Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39124972

RESUMO

Transition-metal-catalyzed directed C-H functionalization with various carbene precursors has been widely employed for constructing a wide range of complex and diverse active molecules through metal carbene migratory insertion processes. Among various carbene precursors, iodonium ylides serve as a novel and emerging carbene precursor with features including easy accessibility, thermal stability and high activity, which have attracted great attention from organic chemists and have achieved tremendous success in organic transformation. In this review, recent progress on the application of iodonium ylides with multifunctional coupling characteristics in C-H bond activation reactions is summarized, and the potential of iodonium ylides is discussed.

2.
Chemphyschem ; : e202400427, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136928

RESUMO

The pathways for the reactions of aluminum oxide cluster ions with ethane have been measured. For selected ions (Al2O+, Al3O2+, Al3O4+, Al4O7+) the structure of the collisionally-stabilized reaction intermediates were explored by measuring the photodissociation vibrational spectra from 2600 cm-1 to 3100 cm-1. Density functional theory was used to calculate features of the potential energy surfaces for the reactions and the vibrational spectra of intermediates. Generally, more than one isomer contributes to the observed spectrum. The oxygen-deficient clusters Al2O+ and Al3O2+ have large C-H activation barriers, so only the entrance channel complexes in which intact C2H6 binds to aluminum are observed. This interaction leads to a substantial (~200 cm-1) red shift of the C-H symmetric stretch in ethane, indicating significant weakening of the proximal C-H bonds. In Al3O4+, the complex formed by interactions with three C2H6 is investigated and, in addition to entrance channel complexes, the C-H activation intermediate Al3O4H+(C2H5)(C2H6)2 is observed. For oxygen-rich Al4O7+, the C2H6 is favored to bind at an aluminum site far from the reactive superoxide group, reducing the reactivity. As expected, oxygen-rich species and open-shell cluster ions have smaller barriers for C-H bond activation, except for Al3O4+ which is predicted and observed to be reactive.

3.
Chem Asian J ; : e202400718, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121210

RESUMO

Isoindolinones are vital heterocyclic compounds in medicinal chemistry, notable for their diverse bioactivities. Significant attention has been devoted to their preparation; however, existing methods are unsuitable for constructing unsubstituted 3-methyleneisoindolin-1-ones. Herein, we present a rhodium(III)-catalyzed method for synthesizing unsubstituted 3-methyleneisoindolin-1-ones via C‒H/N‒H activation and annulation of N-methoxybenzamides with potassium (ethenyl)trifluoroborate. This approach offers mild reaction conditions, high regioselectivity, and efficient yields. Interestingly, sterically demanding or heterocyclic N-methoxyaromaticamides resulted in the formation of 2-vinyl(hetero)aromatic amides instead of 3-methyleneisoindolin-1-ones. Mechanistic insights suggest a rhodacycle intermediate pathway, highlighting the method's potential for developing new bioactive isoindolinone derivatives.

4.
Chem Asian J ; : e202400757, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136413

RESUMO

Herein, we describe the Ru-catalyzed C-H alkenylation of 1,4-naphthoquinones (1,4-NQs), resulting in 1,4-naphthoquinoidal/SuFEx hybrids with moderate to good yields. This method provides a novel route for direct access to ethenesulfonyl-fluorinated quinone structures. We conducted mechanistic studies to gain an in-depth understanding of the elementary steps of the reaction. Additionally, we evaluated the prototypes against trypomastigote forms of T. cruzi, leading to the identification of compounds with potent trypanocidal activity.

5.
Chem Asian J ; : e202400711, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39176435

RESUMO

A direct ortho-Csp2-H acylalkylation of 2-aryl-2,3-dihydrophthalazine-1,4-diones with unsubstituted and substituted allyl alcohols is achieved in high yields through Rh(III)-catalyzed C-H bond activation process. The additional employment of Cu(OAc)2.2H2O as an oxidant detour the reaction towards [4+1] annulation, producing 13-(2-oxopropyl)-13H-indazolo[1,2-b]phthalazine-6,11-diones in moderate yields. Interestingly, Lawesson's reagent-mediated conditions accomplished intramolecular cyclization in ortho-(formylalkylated)-2,3-dihydrophthalazine-1,4-diones to produce diazepino[1,2-b]phthalazine-diones in moderate yields. Furthermore, allyl alcohol showcased distinct reactivity in presence of different additives to produce ortho-allylated, oxidative and non-oxidative [4+2] annulated products.

6.
Angew Chem Int Ed Engl ; : e202410806, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39072955

RESUMO

Pd-catalysis has stood as a pivotal force in synthetic transformations for decades, maintaining its status as a paramount tool in the realm of C-H bond activation. While functionalization at proximal positions has become commonplace, achieving selective and sustainable access to distal positions continues to captivate scientific endeavors. Recently, a noteworthy trend has emerged, focusing on the utilization of non-covalent interactions to address the challenges associated with remote functionalization. The integration of these non-covalent interactions into palladium catalysis stands as a justified response to the demands of achieving selective transformations at distal positions. This review delves into the latest advancements and trends surrounding the incorporation of non-covalent interactions within the field of palladium catalysis. Furthermore, it is noteworthy to emphasize that multifunctional templates, particularly those harnessing hydrogen bonding, present an elegant and sophisticated approach to activate C-H bonds in a highly directed fashion. These templates showcase versatility and demonstrate potential applications across diverse contexts within the area of remote functionalization.

7.
Angew Chem Int Ed Engl ; : e202412296, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078406

RESUMO

The development of simplified synthetic strategy to create structurally and functionally diverse pseudo-natural macrocyclic molecules is highly appealing but poses a marked challenge. Inspired by natural scaffolds, herein, we describe a practical and concise ligand-enabled Pd(II)-catalysed sp3 C‒H alkylation, olefination and arylation macrocyclization, which could offer a novel set of pseudo-natural macrocyclic sulfonamides. Interestingly, the potential of ligand acceleration in C‒H activation is also demonstrated by an unprecedented enantioselective sp3 C‒H alkylation macrocyclization. Moreover, a combination of in silico screening and biological evaluation led to the identification of a novel spiro-grafted macrocyclic sulfonamide 2a, which showed a promising efficacy for the treatment of Parkinson's disease (PD) in a mouse model through the activation of silent information regulator sirtuin 3 (SIRT3).

8.
Bioorg Chem ; 151: 107648, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39032406

RESUMO

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and remains the leading cause of cancer deaths. Much progress has been made to treat NSCLC, however, only limited patients can benefit from current treatments. Thus, more efforts are needed to pursue novel molecular modalities for NSCLC treatment. It was demonstrated that pseudo-natural products (PNP) are a critical source for antitumor drug discovery. Herein, we describe a CH activation protocol for the expedient construction of a focused library utilizing the PNP rational design strategy. This protocol features a rhodium-catalyzed CH activation/ [4+2] annulation reaction between N-OAc-indole-2-carboxamide and alkynyl quinols, enabling facile access to diverse quinol substituted ß-carboline derivatives (31 examples). The anticancer activities were assessed in vitro against NSCLC cell line A549, yielding a potent antiproliferative ß-carboline derivative (8r) with an IC50 value of 0.8 ± 0.1 µM. Further investigation revealed that this compound could decrease the expression of Caspase 3, and increase the expression of autophagic protein Cyclin B1, thus markedly inducing autophagy and apoptosis. Mechanistic study suggested that 8r could be a potent anti-NSCLC agent through the AKT/mTOR signaling pathway in A549 cells. Moreover, the anticancer activities were also assessed against three other cancer cell lines, and 8r exhibits a broader inhibitory effect on cell proliferation in all cancer cell lines tested. These results indicated that carboline-based PNPs show great potential to induce cell autophagy and apoptosis, which serve as good leads for further drug discovery.

9.
Angew Chem Int Ed Engl ; : e202412167, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980310

RESUMO

Alkenes are fundamental functional groups which feature in various materials and bioactive molecules; however, efficient divergent strategies for their stereodefined synthesis are difficult. In this regard, numerous synthetic methodologies have been developed to construct carbon-carbon bonds with regio- and stereoselectivity, enabling the predictable and efficient synthesis of stereodefined alkenes. In fact, an appealing alternative approach for accessing challenging stereodefined alkenes molecular frameworks could involve the sequential selective activation and cross-coupling of strong bonds instead of conventional C-C bond formation. In this study, we introduce a series of programmed site- and stereoselective strategies that capitalizes on the versatile reactivity of readily accessible polymetalloid alkenes (i.e. polyborylated alkenes), through a tandem cross-coupling reaction, which is catalyzed by an organometallic Rh-complex to produce complex molecular scaffolds. By merging selective C-B and remote C-H bond functionalization, we achieve the in-situ generation of polyfunctional C(sp2)-nucleophilic intermediates. These species can be further modified by selective coupling reactions with various C-based electrophiles, enabling the formation of C(sp2)-C(sp3) bond for the generation of even more complex molecular architectures using the readily available starting polyborylated-alkenes. Mechanistic and computational studies have provided insight into the origins of the stereoselectivities and C-H activation via a 1,4-Rh migration process.

10.
Angew Chem Int Ed Engl ; : e202409010, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012678

RESUMO

Site-selective C-H bond functionalization of arenes at the para position remains extremely challenging primarily due to its relative inaccessibility from the catalytic site. As a consequence, it is significantly restricted to the limited molecular scaffolds. Herein, we report a method for the para-C-H borylation of aromatic aldimines and benzylamines using commercially available ligands under iridium catalysis. The established method displayed excellent para-selectivity for variously substituted aromatic aldimines, benzylamines and bioactive molecules. Based on the several control experiments, it has been realized that a Lewis acid-base interaction between the nitrogen and boron functionality guides the para selectivity via a steric shield for the aromatic aldimines, where Bpin acts as a transient directing group. However, the steric shield of the in situ generated N-Bpin moiety controlled the overall selectivity for the para borylation of benzylamines.

11.
Angew Chem Int Ed Engl ; : e202409310, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39001611

RESUMO

Allylic amines are prevalent and vital structural components present in many bioactive compounds and natural products. Additionally, they serve as valuable intermediates and building blocks, with wide-ranging applications in organic synthesis. However, direct α-C(sp3)-H alkenylation of feedstock amines, particularly for the preparation of α-alkenylated cyclic amines, has posed a longstanding challenge. Herein, we present a general, mild, operationally simple, and transition-metal-free α-alkenylation of various readily available amines with alkenylborate esters in excellent E/Z - and diastereoselectivities. This method features good compatibility with water and oxygen, broad substrate scope, and excellent functional group tolerance, thereby enabling the late-stage modification of various complex molecules. Mechanistic studies suggest that the formation of a photoactive electron donor-acceptor complex between 2-iodobenzamide and the tetraalkoxyborate anion, which subsequently undergoes photoinduced single electron transfer and intramolecular 1,5-hydrogen atom transfer to generate the crucial α-amino radicals, is the key to success of this chemistry.

12.
Molecules ; 29(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38893318

RESUMO

cis-1-amino-2-indanol is an important building block in many areas of chemistry. Indeed, this molecule is currently used as skeleton in many ligands (BOX, PyBOX…), catalysts and chiral auxiliaries. Moreover, it has been incorporated in numerous bioactive structures. The major issues during its synthesis are the control of cis-selectivity, for which various strategies have been devised, and the enantioselectivity of the reaction. This review highlights the various methodologies implemented over the last few decades to access cis-1-amino-2-indanol in racemic and enantioselective manners. In addition, the various substitution patterns on the aromatic ring and their preparations are listed.

13.
Molecules ; 29(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792215

RESUMO

Quinazolines are an important class of heterocyclic compounds that have proven their significance, especially in the field of organic synthesis and medicinal chemistry because of their wide range of biological and pharmacological properties. Thus, numerous synthetic methods have been developed for the synthesis of quinazolines and their derivatives. This review article briefly outlines the new synthetic methods for compounds containing the quinazoline scaffold employing transition metal-catalyzed reactions.

14.
Front Chem ; 12: 1398397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783896

RESUMO

Asymmetric catalysis stands at the forefront of modern chemistry, serving as a cornerstone for the efficient creation of enantiopure chiral molecules characterized by their high selectivity. In this review, we delve into the realm of asymmetric catalytic reactions, which spans various methodologies, each contributing to the broader landscape of the enantioselective synthesis of chiral molecules. Transition metals play a central role as catalysts for a wide range of transformations with chiral ligands such as phosphines, N-heterocyclic carbenes (NHCs), etc., facilitating the formation of chiral C-C and C-X bonds, enabling precise control over stereochemistry. Enantioselective photocatalytic reactions leverage the power of light as a driving force for the synthesis of chiral molecules. Asymmetric electrocatalysis has emerged as a sustainable approach, being both atom-efficient and environmentally friendly, while offering a versatile toolkit for enantioselective reductions and oxidations. Biocatalysis relies on nature's most efficient catalysts, i.e., enzymes, to provide exquisite selectivity, as well as a high tolerance for diverse functional groups under mild conditions. Thus, enzymatic optical resolution, kinetic resolution and dynamic kinetic resolution have revolutionized the production of enantiopure compounds. Enantioselective organocatalysis uses metal-free organocatalysts, consisting of modular chiral phosphorus, sulfur and nitrogen components, facilitating remarkably efficient and diverse enantioselective transformations. Additionally, unlocking traditionally unreactive C-H bonds through selective functionalization has expanded the arsenal of catalytic asymmetric synthesis, enabling the efficient and atom-economical construction of enantiopure chiral molecules. Incorporating flow chemistry into asymmetric catalysis has been transformative, as continuous flow systems provide precise control over reaction conditions, enhancing the efficiency and facilitating optimization. Researchers are increasingly adopting hybrid approaches that combine multiple strategies synergistically to tackle complex synthetic challenges. This convergence holds great promise, propelling the field of asymmetric catalysis forward and facilitating the efficient construction of complex molecules in enantiopure form. As these methodologies evolve and complement one another, they push the boundaries of what can be accomplished in catalytic asymmetric synthesis, leading to the discovery of novel, highly selective transformations which may lead to groundbreaking applications across various industries.

15.
J Mol Model ; 30(5): 152, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687370

RESUMO

CONTEXT: The combined use of transition metal-catalyzed C-H activation with aryne annulation reactions has emerged as an important strategy in organic synthesis. In this study, the mechanisms of the palladium(II)-catalyzed annulation reaction of N-methoxy amides and arynes were computationally investigated by density functional theory. The role of methoxy amide as a directing group was elucidated through the calculation of three different pathways for the C-H activation step, showing that the pathway where amide nitrogen acts as a directing group is preferable. At the reductive elimination transition state, an unstable seven-membered ring is formed preventing the lactam formation. A substituent effect study based on an NBO analysis, Hammet, and using a More O'Ferall-Jenks plot indicates that the C-H activation step proceeds via an electrophilic concerted metalation-deprotonation (eCMD) mechanism. The results show that electron-withdrawing groups increase the activation barrier and contribute to an early Pd-C bond formation and a late C-H bond breaking when compared with electron-donating substituents. Our computational results are in agreement with the experimental data provided in the literature. METHODS: All calculations were performed using Gaussian 16 software. Geometry optimizations, frequency analyses at 393.15 K, and IRC calculations were conducted at the M06L/Def2-SVP level of theory. Corrected electronic energies, NBO charges, and Wiberg bond indexes were computed at the M06L/Def2-TZVP//M06L/Def2-SVP level of theory. Implicit solvent effects were considered in all calculations using the SMD model, with acetonitrile employed as the solvent.

16.
Angew Chem Int Ed Engl ; 63(23): e202403179, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574295

RESUMO

In the past, Cu-oxo or -hydroxy clusters hosted in zeolites have been suggested to enable the selective conversion of methane to methanol, but the impact of the active site's stoichiometry and structure on methanol production is still poorly understood. Herein, we apply theoretical modeling in conjunction with experiments to study the impact of these two factors on partial methane oxidation in the Cu-exchanged zeolite SSZ-13. Phase diagrams developed from first-principles suggest that Cu-hydroxy or Cu-oxo dimers are stabilized when O2 or N2O are used to activate the catalyst, respectively. We confirm these predictions experimentally and determine that in a stepwise conversion process, Cu-oxo dimers can convert twice as much methane to methanol compared to Cu-hydroxyl dimers. Our theoretical models rationalize how Cu-di-oxo dimers can convert up to two methane molecules to methanol, while Cu-di-hydroxyl dimers can convert only one methane molecule to methanol per catalytic cycle. These findings imply that in Cu clusters, at least one oxo group or two hydroxyl groups are needed to convert one methane molecule to methanol per cycle. This simple structure-activity relationship allows to intuitively understand the potential of small oxygenated or hydroxylated transition metal clusters to convert methane to methanol.

17.
J Biol Chem ; 300(2): 105621, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176649

RESUMO

Phenazine-1-carboxylic acid decarboxylase (PhdA) is a prenylated-FMN-dependent (prFMN) enzyme belonging to the UbiD family of decarboxylases. Many UbiD-like enzymes catalyze (de)carboxylation reactions on aromatic rings and conjugated double bonds and are potentially valuable industrial catalysts. We have investigated the mechanism of PhdA using a slow turnover substrate, 2,3-dimethylquinoxaline-5-carboxylic acid (DQCA). Detailed analysis of the pH dependence and solvent deuterium isotope effects associated with the reaction uncovered unusual kinetic behavior. At low substrate concentrations, a substantial inverse solvent isotope effect (SIE) is observed on Vmax/KM of ∼ 0.5 when reaction rates of DQCA in H2O and D2O are compared. Under the same conditions, a normal SIE of 4.15 is measured by internal competition for proton transfer to the product. These apparently contradictory results indicate that the SIE values report on different steps in the mechanism. A proton inventory analysis of the reaction under Vmax/KM and Vmax conditions points to a "medium effect" as the source of the inverse SIE. Molecular dynamics simulations of the effect of D2O on PhdA structure support that D2O reduces the conformational lability of the enzyme and results in a more compact structure, akin to the active, "closed" conformer observed in crystal structures of some UbiD-like enzymes. Consistent with the simulations, PhdA was found to be more stable in D2O and to bind DQCA more tightly, leading to the observed rate enhancement under Vmax/KM conditions.


Assuntos
Carboxiliases , Carboxiliases/química , Isótopos , Cinética , Fenazinas , Prótons , Solventes , Mycobacteriaceae/enzimologia
18.
Carbohydr Res ; 536: 109018, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185030

RESUMO

A proficient approach has been developed for the synthesis of substituted 2H-chromenes from C1-substituted glucal. The key step of our synthetic methodology was C-H activation in propylene carbonate solvent followed by 6π-electrocyclization aromatization in ethylene glycol as greener substitutes to toxic aprotic solvents, to obtain 2H-chromenes in a stepwise manner. The application of the developed methodology was further explored with the synthesis of a small library of substituted 2H-chromenes in good yields.


Assuntos
Benzopiranos , Paládio , Ciclização , Catálise
19.
Adv Sci (Weinh) ; 11(8): e2305471, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37882341

RESUMO

Methane as the main component in natural gas is a promising chemical raw material for synthesizing value-added chemicals, but its harsh chemical conversion process often causes severe energy and environment concerns. Photocatalysis provides an attractive path to active and convert methane into various products under mild conditions with clean and sustainable solar energy, although many challenges remain at present. In this review, recent advances in photocatalytic methane conversion are systematically summarized. As the basis of methane conversion, the activation of methane is first elucidated from the structural basis and activation path of methane molecules. The study is committed to categorizing and elucidating the research progress and the laws of the intricate methane conversion reactions according to the target products, including photocatalytic methane partial oxidation, reforming, coupling, combustion, and functionalization. Advanced photocatalytic reactor designs are also designed to enrich the options and reliability of photocatalytic methane conversion performance evaluation. The challenges and prospects of photocatalytic methane conversion are also discussed, which in turn offers guidelines for methane-conversion-related photocatalyst exploration, reaction mechanism investigation, and advanced photoreactor design.

20.
Molecules ; 28(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067539

RESUMO

An efficient method of accessing new CF3-containing spiro-[indene-proline] derivatives has been developed based on a Cp*Rh(III)-catalyzed tandem C-H activation/[3+2]-annulation reaction of 5-aryl-2-(trifluoromethyl)-3,4-dihydro-2H-pyrrole-2-carboxylates with alkynes. An important feature of this spiro annulation process is the feasibility of dehydroproline moiety to act as a directing group in the selective activation of the aromatic C-H bond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA