilities. Based on the protein composition of hemp flakes (31.62 %) versus the highest commercial product (43 %), hemp flakes are an acceptable functional food ingredient.

15.
Sci Total Environ ; 950: 175401, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127198

RESUMO

The inherent toxicity and persistence of emerging contaminants such as antibiotics and endocrine disruptors pose substantial threats to the environment. Advanced oxidation processes (AOPs) employed for oxidative degradation could yield toxic oxidation by-products (OBPs), including organic acids and aromatic hydrocarbons. Despite their typically low concentrations, OBPs require scrutiny owing to their potential health risks. Although effective assessment methodologies are available, a comprehensive review focusing on the ecological and environmental effects of these pollutants is lacking. This study offers a succinct overview of existing ecotoxicological exposure assessments for emerging organic pollutants. Further, it encapsulates principal dose-response assessment techniques and provides a comparative analysis of several methods. The straightforward assessment factor method evaluates risk based on exposure and species sensitivity and is suitable for preliminary assessments of single pollutants; Species Sensitivity Distribution (SSD) compares species sensitivities to OBPs, emphasizing the importance of species-specific toxicological responses; microcosm and mesocosm methods simulate and predict the effects of OBPs on aquatic life by considering environmental diversity and biological community structures and are ideal for assessing the toxicity of multiple OBPs; the ecological risk analysis model employs mathematical and probabilistic approaches to comprehensively and accurately assess exposures and effects, accounting for the complexities and uncertainties inherent in ecotoxicological evaluations. Different risk characterization techniques are outlined in this study, including the risk quotient (RQ), which is ideal for quantifying and comparing risks; probabilistic ecological risk assessment (PERA), suitable for managing significant uncertainty; and the Environmental Pollution Index (EPI), the preferred method for quantitative assessment of OBP pollution levels. The merits and limitations of each of these quantitative assessment tools are evaluated, providing a comprehensive view of their applications in risk analysis. In addition, pressing contemporary challenges are identified and trajectories and pivotal issues suggested for future research.


Assuntos
Oxirredução , Medição de Risco/métodos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Ecotoxicologia , Poluentes Ambientais/análise
16.
Foods ; 13(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39123548

RESUMO

The fruit of the cashew, a tree belonging to the family Anacardiaceae, is composed of approximately 10% nut (cashew) and 90% stalk or pseudofruit, usually discarded in situ and fermented in the soil. This review identifies cashew pseudofruit's physicochemical characteristics and bioactive compounds and their possible relationship to health benefits. Different processing techniques have been used to preserve the pseudofruit, and the effect of these techniques on its nutrients is also reviewed in this work. Cashew is a highly perishable product with moisture content above 80% w/w and 10% w/w sugars. It also has a high content of polyphenols, flavonoids, and tannins and high antioxidant properties that are best preserved by nonthermal processing techniques. The pseudofruit presents the high inhibitory activity of α-amylase and lipase enzymes, has anti-inflammatory and body weight reduction properties and healing activity, and controls glucose levels, insulinemia, and insulin resistance. For all these reasons, cashews have been promoted as a propitious food/ingredient for preventive and therapeutic management of different pathologies such as diabetes, dyslipidemia, obesity, hypertension, fatty liver, and acne. Moreover, it has positive effects on the intestinal microflora, among others. This pseudofruit has a high potential for the development of functional foods.

17.
Anaerobe ; 89: 102893, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39122139

RESUMO

OBJECTIVES: Feeding winery by-products (WBP) could affect the bovine microbiome because of their phenol compounds and a transfer of WBP-associated microbiota. This work examined changes in the underexplored solid-associated rumen microbiome following the inclusion of WBP. METHODS: Using the rumen simulation technique, fermenters were inoculated with the inoculum of donor cows and were fed one of six dietary treatments including a control diet of 70 % hay +30 % concentrate (CON), control diet + 3.7 % commercial grapeseed extract (EXT), 65 % hay + 25 % concentrate + 10 % grape pomace (GP-low), 56 % hay + 24 % concentrate + 20 % grape pomace (GP-high), 70 % hay + 25 % concentrate + 5 % grapeseed meal (GS-low), and 65 % hay + 25 % concentrate + 10 % grapeseed meal (GS-high) (dry matter basis). The compositional changes of bacteria, archaea and fungi in the solid fractions were based on 16S and ITS2 rRNA sequencing. RESULTS: The alpha- and beta-diversity of the microbiota were unaffected. However, treatment modified the bacterial composition at low taxonomic levels. Butyrivibrio fibrisolvens, Treponema bryantii, and bacterium MC2010 decreased in EXT, while Treponema berlinense was increased in GP-high and GP-low compared to CON. Concerning fungi, GS-high increased Candida spp., Lachancea spp., Microdochium spp., Mucor spp., Pichia spp., Saturnispora spp., and Zygosaccharomyces spp. compared to CON. Many non-Saccharomyces yeasts were detected in WBP samples but absent in donor cows and CON samples. The genera affected by treatment were not the major contributors to the ruminal degradation of nutrients. CONCLUSIONS: The results indicate a sensitivity of rumen solid bacteria to grape phenols when delivered as an extract and a transfer of WBP-associated microbiota into the rumen.

18.
Food Res Int ; 192: 114730, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147547

RESUMO

Coffee husks are the main by-product of the coffee industry and have been traditionally discarded in the environment or used as fertilizers. However, recent studies have shown that coffee husks have bioactive compounds, such as phenolics and fiber-bound macro antioxidants, offering a range of potential health benefits. This study evaluated the antioxidant capacity, cytoprotective/cytotoxic properties, and stimulatory effects on the relative abundance of selected intestinal bacterial populations of individuals with diabetes of organic coffee husks. Organic coffee husk had good antioxidant capacity, maintained under simulated gastric conditions, with more than 50% of antioxidant capacity remaining. Organic coffee husk exerted cytoprotective properties in Caco-2 cells, indicating that cellular functions were not disturbed, besides not inducing oxidation. Overall, organic coffee husk promoted positive effects on the abundance of distinct intestinal bacterial groups of individuals with diabetes during in vitro colonic fermentation, with a higher relative abundance of Bifidobacterium spp., indicating the availability of components able to reach the colon to be fermented by intestinal microbiota. Organic coffee husk could be a circular material to develop new safe and pesticide-free functional ingredients with antioxidant and potential beneficial effects on human intestinal microbiota.


Assuntos
Antioxidantes , Café , Microbioma Gastrointestinal , Humanos , Antioxidantes/farmacologia , Células CACO-2 , Café/química , Microbioma Gastrointestinal/efeitos dos fármacos , Fermentação , Diabetes Mellitus , Coffea/química , Bactérias/efeitos dos fármacos
19.
Front Vet Sci ; 11: 1429218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993281

RESUMO

Introduction: Recently, increasing effort has been directed toward environmental sustainability in pet food. The aim of this study was to evaluate the extrusion parameters, nutrient digestibility, fecal characteristics, palatability and insulinemic and glycaemic curves of a complete diet for dogs in which the main carbohydrate source was a red lentil pasta by-product (LP). Methods: Five experimental diets were formulated: a basal diet (CO) based on rice and a poultry by-product meal; three experimental diets where LP substituted rice at 33, 66, or 100% (LP33, LP66, and LP100, respectively); and a diet formulated on 70% of the basal diet (CO) plus 30% LP (LPS) to evaluate the digestibility of LP ingredient. Results and discussion: The extruder pressure, hardness and bulk density of the kibble increased in a linear manner with increasing LP percentage (P < 0.05), without affecting starch gelatinization. According to polynomial contrast analysis, rice replacement with LP at 33 and 66% caused no reduction in apparent total tract digestibility coefficient (ATTDC), with similar or higher values compared with the CO diet. Nitrogen balance did not change (P > 0.05), but we observed a linear increase in feces production and moisture content as the LP inclusion rate rose and a linear decrease in feces pH (P < 0.05). Nevertheless, the fecal score was unaffected. Fecal acetate, propionate, total short-chain fatty acids (SCFA), branched-chain fatty acids, and lactate all increased linearly as the LP inclusion rate increased (P < 0.05), without altering ammonia concentration in feces. Feces concentrations of cadaverine, tyramine, histamine, and spermidine also increased in a linear manner with increasing LP inclusion (P < 0.05). The fermentation of LP dietary fiber by the gut microbiota increased the concentration of desirable fermentation by-products, including SCFA and spermidine. The post-prandial glucose and insulin responses were lower in the dogs fed the LP100 diet compared with CO, suggesting the possible use of this ingredient in diets designed to generate a low glycaemic response. Finally, the palatability study results showed a preference for the LP100 ration in both the "first choice" and the "consumption rate" evaluation (P < 0.05). This trial reveals how a by-product discarded from the human-grade food chain retains both its nutritional and organoleptic properties.

20.
Artigo em Inglês | MEDLINE | ID: mdl-39003368

RESUMO

BACKGROUND: Pollutants including metals/metalloids, nitrate, disinfection byproducts, and volatile organic compounds contaminate federally regulated community water systems (CWS) and unregulated domestic wells across the United States. Exposures and associated health effects, particularly at levels below regulatory limits, are understudied. OBJECTIVE: We described drinking water sources and exposures for the California Teachers Study (CTS), a prospective cohort of female California teachers and administrators. METHODS: Participants' geocoded addresses at enrollment (1995-1996) were linked to CWS service area boundaries and monitoring data (N = 115,206, 92%); we computed average (1990-2015) concentrations of arsenic, uranium, nitrate, gross alpha (GA), five haloacetic acids (HAA5), total trihalomethanes (TTHM), trichloroethylene (TCE), and tetrachloroethylene (PCE). We used generalized linear regression to estimate geometric mean ratios of CWS exposures across demographic subgroups and neighborhood characteristics. Self-reported drinking water source and consumption at follow-up (2017-2019) were also described. RESULTS: Medians (interquartile ranges) of average concentrations of all contaminants were below regulatory limits: arsenic: 1.03 (0.54,1.71) µg/L, uranium: 3.48 (1.01,6.18) µg/L, GA: 2.21 (1.32,3.67) pCi/L, nitrate: 0.54 (0.20,1.97) mg/L, HAA5: 8.67 (2.98,14.70) µg/L, and TTHM: 12.86 (4.58,21.95) µg/L. Among those who lived within a CWS boundary and self-reported drinking water information (2017-2019), approximately 74% self-reported their water source as municipal, 15% bottled, 2% private well, 4% other, and 5% did not know/missing. Spatially linked water source was largely consistent with self-reported source at follow-up (2017-2019). Relative to non-Hispanic white participants, average arsenic, uranium, GA, and nitrate concentrations were higher for Black, Hispanic and Native American participants. Relative to participants living in census block groups in the lowest socioeconomic status (SES) quartile, participants in higher SES quartiles had lower arsenic/uranium/GA/nitrate, and higher HAA5/TTHM. Non-metropolitan participants had higher arsenic/uranium/nitrate, and metropolitan participants had higher HAA5/TTHM. IMPACT: Though average water contaminant levels were mostly below regulatory limits in this large cohort of California women, we observed heterogeneity in exposures across sociodemographic subgroups and neighborhood characteristics. These data will be used to support future assessments of drinking water exposures and disease risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA