Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Bioresour Technol ; 406: 131069, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971388

RESUMO

The feasibility of inducing simultaneous nitrification and denitrification (SND) by S0 for low carbon to nitrogen (C/N) ratio wastewater remediation was investigated. Compared with S0 and/or organics absent systems (-3.4 %∼5.0 %), the higher nitrogen removal performance (18.2 %∼59.8 %) was achieved with C/N ratios and S0 dosages increasing when S0 and organics added simultaneously. The synergistic effect of S0 and organics stimulated extracellular polymeric substances secretion and weakened intermolecular binding force of S0, facilitating S0 bio-utilization and reducing the external organics requirement. It also promoted microbial metabolism (0.16 âˆ¼ 0.24 µg O2/(g VSS·h)) and ammonia assimilation (5.9 %∼20.5 %), thereby enhancing the capture of organics and providing more electron donors for SND. Furthermore, aerobic denitrifiers (15.91 %∼27.45 %) and aerobic denitrifying (napA and nirS) and ammonia assimilating genes were accumulated by this synergistic effect. This study revealed the mechanism of SND induced by coordination of S0 and organics and provided an innovative strategy for triggering efficient and stable SND.


Assuntos
Carbono , Desnitrificação , Nitrificação , Nitrogênio , Enxofre , Águas Residuárias , Águas Residuárias/química , Nitrogênio/metabolismo , Enxofre/metabolismo , Amônia/metabolismo , Purificação da Água/métodos , Compostos Orgânicos
2.
Environ Sci Pollut Res Int ; 31(37): 49891-49904, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39085693

RESUMO

The present study investigates the synergistic impact of earthworms (Eisenia fetida and Eudrilus eugeniae) and microbes during vermicomposting of invasive weed phytomass (Xanthium strumarium and Lantana camara). This study aims introducing an onsite solution for weed control while producing valuable organic manure. Vermitransformation and detailed characterization of mono- (VC1, VC2, VC4, VC5) and polyculture (VC3, VC6) of X. strumarium and L. camara has been reported for the first time employing E. fetida and E. eugeniae. The study achieved 45.16 ± 2.48-76.73 ± 1.37% vermiconvertion rate. The pH, conductivity, and concentration of heavy metals are effectively stabilized. Furthermore, it observed a significant reduction in total organic carbon (TOC) alongside the augmentation of nitrogen, phosphorus, potassium, calcium, and other trace elements (Zn, Ni, Fe). The ash content, humification index, and C/N ratio analysis established the maturity of the vermicompost. The macronutrient enhancement in the vermicompost samples was recorded 1.5- to 2.47-fold for total N, 1.19- to 1.48-fold in available P, 1.1- to 1.2-fold in total K, and 1.1- to 1.18-fold in total Ca. The germination index reveals a significant reduction in phytotoxicity, suggesting the production of mature and suitable vermicompost for agricultural use. Evaluating mono- and polyculture techniques, the research highlights the superiority of E. fetida over E. eugeniae. Further, the earthworm population and biomass have significantly increased by the end of 60-day experimental trial.


Assuntos
Lantana , Oligoquetos , Animais , Plantas Daninhas , Solo/química , Metais Pesados , Poluentes do Solo
3.
Sci Total Environ ; 949: 175081, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39069182

RESUMO

Lost soil organic carbon (SOC) in degraded grasslands can be restored via the 'grazing exclusion' practice, but it was unknown how long (# of years) the restoration process can take. A synthesis of four decades of studies revealed that grazing exclusion increased SOC stocks in the topsoil (0-0.30 m) by 14.8 % (±0.8 Std Err), on average, compared to moderate-to-heavy grazing (MtH); During which SOC stock increased steadily, peaked in Year 18.5, and then declined. At peak, SOC stock was 42.5 % greater under grazing exclusion than under MtH due to 100.4 ± 4.2 % increase in aboveground biomass and 80.3 ± 33.5 % increase in root biomass. Grazing exclusion also increased soil C:N ratio by 7.6 % while decreasing bulk density by 9.4 %. Grazing exclusion could be ceased 18.5 years after initiation of grazing exclusion as plant biomass input balances carbon decomposition and SOC equilibrium occurs then additional benefits start diminishing.

4.
Bioresour Technol ; 407: 131083, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38972430

RESUMO

Algae-mediated nitrogen removal from low carbon vs. nitrogen (C/N) wastewater techniques has garnered significant attention due to its superior autotrophic assimilation properties. This study investigated the ammonium-N removal potential of four algae species from low C/N synthetic wastewater. Results showed that 95 % and 99 % of ammonium-N are eliminated at initial concentrations of 11.05 ± 0.98 mg/L and 42.51 ± 2.20 mg/L with little nitrate and nitrite accumulation. The compositions of secreted algal-derived dissolved organic matter varied as C/N decreased and showed better bioavailability for nitrate-N removal by Pseudomonas sp. SZF15 without pre-oxidation, achieving an efficiency of 99 %. High-throughput sequencing revealed that the aquatic microbial communities, dominated by Scenedesmus, Kalenjinia, and Micractinium, remain relatively stable across different C/N, aligning with the underlying metabolic pathways. These findings may provide valuable insights into the sustainable elimination of multiple nitrogen contaminants from low C/N wastewater.


Assuntos
Desnitrificação , Nitrogênio , Águas Residuárias , Águas Residuárias/química , Biodegradação Ambiental , Nitratos/metabolismo , Compostos de Amônio/metabolismo , Purificação da Água/métodos , Poluentes Químicos da Água/metabolismo , Carbono , Compostos Orgânicos
5.
Water Res ; 261: 122019, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38991244

RESUMO

This study aimed to investigate whether separating organics depletion from nitrification increases the overall performance of urine nitrification. Separate organics depletion was facilitated with membrane aerated biofilm reactors (MABRs). The high pH and ammonia concentration in stored urine inhibited nitrification in the first stage and therewith allowed the separation of organics depletion from nitrification. An organics removal of 70 % was achieved at organic loading rates in the influent of 3.7 gCOD d-1 m-2. Organics depletion in a continuous flow stirred tank reactor (CSTR) for organics depletion led to ammonia stripping through diffused aeration of up to 13 %. Using an MABR, diffusion into the lumen amounted for 4 % ammonia loss only. In the MABR, headspace volume and therefore ammonia loss through the headspace was negligible. By aerating the downstream MABR for nitrification with the off-gas of the MABR for organics depletion, 96 % of the ammonia stripped in the first stage could be recovered in the second stage, so that the overall ammonia loss was negligibly low. Nitrification of the organics-depleted urine was studied in MABRs, CSTRs, and sequencing batch reactors in fed batch mode (FBRs), the latter two operated with suspended biomass. The experiments demonstrated that upstream organics depletion can double the nitrification rate. In a laboratory-scale MABR, nitrification rates were recorded of up to 830 mgNL-1 d-1 (3.1 gN m-2 d-1) with ambient air and over 1500 mgNL-1 d-1 (6.7 gN m-2 d-1) with oxygen-enriched air. Experiments with a laboratory-scale MABR showed that increasing operational parameters such as pH, recirculation flow, scouring frequency, and oxygen content increased the nitrification rate. The nitrification in the MABR was robust even at high pH setpoints of 6.9 and was robust against process failures arising from operational mistakes. The hydraulic retention time (HRT) required for nitrification was only 1 to 2 days. With the preceding organics depletion, the HRT for our system requires 2 to 3 days in total, whereas a combined activated sludge system requires 4 to 8 days. The N2O concentration in the off-gas increases with increasing nitrification rates; however, the N2O emission factor was 2.8 % on average and independent of nitrification rates. These results indicate that the MABR technology has a high potential for efficient and robust production of ammonium nitrate from source-separated urine.


Assuntos
Amônia , Biofilmes , Reatores Biológicos , Nitrificação , Amônia/metabolismo , Urina/química , Membranas Artificiais , Eliminação de Resíduos Líquidos
6.
J Environ Manage ; 366: 121870, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032251

RESUMO

Glycerol, an abundant by-product of biodiesel production, represented a promising carbon source for enhancing nutrient removal from low C/N ratio wastewater. This study discovered a novel approach to initiate glycerol-driven denitrifying phosphorus removal (DPR) in situ by creating a short-term microaerobic environment within the aerobic zone. This approach facilitated the in-situ conversion of glycerol, which was subsequently utilized by denitrifying phosphate accumulating organisms (DPAOs) for DPR. The feasibility and stability of glycerol-driven DPR were validated in a continuous-flow pilot-scale reactor. Anaerobic phosphorus release increased from 1.0 mg/L/h to 2.5 mg/L/h, with fermentation bacteria and related functional genes showing significant increases. The stable stage exhibited 92.8% phosphorus removal efficiency and 55.5% DPR percentage. The microaerobic environment enhanced fermentation bacteria enrichment, crucial for glycerol-driven DPR stability. The collaborative interaction between fermentation bacteria and phosphate accumulating organisms (PAOs) played a key role in sustaining glycerol-driven DPR stability. These findings provide a robust theoretical foundation for applying glycerol-driven DPR in established wastewater treatment plants.


Assuntos
Desnitrificação , Glicerol , Fósforo , Águas Residuárias , Fósforo/metabolismo , Glicerol/metabolismo , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Fermentação , Bactérias/metabolismo
7.
Environ Sci Pollut Res Int ; 31(30): 42779-42791, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38878241

RESUMO

Dissolved oxygen (DO) levels and carbon-to-nitrogen (C/N) ratio affect nitrous oxide (N2O) emissions by influencing the physiological and ecological dynamics of nitrifying and denitrifying microbial communities in activated sludge systems. For example, Nitrosomonas is a common N2O producing nitrifying bacteria in wastewater treatment plants (WWTPs), and DO conditions can affect the N2O production capacity. Previous studies have reported N2O emission characteristics under adequate DO and C/N conditions in A/O WWTPs. However, in actual operation, owing to economic and managerial factors, some WWTPs have a long-term state of low DO levels in oxic tanks and low influent C/N. Research on N2O emission characteristics in low DO-limited and low C/N ratio WWTPs is limited. This study investigated N2O emissions and the corresponding shifts in microorganisms within an anoxic-oxic (A/O) WWTP over 9-month. Quantitative PCR was used to assess the abundance of ten functional genes related to nitrification and denitrification processes, and high-throughput sequencing of the 16S rRNA gene was employed to determine the composition change of microorganisms. The findings revealed that 1) the average N2O emission factor was 1.07% in the studied WWTP; 2) the DO-limited oxic tank primarily contributed to N2O; 3) NO2-, TOC, and C/N ratios were key factors for dissolved N2O in the aerobic tank; and 4) Nitrosomonas and Terrimonas exhibited a robust correlation with N2O emissions. This research provides data references for estimating N2O emission factors and developing N2O reduction policies in WWTPs with DO-limited and low C/N ratios.


Assuntos
Carbono , Nitrogênio , Óxido Nitroso , Oxigênio , Eliminação de Resíduos Líquidos , Águas Residuárias , Óxido Nitroso/análise , Águas Residuárias/microbiologia , Águas Residuárias/química , Desnitrificação , RNA Ribossômico 16S , Microbiota , Nitrificação
8.
Bioresour Technol ; 406: 131008, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897547

RESUMO

This study investigated the nutrient removal and microbial community succession in moving bed biofilm reactor under stable and three levels of influent carbon/nitrogen (C/N) ratio fluctuation (± 10%, ± 20%, and ± 30%). Under the conditions of influent C/N ratio fluctuation, the removal efficiency of COD and PO43--P decreased 4.7-6.4% and 3.7-12.9%, respectively, while the nitrogen removal was almost unaffected. A sharp decrease in the content of culturable functional bacteria related to nitrogen and phosphorus removal including nitrite-oxidizing bacteria (NOB), aerobic denitrifying bacteria (DNB), and polyphosphate-accumulating organisms (PAOs) from the carrier biofilm was observed. Sequencing analysis revealed that the abundance of Candidatus Competibacter increased 10.3-25.9% and became the dominant genus responsible for denitrification, potentially indicating that nitrate was removed via endogenous denitrification under the influent C/N ratio fluctuation. The above results will provide basic data for the nutrient removal in decentralized wastewater treatment under highly variable influent conditions.


Assuntos
Bactérias , Biofilmes , Reatores Biológicos , Carbono , Nitrogênio , Nitrogênio/metabolismo , Reatores Biológicos/microbiologia , Carbono/metabolismo , Bactérias/metabolismo , Bactérias/genética , Desnitrificação , Fósforo , Purificação da Água/métodos , Nutrientes/metabolismo , Análise da Demanda Biológica de Oxigênio , Águas Residuárias/microbiologia
9.
Environ Res ; 258: 119461, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38909945

RESUMO

Microaerobic sludge bed systems could align with low-energy, reasonable carbon-nitrogen (C/N) ratio, and synchronous removal objectives during wastewater treatment. However, its ability to treat municipal wastewater (MW) with varying low C/N ratio, low NH4+ concentration, along with managing sludge bulking and loss are still unclear. Against this backdrop, this study investigated the performance of an Upflow Microaerobic Sludge Bed Reactor (UMSR) treating MW characterized by varying low C/N ratios and low NH4+ concentrations. The study also thoroughly examined associated sludge bulking and loss, pollutant removal efficiencies, sludge settleability, microbial community structures, functional gene variations, and metabolic pathways. Findings revealed that the effluent NH4+-N concentration gradually decreased to 0 mg/L with a decrease in the C/N ratio, whereas the effluent COD was unaffected by the influent, maintaining a concentration below 50 mg/L. Notably, TN removal efficiency reached 90% when C/N ratio was 3. The decrease in the C/N ratio (C/N ratio was 1) increased microbial community diversity, with abundances of AOB, AnAOB, aerobic denitrifying bacteria, and anaerobic digestion bacteria reaching 8.34%, 0.96%, 5.07%, and 9.01%, respectively. Microorganisms' metabolic pathways significantly shifted, showing increased carbohydrate and cofactor/vitamin metabolism and decreased amino acid metabolism and xenobiotic biodegradation. This study not only provides a solution for the effluent of different pre-capture carbon processes but also demonstrates the UMSR's capability in managing low C/N ratio municipal wastewater and emphasizes the critical role of microbial community adjustments and functional gene variations in enhancing nitrogen removal efficiency.


Assuntos
Reatores Biológicos , Carbono , Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Nitrogênio/metabolismo , Nitrogênio/análise , Carbono/análise , Carbono/metabolismo , Eliminação de Resíduos Líquidos/métodos , Esgotos/microbiologia , Esgotos/química , Reatores Biológicos/microbiologia , Águas Residuárias/microbiologia , Águas Residuárias/química , Microbiota , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Aerobiose
10.
Bioresour Technol ; 406: 131007, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901747

RESUMO

This study investigated the effects of carbon/nitrogen (C/N) ratio on microbial community in moving bed biofilm reactor (MBBR) using metagenomic analysis, and the dynamic changes of relevant antibiotic resistance genes (ARGs) were also analyzed. The results showed that under low C/N ratio, MBBR exhibited average removal rates of 98.41 % for ammonia nitrogen and 75.79 % for total nitrogen. Metagenomic analysis showed low C/N ratio altered the structure of biofilm and water microbiota, resulting in the detachment of bacteria such as Actinobacteria from biofilm into water. Furthermore, sulfamethazine (SMZ)-resistant bacteria and related ARGs were released into water under low C/N ratio, which lead to the increase of SMZ resistance rate to 90%. Moreover, most dominant genera are potential hosts for both nitrogen cycle related genes and ARGs. Specifically, Nitrosomonas that carried gene sul2 might be released from biofilm into water. These findings implied the risks of antibiotic resistance dissemination in MBBR under low C/N ratio.


Assuntos
Biofilmes , Reatores Biológicos , Carbono , Metagenômica , Nitrogênio , Biofilmes/efeitos dos fármacos , Carbono/farmacologia , Reatores Biológicos/microbiologia , Metagenômica/métodos , Resistência Microbiana a Medicamentos/genética , Microbiota/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética
11.
Environ Sci Pollut Res Int ; 31(24): 35727-35743, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38740679

RESUMO

The use of lignocellulosic residues, originating from sawdust, in composting sewage sludge for organic fertilizer production, is a practice of growing interest. However, few studies have explored the effect of the proportion of sawdust and sewage sludge raw materials on composting performance in the humification process. This study assessed the addition of sawdust in the sewage sludge composting process, regarding carbon content, presence of heavy metals, and humification of the organic compost. The experimental design employed was a randomized complete block design with five treatments featuring different proportions of organic residues to achieve C/N ratios between 30-1 (T1: 100% sewage sludge and 0% sawdust, T2: 86% sewage sludge and 14.0% sawdust, T3: 67% sewage sludge and 33% sawdust, T4: 55% sewage sludge and 45% sawdust, and T5: 46.5% sewage sludge and 53.5% sawdust) and five replications, totaling 25 experimental units. The addition of lignocellulosic residue in sewage sludge composting increased the levels of TOC and the C/N ratio, reduced the levels of pH, P, N, Na, Ba, and Cr, and did not interfere with the levels of K, Ca, Mg, S, CEC, labile carbon, and metals Fe, Zn, Cu, Mn, Ni, and Pb. The increase in the proportion of sawdust residue favored the degradation of aliphatic groups, increasing the presence of aromatic structures and reducing humification at the end of composting. The use of sawdust as a lignocellulosic residue in sewage sludge composting is a viable and efficient alternative to produce high-quality organomineral fertilizers.


Assuntos
Compostagem , Metais Pesados , Esgotos , Esgotos/química , Metais Pesados/análise , Lignina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fertilizantes , Metais/química
12.
Plants (Basel) ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732408

RESUMO

Climate and land use changes are causing trees line to shift up into mountain meadows. The effect of this vegetation change on the partitioning of soil carbon (C) between the labile particulate organic matter (POM-C) and stable mineral-associated organic matter (MAOM-C) pools is poorly understood. Therefore, we assessed these C pools in a 10 cm topsoil layer along forest-meadow ecotones with different land uses (reserve and pasture) in the Northwest Caucasus of Russia using the size fractionation technique (POM 0.053-2.00 mm, MAOM < 0.053 mm). Potential drivers included the amount of C input from aboveground grass biomass (AGB) and forest litter (litter quantity) and their C/N ratios, aromatic compound content (litter quality), and soil texture. For both land uses, the POM-C pool showed no clear patterns of change along forest-meadow ecotones, while the MAOM-C pool increased steadily from meadow to forest. Regardless of land use, the POM-C/MAOM-C ratio decreased threefold from meadow to forest in line with decreasing grass AGB (R2 = 0.75 and 0.29 for reserve and pasture) and increasing clay content (R2 = 0.63 and 0.36 for reserve and pasture). In pastures, an additional negative relationship was found with respect to plant litter aromaticity (R2 = 0.48). Therefore, shifting the mountain tree line in temperate climates could have a positive effect on conserving soil C stocks by increasing the proportion of stable C pools.

13.
Environ Sci Technol ; 58(24): 10632-10643, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38817146

RESUMO

The feasibility of a synergistic endogenous partial denitrification-phosphorus removal coupled anammox (SEPD-PR/A) system was investigated in a modified anaerobic baffled reactor (mABR) for synchronous carbon, nitrogen, and phosphorus removal. The mABR comprising four identical compartments (i.e., C1-C4) was inoculated with precultured denitrifying glycogen-accumulating organisms (DGAOs), denitrifying polyphosphate-accumulating organisms, and anammox bacteria. After 136 days of operation, the chemical oxygen demand (COD), total nitrogen, and phosphorus removal efficiencies reached 88.6 ± 1.0, 97.2 ± 1.5, and 89.1 ± 4.2%, respectively. Network-based analysis revealed that the biofilmed community demonstrated stable nutrient removal performance under oligotrophic conditions in C4. The metagenome-assembled genomes (MAGs) such as MAG106, MAG127, MAG52, and MAG37 annotated as denitrifying phosphorus-accumulating organisms (DPAOs) and MAG146 as a DGAO were dominated in C1 and C2 and contributed to 89.2% of COD consumption. MAG54 and MAG16 annotated as Candidatus_Brocadia (total relative abundance of 16.5% in C3 and 4.3% in C4) were responsible for 74.4% of the total nitrogen removal through the anammox-mediated pathway. Functional gene analysis based on metagenomic sequencing confirmed that different compartments of the mABR were capable of performing distinct functions with specific advantageous microbial groups, facilitating targeted nutrient removal. Additionally, under oligotrophic conditions, the activity of the anammox bacteria-related genes of hzs was higher compared to that of hdh. Thus, an innovative method for the treatment of low-strength municipal and nitrate-containing wastewaters without aeration was presented, mediated by an anammox process with less land area and excellent quality effluent.


Assuntos
Reatores Biológicos , Carbono , Desnitrificação , Nitrogênio , Fósforo , Fósforo/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Bactérias/metabolismo
14.
PeerJ ; 12: e17113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646486

RESUMO

Peatland restoration usually aims at restarting the peatlands' function to store carbon within peat. The soil properties of the near-surface peat can give a first understanding of this process. Therefore, we sampled pH value, total organic carbon content (TOC), total nitrogen content (TN), C/N ratio as well as dry bulk density (BD), and describe the structure of near-surface peats in six restored fens in North-East Germany before (2002-2004) and after (2019-2021) restoration. Before restoration, the study sites showed peat degradation to various extents in their near-surface peats. pH values remained relatively stable over time. Comparing the degraded peat horizons, TOC increased significantly in four study sites, ranging from 35.7% to 47.8% in 2002-2004 and from 42.5% to 54.0% in 2019-2021. TN varied from 1.5% to 3.5% in 2002-2004 and from 1.8% to 3.2% in 2019-2021, but changes were only significant in one site, showing a slight decrease. In three sites, the increase in C/N ratio was significant, indicating lower nutrient availability. BD ranged from 0.08 to 0.48 g/cm3 in 2002-2004 and from 0.10 to 0.16 g/cm3 in 2019-2021, decreasing significantly in four sites. The structure of the degraded peat horizons changed after restoration to a more homogenous, sludge mass with larger re-aggregates. In three sites, new peat moss peat layers above the degraded soil horizon were present in 2019-2021, with a mean thickness of 6.8 to 36.1 cm. The structure was comparable to typical, slightly decomposed peat moss peat. Our findings suggest that within about 17 years after fen restoration, and thereby a water table rise close to surface, TOC of the near-surface peats increased to values that are typical for undisturbed peatlands. This indicates that restoration can lead to the re-establishment of peatlands as potential carbon sinks, with TOC within the near-surface peat as one key factor in this process. Further, we assume that the decrease in nutrient availability, decrease of BD, and new, undisturbed peat layers can favor the establishment of mire-specific biodiversity and support ecosystem services similar to near-natural mires.


Assuntos
Carbono , Nitrogênio , Solo , Áreas Alagadas , Solo/química , Carbono/análise , Nitrogênio/análise , Alemanha , Concentração de Íons de Hidrogênio , Recuperação e Remediação Ambiental
15.
Environ Sci Pollut Res Int ; 31(22): 32538-32552, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38656720

RESUMO

Nitrous oxide (N2O) generation during composting not only leads to losses of nitrogen (N) but also reduces the agronomic values and environmental benefits of composting. This study aimed to investigate the effect of the C/N ratio on N2O emissions and its underlying mechanisms at the genetic level during the composting of vegetable waste. The experiment was set up with three treatments, including low C/N treatment (LT, C/N = 18), middle C/N treatment (MT, C/N = 30), and high C/N treatment (HT, C/N = 50). The results showed that N2O emission was mainly concentrated in the cooling and maturation periods, and the cumulative N2O emissions decreased as the C/N ratio increased. Specifically, the cumulative N2O emission was 57,401 mg in LT, significantly higher than 2155 mg in MT and 1353 mg in HT. Lowering the C/N ratio led to increasing TN, NH4+-N, and NO3--N contents throughout the composting process. All detected nitrification-related gene abundances in LT continued to increase during composting, significantly surpassing those in MT during the cooling period. By contrast, in HT, there was a slight increase in the abundance of detected nitrification-related genes but a significant decrease in the abundance of narG, napA, and norB genes in the thermophilic and cooling periods. The structural equation model revealed that hao and nosZ genes were vital in N2O emissions. In conclusion, increasing the C/N ratio effectively contributed to N2O reduction during vegetable waste composting.


Assuntos
Carbono , Compostagem , Nitrogênio , Óxido Nitroso , Verduras , Óxido Nitroso/análise , Solo/química
16.
Environ Technol ; : 1-15, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471044

RESUMO

Kiwi waste from the calibration process is a major environmental problem of kiwi production due to landfill deposition. This work aims to contribute to the agronomic use of recycled kiwi waste through composting. With this objective, a composting experiment was carried out with kiwi fruit waste mixed with 5%, 10% and 20% (fresh weight) of wheat straw from bundles used to protect kiwifruit trunks from frost, as abulking agent to increase aeration, in the piles 5S, 10S and 20S, respectively. The highest temperatures for piles 5S and 10S were above 60°C, whereas the temperature did not reach 40°C in the pile with the highest straw content (20S) because the aeration increased heat loss in addition to increased C/N ratio of this pile. Also, the amount of organic matter mineralized decreased with increasing amount of straw because of the high C/N ratio of the straw. The highest total N (29.7 g kg-1) and the lowest C/N ratio (13) of the compost with 5% of straw is important from the agricultural point of view to promote N availability. In contrast, the high electrical conductivity (4.6 dS m-1) of this compost increases the risk of salt accumulation in the soil. Our results show that the compost with 10% straw, with high degree of maturation, absence of poor hygiene indicators as coliforms and pathogens as Salmonella sp., high organic matter content and rich in nutrients, together with the adequate compost pH and low electrical conductivity improves compost quality.

17.
Sci Total Environ ; 924: 171655, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38492605

RESUMO

Grassland restoration leads to excessive soils with carbon (C) and nitrogen (N) contents that are inadequate to fulfill the requirements of microorganisms. The differences in the stoichiometric ratios of these elements could limit the activity of microorganisms, which ultimately affects the microbial C, N use efficiencies (CUE, NUE) and the dynamics of soil C and N. The present study was aimed at quantifying the soil microbial nutrient limitation and exploring the mechanisms underlying microbial-induced C and N dynamics in chrono-sequence of restored grasslands. It was revealed that grassland restoration increased microbial C, N content, microbial C, N uptake, and microbial CUE and NUE, while the threshold elemental ratio (the C:N ratio) decreased, which is mainly due to the synergistic effect of the microbial biomass and enzymatic stoichiometry imbalance after grassland restoration. Finally, we present a framework for the nutrient limitation strategies that stoichiometric imbalances constrain microbial-driven C and N dynamics. These results are the direct evidence of causal relations between stoichiometric ratios, microbial responses, and soil C, N cycling.


Assuntos
Pradaria , Solo , Biomassa , Microbiologia do Solo , Nitrogênio/análise , Carbono , Ecossistema , Fósforo
18.
J Environ Manage ; 357: 120739, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38552522

RESUMO

Knowledge of freeze-thaw-induced carbon (C) and nitrogen (N) cycling and concomitant nitrous oxide (N2O) and carbon dioxide (CO2) emissions in perennial bioenergy crops is crucial to understanding the contribution of these crops in mitigating climate change through reduced greenhouse gas (GHG) emissions. In this study, a 49-day laboratory incubation experiment was conducted to compare the impact of freeze-thaw cycles on N2O and CO2 emissions in different perennial bioenergy crops [miscanthus (Miscanthus giganteus L.), switchgrass (Panicum virgatum L.), and willow (Salix miyabeana L.)] to a successional site and to understand the processes controlling the N2O and CO2 emissions in these crops. The results showed that freeze-thaw cycles caused a decline in dissolved organic C (DOC) and dissolved inorganic N (DIN) concentrations but enhanced the dissolved organic N (DON) and nitrate (NO3-). Although, freeze-thaw decreased water stable soil aggregates in all the bioenergy crops and successional site, this did not have any significant impact on N2O and CO2 emissions, suggesting that the N2O and CO2 emitted during the freeze-thaw cycles may have originated mostly from cellular materials released from lysis and death of microbial biomass rather than from soil aggregate disruption. Cumulative N2O emissions measured over the 49-day incubation period ranged from 148 mg N2O-N m-2 to 17 mg N2O-N m-2 and were highest in miscanthus followed by willow, switchgrass, and successional site. Cumulative CO2 on the other hand was highest in the successional site than any of the bioenergy crops and ranged from 25,262 mg CO2-C m-2 to 15,403 mg CO2-C m-2 after the 49 days. Higher N2O emissions in the miscanthus and willow than switchgrass and successional site were attributed to accelerated N losses as N2O. Results from our study indicate that managing perennial bioenergy crops on low productive agricultural lands to reduce freeze-thaw related GHG emissions and climate change mitigation is dependent on the crop species grown.


Assuntos
Gases de Efeito Estufa , Panicum , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Agricultura/métodos , Solo , Óxido Nitroso/análise
19.
Sci Total Environ ; 926: 171779, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508254

RESUMO

Peatlands play a crucial role in carbon (C) sequestration and biodiversity conservation. However, these environments are highly vulnerable, and Europe has lost >60 % of its peatland habitat in recent decades. Cattle grazing and trampling contribute to peatland degradation, which generally result in a shift from moss-dominated vegetation to vascular plants and in lower C sequestration rates. Overgrazing poses also a significant threat to habitat integrity and biodiversity, especially in the Alpine area, where close-to-pristine mires with high ecological integrity are becoming extremely rare. Thus, a more in depth understanding of how cattle grazing and trampling are threatening Alpine mires is strongly needed for a sustainable management and conservation of these habitats. The objective of this study was to examine the impact of grazing on the physical, chemical, and biological characteristics of peat, with a focus on diatoms. To answer such a question, seven 50-cm deep cores were collected from mires located in the Adamello-Brenta Nature Park (North of Italy) along a grazing-induced disturbance gradient. Results indicated that grazing primarily affected at least the upper 15 cm of the peat, resulting in increased density and reduced water content, due to compaction, and lower C-to­nitrogen ratio, possibly caused by both cow manure inputs and increased peat mineralization. Moreover, almost 200 diatom taxa were recorded across the 7 cores, with several of them falling under threat categories in the Red List for central Europe. The higher percentage of eutraphentic species in highly-grazed areas was related to the increase in nutrients caused by cattle manure. Finally, intense grazing increased the share of taxa that are more likely to survive in environments with unstable water availability (= aerial species). We showed that diatom data, supported by physical and chemical parameters, can be a refined tool to inform mire protection and rehabilitation.


Assuntos
Diatomáceas , Bovinos , Animais , Solo , Esterco , Ecossistema , Água
20.
J Exp Bot ; 75(13): 4052-4073, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38497908

RESUMO

The glutamine synthetase/glutamic acid synthetase (GS/GOGAT) cycle plays important roles in N metabolism, growth, development, and stress resistance in plants. Excess ammonium (NH4+) restricts growth, but GS can help to alleviate its toxicity. In this study, the 84K model clone of hybrid poplar (Populus alba × P. tremula var. glandulosa), which has reduced biomass accumulation and leaf chlorosis under high-NH4+ stress, showed less severe symptoms in transgenic lines overexpressing GLUTAMINE SYNTHETASE 1;2 (GS1;2-OE), and more severe symptoms in RNAi lines (GS1;2-RNAi). Compared with the wild type, the GS1;2-OE lines had increased GS and GOGAT activities and higher contents of free amino acids, soluble proteins, total N, and chlorophyll under high-NH4+ stress, whilst the antioxidant and NH4+ assimilation capacities of the GS1;2-RNAi lines were decreased. The total C content and C/N ratio in roots and leaves of the overexpression lines were higher under stress, and there were increased contents of various amino acids and sugar alcohols, and reduced contents of carbohydrates in the roots. Under high-NH4+ stress, genes related to amino acid biosynthesis, sucrose and starch degradation, galactose metabolism, and the antioxidant system were significantly up-regulated in the roots of the overexpression lines. Thus, overexpression of GS1;2 affected the carbon and amino acid metabolism pathways under high-NH4+ stress to help maintain the balance between C and N metabolism and alleviate the symptoms of toxicity. Modification of the GS/GOGAT cycle by genetic engineering is therefore a potential strategy for improving the NH4+ tolerance of cultivated trees.


Assuntos
Compostos de Amônio , Carbono , Glutamato-Amônia Ligase , Nitrogênio , Plantas Geneticamente Modificadas , Populus , Populus/genética , Populus/metabolismo , Populus/enzimologia , Glutamato-Amônia Ligase/metabolismo , Glutamato-Amônia Ligase/genética , Nitrogênio/metabolismo , Carbono/metabolismo , Compostos de Amônio/metabolismo , Compostos de Amônio/toxicidade , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA