Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Euro Surveill ; 29(29)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027938

RESUMO

BackgroundThe COVID-19 pandemic and the emergence of Candida auris have changed the epidemiological landscape of candidaemia worldwide.AimWe compared the epidemiological trends of candidaemia in a Greek tertiary academic hospital before (2009-2018) and during the early COVID-19 (2020-2021) and late COVID-19/early post-pandemic (2022-2023) era.MethodsIncidence rates, species distribution, antifungal susceptibility profile and antifungal consumption were recorded, and one-way ANOVA or Fisher's exact test performed. Species were identified by MALDI-ToF MS, and in vitro susceptibility determined with CLSI M27-Ed4 for C. auris and the EUCAST-E.DEF 7.3.2 for other Candida spp.ResultsIn total, 370 candidaemia episodes were recorded during the COVID-19 pandemic. Infection incidence (2.0 episodes/10,000 hospital bed days before, 3.9 during the early and 5.1 during the late COVID-19 era, p < 0.0001), C. auris (0%, 9% and 33%, p < 0.0001) and fluconazole-resistant C. parapsilosis species complex (SC) (20%, 24% and 33%, p = 0.06) infections increased over time, with the latter not associated with increase in fluconazole/voriconazole consumption. A significant increase over time was observed in fluconazole-resistant isolates regardless of species (8%, 17% and 41%, p < 0.0001). Resistance to amphotericin B or echinocandins was not recorded, with the exception of a single pan-echinocandin-resistant C. auris strain.ConclusionCandidaemia incidence nearly tripled during the COVID-19 era, with C. auris among the major causative agents and increasing fluconazole resistance in C. parapsilosis SC. Almost half of Candida isolates were fluconazole-resistant, underscoring the need for increased awareness and strict implementation of infection control measures.


Assuntos
Antifúngicos , COVID-19 , Candidemia , Farmacorresistência Fúngica , Fluconazol , Testes de Sensibilidade Microbiana , SARS-CoV-2 , Centros de Atenção Terciária , Humanos , Candidemia/epidemiologia , Candidemia/tratamento farmacológico , Candidemia/microbiologia , Grécia/epidemiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , COVID-19/epidemiologia , Centros de Atenção Terciária/estatística & dados numéricos , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/isolamento & purificação , Incidência , Candida auris/efeitos dos fármacos , Candida/efeitos dos fármacos , Candida/isolamento & purificação , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Pandemias , Candidíase/epidemiologia , Candidíase/tratamento farmacológico , Candidíase/microbiologia
2.
Int Microbiol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940863

RESUMO

BACKGROUND: Candida auris (C. auris) is an emerging aggressive pathogen that causes severe infections in critically ill patients. Therefore, the assessment of this pathogen, characterized by inclination for biofilm formation, elevated colonization rate, and resistance to multiple drugs, holds a paramount importance. There is no data regarding the isolation of C. auris in our tertiary care hospitals' intensive care units (ICUs). The current case study was arranged to assess the incidence of C. auris central line-associated bloodstream infection (CLABSI) problem in our (ICUs). METHODS: Specimens of central venous catheter blood, peripheral blood, and catheter tips were collected from 301 critically ill patients with suspected (CLABSI). Microbiological cultures were utilized to diagnose bacterial and fungal superinfections. The fungal species identification and antifungal susceptibility testing were conducted using the Brilliance Chrome agar, VITEK® 2 compact system, and MALDI-TOF MS. RESULTS: All included specimens (100%) yielded significant growth. Only 14 specimens (4.7%) showed fungal growth in the form of different Candida species. When comparing the identification of C. auris, MALDI-TOF MS is considered the most reliable method. Brilliance CHROMagar demonstrated a sensitivity of 100%, whereas VITEK only showed a sensitivity of approximately 33%. All recovered isolates of C. auris were fluconazole resistant. CONCLUSION: C. auris is a highly resistant emerging pathogen in our ICUs that is often overlooked in identification using conventional methods.

3.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38866718

RESUMO

AIM: Isolation, identification, structural and functional characterization of potent anti-Candida compound with specific antagonistic activities against significant human pathogens, Candida albicans and C. auris. METHODS AND RESULTS: The compound (55B3) was purified from the metabolites produced by Streptomyces chrestomyceticus ADP4 by employing column chromatography. The structure of 55B3 was determined from the analyses of spectral data that included LCMS, nuclear magnetic resonance, FTIR, and UV spectroscopies. It was identified as a novel derivative of diterpenic aromatic acid, 3-(dictyotin-11'-oate-15'α, 19'ß-olide)-4-(dictyotin-11'-oate-15″α, 19″ß-olide)-protocatechoic acid. The compound displayed potent antifungal and anti-biofilm activities against C. albicans ATCC 10231 (Minimum Inhibitory Concentration, MIC90:14.94 ± 0.17 µgmL-1 and MBIC90: 16.03 ± 1.1 µgmL-1) and against C. auris CBS 12372 (MIC90: 21.75 ± 1.5 µgmL-1 and Minimum Biofilm Inhibitory Concentration, MBIC90: 18.38 ± 1.78 µgmL-1). Further, pronounced inhibition of important virulence attributes of Candida spp., e.g. yeast-to-hyphae transition, secretory aspartyl proteinase and phospholipase B by 55B3 was noted at subinhibitory concentrations. A plausible mechanism of anti-Candida action of the compound appeared to be the inhibition of ergosterol biosynthesis, which was inhibited by 64 ± 3% at the MIC90 value. The non-cytotoxic attribute of the compound was noted in the liver cell line (HepG2 cells). CONCLUSION: The present work led to the discovery of a novel diterpenic derivative produced by S. chrestomyceticus ADP4. The compound displayed potent anti-Candida activity, particularly against the two most significant human pathogens, C. albicans and C. auris, which underlined its significance as a potential drug candidate for infections involving these pathogens.


Assuntos
Antifúngicos , Biofilmes , Candida albicans , Testes de Sensibilidade Microbiana , Streptomyces , Fatores de Virulência , Biofilmes/efeitos dos fármacos , Streptomyces/metabolismo , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Humanos , Candida/efeitos dos fármacos
4.
Emerg Microbes Infect ; 13(1): 2322649, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38431850

RESUMO

Candida auris has emerged as a problematic fungal pathogen associated with high morbidity and mortality. Amphotericin B (AmB) is the most effective antifungal used to treat invasive fungal candidiasis, with resistance rarely observed among clinical isolates. However, C. auris possesses extraordinary resistant profiles against all available antifungal drugs, including AmB. In our pursuit of potential solutions, we screened a panel of 727 FDA-approved drugs. We identified the proton pump inhibitor lansoprazole (LNP) as a potent enhancer of AmB's activity against C. auris. LNP also potentiates the antifungal activity of AmB against other medically important species of Candida and Cryptococcus. Our investigations into the mechanism of action unveiled that LNP metabolite(s) interact with a crucial target in the mitochondrial respiratory chain (complex III, known as cytochrome bc1). This interaction increases oxidative stress within fungal cells. Our results demonstrated the critical role of an active respiratory function in the antifungal activity of LNP. Most importantly, LNP restored the efficacy of AmB in an immunocompromised mouse model, resulting in a 1.7-log (∼98%) CFU reduction in the burden of C. auris in the kidneys. Our findings strongly advocate for a comprehensive evaluation of LNP as a cytochrome bc1 inhibitor for combating drug-resistant C. auris infections.


Assuntos
Anfotericina B , Antifúngicos , Candidíase , Animais , Camundongos , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida auris , Lansoprazol/farmacologia , Respiração , Citocromos
5.
Mycoses ; 67(1): e13686, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38214363

RESUMO

BACKGROUND: Otomycosis is an infection of the external auditory canal caused by molds and yeasts with descending frequency. Laboratory diagnosis is usually confirmed by microscopy and culture. However, they are not specific enough to reliably differentiate the causative agents, especially for rare pathogens such as Candida auris. The purpose of the current study was to the molecular screening of C. auris species from direct clinical samples of patients with suspected otomycosis in Southern of Iran. MATERIALS AND METHODS: A total of 221 ear aspirates collected from 221 patients with suspected otomycosis over a four-year period. All the ear aspirations were examined with pan-fungal primers, then those with a positive result was included in two separate reaction mixtures simultaneously to identify the most clinically relevant Aspergillus and Candida species. The validity of positive samples for C. auris was assessed by sequencing. RESULTS: Of the 189 pan-fungal positive PCRs, 78 and 39 specimens contained Aspergillus spp. and Candida spp., respectively. Furthermore, 65 specimens showed simultaneous positive bands in both Candida and Aspergillus species-specific multiplex PCR including five samples/patients with positive result for C. auris (5/189; 2.6%). Four out of five cases with C. auris species-specific PCR were reconfirmed by sequencing, while none were positive for C. auris in culture. CONCLUSION: Unfortunately, due to high treatment failure rates of antifungal classes against C. auris species, rapid and accurate identification of patients colonised with C. auris is critical to overcome the challenge of preventing transmission. This PCR assay can be successfully applied for rapid and accurate detection of C. auris directly in patient samples and is able to differentiate C. auris from closely related Candida species.


Assuntos
Otomicose , Humanos , Otomicose/diagnóstico , Otomicose/tratamento farmacológico , Otomicose/microbiologia , Candida auris , Reação em Cadeia da Polimerase Multiplex , Irã (Geográfico)/epidemiologia , Candida/genética , Aspergillus/genética , Antifúngicos/uso terapêutico
6.
Arch Microbiol ; 206(1): 50, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172349

RESUMO

A novel decalin derivative, trans-1-oxo-2,4-diacetylaminodecalin (1) with anti-Candida activity, had been isolated from Streptomyces chrestomyceticus strain ADP4. The structure of the compound was determined from the analysis of spectral data (LCMS/MS, UV, FTIR, 1D- and 2D-NMR). The anti-Candida activity of 1 was specific to Candida albicans and Candida auris. Further, it displayed inhibition of the early-stage biofilm of C. albicans. In-silico analysis of the compound revealed its drug likeness properties without any violations and PAINS alert when investigated for ADME properties. Along with the overall bioavailability, compound 1 did not show any predicted bioaccumulation and mutagenicity in the analysis by TEST software. Non-cytotoxic property was further confirmed by in-vitro assay on the HepG2 cell line.


Assuntos
Antifúngicos , Candida , Antifúngicos/química , Testes de Sensibilidade Microbiana , Candida albicans
7.
Trends Microbiol ; 32(1): 4-5, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37951769

RESUMO

Candida auris is an emerging human fungal pathogen that can rapidly spread and cause outbreaks of invasive infections. Santana et al. discovered that a novel surface colonization factor (SCF1), and a conserved adhesin, Iff4109, mediates C. auris colonization on abiotic surfaces, skin, and virulence in vivo.


Assuntos
Candida , Candidíase , Humanos , Candidíase/microbiologia , Candida auris , Adesinas Bacterianas , Virulência , Antifúngicos
8.
Healthcare (Basel) ; 11(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38132040

RESUMO

BACKGROUND: Candida auris is an emerging multidrug-resistant fungal pathogen that represents a current serious threat to healthcare settings. OBJECTIVE: The objective was to determine the prevalence of C. auris in a Riyadh hospital since its initial detection in late 2019. METHODS: Using an adapted risk assessment tool, we reviewed the charts and medical files of all suspected and confirmed cases of C. auris infections reported at King Khalid University Hospital, Riyadh, between November 2019 and December 2022. Anonymized data were retrieved in a pre-established datasheet and analyzed to determine the epidemiological characteristics of C. auris infections in our facility. We analyzed prevalence by age, gender, risk factors, and according to sampling source. RESULTS: Of the 53 confirmed C. auris-positive cases during the study period, 33 (62%) were males. Their ages ranged between 15 and 98, with most positive cases occurring in those aged 50 and above. Only one of the confirmed cases was hospital-acquired. All patients had at least one risk factor, and urine samples yielded the greatest number of positive cases, while admission to healthcare facilities constituted the highest risk in our study. CONCLUSION: Establishing a local prevalence pattern could serve as a baseline/benchmark to compare with regional and international benchmarks.

9.
J Fungi (Basel) ; 9(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38132749

RESUMO

Fluconazole resistance is commonly encountered in Candida auris, and the yeast frequently displays resistance to other standard drugs, which severely limits the number of effective therapeutic agents against this emerging pathogen. In this study, we aimed to investigate the effect of acquired azole resistance on the viability, stress response, and virulence of this species. Fluconazole-, posaconazole-, and voriconazole- resistant strains were generated from two susceptible C. auris clinical isolates (0381, 0387) and compared under various conditions. Several evolved strains became pan-azole-resistant, as well as echinocandin-cross-resistant. While being pan-azole-resistant, the 0381-derived posaconazole-evolved strain colonized brain tissue more efficiently than any other strain, suggesting that fitness cost is not necessarily a consequence of resistance development in C. auris. All 0387-derived evolved strains carried a loss of function mutation (R160S) in BCY1, an inhibitor of the PKA pathway. Sequencing data also revealed that posaconazole treatment can result in ERG3 mutation in C. auris. Despite using the same mechanisms to generate the evolved strains, both genotype and phenotype analysis highlighted that the development of resistance was unique for each strain. Our data suggest that C. auris triazole resistance development is a highly complex process, initiated by several pleiotropic factors.

10.
Front Cell Infect Microbiol ; 13: 1257897, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780854

RESUMO

The surge of multidrug-resistant fungal pathogens, especially Candida auris, poses significant threats to global public health. Candida auris exhibits resistance to multiple antifungal drugs, leading to major outbreaks and a high mortality rate. With an urgent call for innovative therapeutic strategies, this study focused on the regulation and pathobiological significance of secreted aspartyl proteinases (SAPs) in C. auris, as these enzymes play pivotal roles in the virulence of some fungal species. We delved into the Ras/cAMP/PKA signaling pathway's influence on SAP activity in C. auris. Our findings underscored that the Ras/cAMP/PKA pathway significantly modulates SAP activity, with PKA catalytic subunits, Tpk1 and Tpk2, playing a key role. We identified a divergence in the SAPs of C. auris compared to Candida albicans, emphasizing the variation between Candida species. Among seven identified secreted aspartyl proteases in C. auris (Sapa1 to Sapa7), Sapa3 emerged as the primary SAP in the pathogen. Deletion of Sapa3 led to a significant decline in SAP activity. Furthermore, we have established the involvement of Sapa3 in the biofilm formation of C. auris. Notably, Sapa3 was primarily regulated by Tpk1 and Tpk2. Deletion of SAPA3 significantly reduced C. auris virulence, underscoring its pivotal role in C. auris pathogenicity. The outcomes of this study provide valuable insights into potential therapeutic targets, laying the groundwork for future interventions against C. auris infection.


Assuntos
Ácido Aspártico Proteases , Candida auris , Virulência , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Candida/genética , Candida albicans , Antifúngicos/farmacologia , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo
11.
J Epidemiol Glob Health ; 13(4): 825-830, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37870721

RESUMO

OBJECTIVE: To analyze the characteristics of C. auris cases, and to describe the interventions applied for improving the diagnosis and controlling the transmission. METHOD: Medical records of C. auris cases reported between January 2021 until June 2022 at King Saud Medical City (KSMC), Riyadh, Kingdom of Saudi Arabia have been reviewed. We analyzed the demographic and clinical characteristics of the cases to illustrate the possible contributing factors with C. auris infection. A multidisciplinary committee has been formulated to investigate the potential source of the outbreak among clusters of cases in the intensive care units (ICU). A bundle of mitigation measures has been applied which was successful to contain the outbreak. RESULTS: During the study period, a total of 129 cases of C. auris were identified, their mean age is 47 ± 22.3 SD, and 72.1% are males. 57% of cases were colonized, all of them were identified through active screening. A number of comorbidities were present including 27.9% were having hypertension, 27.1% with diabetes, 22.5% with COVID-19 and 20.2% with respiratory diseases. The average length of stay before reported positive was 36.23 days. 78.3% of those patients were in the critical care unit, 73.6% with vascular catheter, 88% with urinary catheters and 66.7% with mechanical ventilation. The vast majority of patients were using multiple antibiotics (86%). As per the univariate logistic model, risk factors significantly associated with mortality were (Age, Trauma RTA, ICU, Vascular Access, Foley Catheters, Mechanical Ventilation, Tracheostomy and Endotracheal Tubes) with p values (0.0038, 0.0159, 0.0108, 0.0122, 0.0071, <.0001, 0.0148 and 0.0107), respectively. Multivariate logistic regression showed that having a Foley Catheter was the only statistically significant factor associated with mortality. CONCLUSION: This retrospective analysis  highlights the main characteristics associated with C. auris-infected patients. In addition, it highlights the effectiveness of the bundle of mitigation strategies applied to limit the spread of C. auris in healthcare facilities.


Assuntos
Candida , Hospitais , Masculino , Humanos , Feminino , Arábia Saudita/epidemiologia , Estudos Retrospectivos
12.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37852663

RESUMO

Candida auris is an emerging human pathogen, associated with antifungal drug resistance and hospital candidiasis outbreaks. In this work, we present iRV973, the first reconstructed Genome-scale metabolic model (GSMM) for C. auris. The model was manually curated and experimentally validated, being able to accurately predict the specific growth rate of C. auris and the utilization of several sole carbon and nitrogen sources. The model was compared to GSMMs available for other pathogenic Candida species and exploited as a platform for cross-species comparison, aiming the analysis of their metabolic features and the identification of potential new antifungal targets common to the most prevalent pathogenic Candida species. From a metabolic point of view, we were able to identify unique enzymes in C. auris in comparison with other Candida species, which may represent unique metabolic features. Additionally, 50 enzymes were identified as potential drug targets, given their essentiality in conditions mimicking human serum, common to all four different Candida models analysed. These enzymes represent interesting drug targets for antifungal therapy, including some known targets of antifungal agents used in clinical practice, but also new potential drug targets without any human homolog or drug association in Candida species.


Assuntos
Antifúngicos , Candidíase , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida auris , Candida/genética , Candidíase/microbiologia , Desenvolvimento de Medicamentos , Testes de Sensibilidade Microbiana
13.
Microbiol Spectr ; : e0215223, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37671881

RESUMO

The emergence of multidrug-resistant fungal pathogens is a significant concern for global public health. Candida auris poses a considerable threat as a multidrug-resistant fungal pathogen. Our recent study revealed that the adenylyl cyclase Cyr1 and protein kinase A (PKA) pathways play distinct and redundant roles in drug resistance and pathogenicity of C. auris. However, the upstream and negative feedback regulatory mechanisms of C. auris are not yet fully understood. In this study, we discovered that the small GTPase Ras1, along with its nucleotide exchange factor Cdc25 and GTPase-activating protein Ira2, plays a major role in regulating cAMP/PKA-dependent traits, while G-protein-coupled receptor Gpr1 and heterotrimeric G-protein α subunit Gpa2 play a minor role. Pde2 plays a major role in negative feedback regulation of the cAMP/PKA pathway, while Pde1 plays a minor role. Hyperactivation of the Ras/cAMP/PKA pathway by deleting PDE2 or BCY1 renders C. auris cells thermosensitive and susceptible to nutrient deficiency, which leads to attenuated virulence. Our study demonstrates the distinct contributions of hyperactivation of the Ras/cAMP/PKA signaling pathway to C. auris pathogenesis and suggests potential therapeutic targets for C. auris-mediated candidiasis. IMPORTANCE Candida auris is a major concern as a multidrug-resistant fungal pathogen. While our previous studies highlighted the crucial roles of the cAMP/protein kinase A (PKA) pathway in regulating drug resistance, stress responses, morphogenesis, ploidy change, biofilm formation, and pathogenicity in this pathogen, their regulatory mechanism remains unclear. In our study, we provided evidence that the cAMP/PKA signaling pathway in C. auris is primarily governed by the small GTPase RAS rather than a G-protein-coupled receptor. Additionally, we discovered that the negative feedback regulation of cAMP, controlled by phosphodiesterases, is vital for C. auris virulence by promoting resistance to high temperatures and nutrient deficiencies. These findings underscore the diverse pathobiological significance of the Ras/cAMP/PKA signaling pathway in C. auris, shedding light on potential therapeutic targets and strategies for combating this multidrug-resistant fungal pathogen.

14.
J Fungi (Basel) ; 9(8)2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37623588

RESUMO

The antifungal activity of palindromic peptide RWQWRWQWR and its derivatives was evaluated against clinical isolates of Candida albicans and C. auris. Also, Bidens pilosa ethanolic extracts of leaves and stem were evaluated. Furthermore, combinations of peptide, extract, and/or fluconazole (FLC) were evaluated. The cytotoxicity of peptides and extracts in erythrocytes and fibroblasts was determined. The original palindromic peptide, some derivative peptides, and the ethanolic extract of leaves of B. pilosa exhibited the highest activity in some of the strains evaluated. Synergy was obtained between the peptide and the FLC against C. auris 435. The combination of the extract and the original palindromic peptide against C. albicans SC5314, C. auris 435, and C. auris 537 decreased the minimal inhibitory concentrations (MICs) by a factor of between 4 and 16. These mixtures induced changes in cell morphology, such as deformations on the cell surface. The results suggest that the combination of RWQWRWQWR and B. pilosa extract is an alternative for enhancing antifungal activity and decreasing cytotoxicity and costs and should be considered to be a promising strategy for treating diseases caused by Candida spp.

15.
Med Mycol ; 61(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37558393

RESUMO

Candida species are highly opportunistic yeasts that are responsible for serious invasive fungal infections among immunocompromised patients worldwide. Due to the increase in drug resistance and incidence of infections, there is an urgent need to develop new antifungals and to identify co-drugs that can sensitize drug-resistant Candida to antifungals. The objective of this study was to assess the effect of saquinavir on the activity of azole antifungals against C. auris. The in vitro interaction of saquinavir and three azole antifungals (itraconazole, voriconazole, and fluconazole) was evaluated against a panel of C. auris isolates. The itraconazole/saquinavir combination exhibited a synergistic (SYN) relationship against all C. auris isolates tested with the fractional inhibitory concentration index ranging from 0.03 to 0.27. Moreover, a time-kill kinetics assay revealed that saquinavir restored the itraconazole's fungistatic activity against C. auris. Furthermore, saquinavir restored itraconazole's antifungal activity against other clinically important Candida species. The mechanistic investigation indicated that saquinavir significantly inhibited efflux pumps, glucose utilization, and ATP synthesis in Candida. Finally, a murine model of C. auris infection was used to evaluate the efficacy of the itraconazole/saquinavir combination in the presence of ritonavir (as a pharmacokinetic enhancer). The combination significantly reduced the fungal burden in the kidneys by 0.93-log10 colony-forming units (88%) compared to itraconazole alone. This study identified that saquinavir exhibits a potent SYN relationship in combination with itraconazole against Candida species, which warrants further consideration.


Candida auris is a multi-drug resistant fungal pathogen with limited treatment options. In this study, we identified that the antiviral drug, saquinavir, is capable of synergizing and restoring the activity of antifungals against C. auris.


Assuntos
Antifúngicos , Itraconazol , Animais , Camundongos , Antifúngicos/farmacologia , Itraconazol/farmacologia , Candida auris , Saquinavir/farmacologia , Fluconazol/farmacologia , Candida , Azóis/farmacologia , Testes de Sensibilidade Microbiana/veterinária
16.
Mycopathologia ; 188(5): 765-773, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37542203

RESUMO

BACKGROUND: The difficulties in the identification of C. auris and the delays in the implementation of infection control precautions contribute to outbreaks. This study analyzed 10 patients with COVID-19 and C. auris candidemia, their characteristic and clinical features and phylogenetic features, and the antifungal susceptibilities of the isolates. METHOD: C. auris were detected in the COVID-19 ICU of a university hospital between January and August 2021. Identification to species level was performed using MALDI-TOF MS. Antifungal susceptibilities were determined by the Sensititre YeastOne YO10 panel. The isolates were whole genome sequenced to assess genetic relatedness and a phylogenetic tree was drawn including various C. auris clades. RESULTS: The mean growth time in blood cultures was 38.8 h. C. auris candidemia developed on the average 27th day of ICU admission. All were susceptible to anidulafungin and micafungin, while they were resistant to fluconazole and amphotericin B. Only three isolates were found to be resistant to caspofungin. All patients died. With the WGS method, all isolates were found in a close resemblance to each other in terms of total nucleotide similarity (with a minimum of 96% pairwise alignment). Our isolates showed the closest similarity to South Asian clade (Clade I). CONCLUSIONS: This study is the first to evaluate the phylogenetic characteristics of C. auris using WGS and to determine antifungal susceptibilities in Türkiye on COVID-19 patients. The mortality rate was very high in patients who have both COVID-19 and C. auris candidemia.

17.
Sci Total Environ ; 898: 165459, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442462

RESUMO

The use of wastewater-based surveillance (WBS) for detecting pathogens within communities has been growing since the beginning of the COVID-19 pandemic with early efforts investigating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA in wastewater. Recent efforts have shed light on the utilization of WBS for alternative targets, such as fungal pathogens, like Candida auris, in efforts to expand the technology to assess non-viral targets. The objective of this study was to extend workflows developed for SARS-CoV-2 quantification to evaluate whether C. auris can be recovered from wastewater, inclusive of effluent from a wastewater treatment plant (WWTP) and from a hospital with known numbers of patients colonized with C. auris. Measurements of C. auris in wastewater focused on culture-based methods and quantitative PCR (qPCR). Results showed that C. auris can be cultured from wastewater and that levels detected by qPCR were higher in the hospital wastewater compared to the wastewater from the WWTP, suggesting either dilution or degradation of this pathogenic yeast at downstream collection points. The results from this study illustrate that WBS can extend beyond SARS-CoV-2 monitoring to evaluate additional non-viral pathogenic targets and demonstrates that C. auris isolated from wastewater is competent to replicate in vitro using fungal-specific culture media.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Candida auris , Saccharomyces cerevisiae , Águas Residuárias , Florida , Pandemias
18.
mSphere ; 8(1): e0062322, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36695588

RESUMO

Candida auris is an emerging multidrug-resistant fungal pathogen that can cause life-threatening infections in humans. Unlike other Candida species that colonize the gut, C. auris efficiently colonizes the skin and contaminates the patient's environment, resulting in rapid nosocomial transmission and outbreaks of systemic infections. As the largest organ of the body, the skin harbors beneficial microbiota that play a critical role to protect from invading pathogens. However, the role of skin microbiota in the colonization and pathogenesis of C. auris remains to be explored. With this perspective, we review and discuss recent insights into skin microbiota and their potential interactions with the immune system in the context of C. auris skin colonization. Understanding microbiota, C. auris, and host interactions in the skin is important to develop microbiome-based therapeutic approaches to prevent and treat this emerging fungal pathogen in humans.


Assuntos
Candida auris , Candida , Humanos , Surtos de Doenças , Pele/microbiologia
19.
Mycoses ; 66(2): 138-143, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36135346

RESUMO

INTRODUCTION: Candida auris is an emerging pathogen in health care-associated infections. In contrast to many other countries with rising numbers of C. auris, only seven cases have been reported in Germany from 2015 to 2017, mostly from patients who received prior medical treatment abroad. We therefore established a mandatory screening for C. auris colonisation at our tertiary care centre for all patients who were admitted as international patients or previously hospitalised in a foreign country within the past 6 months. METHODS: Colonisation of patients was assessed using a previously established screening protocol for multidrug resistant bacteria. Since 2017, all screening samples were additionally analysed for C. auris using CHROMagar Candida (CHROMagar, Paris, France). Yeast isolates were identified using matrix-assisted laser ionisation time-of-flight (MALDI TOF), except for C. albicans (identified by the typical green colour on chromogenic agar). Data were analysed retrospectively. RESULTS: Our study cohort included 655 patients and an overall number of 1399 samples. Fifty-three patients were colonised with Candida species (C. albicans, n = 37; C. glabrata, n = 14; others n = 9). No case of C. auris was detected. Candida spp. were mainly detected from respiratory samples (5.4% positive) and gastrointestinal specimen (5.2%). Laboratory costs were 14,689 € and analyses resulted in 98.7 h of additional technician's work. CONCLUSION: No colonisation with C. auris was detected among patients with previous hospitalisation abroad. Universal C. auris screening of patients with any contact to foreign health care does not seem to be cost-effective in our setting and more targeted screening strategies have to be developed.


Assuntos
Antifúngicos , Turismo Médico , Humanos , Antifúngicos/uso terapêutico , Candida auris , Estudos Retrospectivos , Candida , Candida albicans , Candida glabrata , Hospitalização , Hospitais , Testes de Sensibilidade Microbiana
20.
J Fungi (Basel) ; 8(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36547631

RESUMO

Candida auris has emerged as a pan-resistant pathogenic yeast among immunocompromised patients worldwide. As this pathogen is involved in biofilm-associated infections with serious medical manifestations due to the collective expression of pathogenic attributes and factors associated with drug resistance, successful treatment becomes a major concern. In the present study, we investigated the candidicidal activity of a plant defensin peptide named defensin-like protein 1 (D-lp1) against twenty-five clinical strains of C. auris. Furthermore, following the standard protocols, the D-lp1 was analyzed for its anti-biofilm and anti-virulence properties. The impact of these peptides on membrane integrity was also evaluated. For cytotoxicity determination, a hemolytic assay was conducted using horse blood. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values ranged from 0.047-0.78 mg/mL and 0.095-1.56 mg/mL, respectively. D-lp1 at sub-inhibitory concentrations potentially abrogated both biofilm formation and 24-h mature biofilms. Similarly, the peptide severely impacted virulence attributes in the clinical strain of C. auris. For the insight mechanism, D-lp1 displayed a strong impact on the cell membrane integrity of the test pathogen. It is important to note that D-lp1 at sub-inhibitory concentrations displayed minimal hemolytic activity against horse blood cells. Therefore, it is highly useful to correlate the anti-Candida property of D-lp1 along with anti-biofilm and anti-virulent properties against C. auris, with the aim of discovering an alternative strategy for combating serious biofilm-associated infections caused by C. auris.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA