RESUMO
One route of human exposure to environmental chemicals is oral uptake. This is primarily true for chemicals that may leach from food packaging materials, such as bisphenols and phthalate esters. Upon ingestion, these compounds are transported along the intestinal tract, from where they can be taken up into the blood stream or distributed to mucosal sites. At mucosal sites, mucosal immune cells and in the blood stream peripheral immune cells may be exposed to these chemicals potentially modulating immune cell functions. In the present study, we investigated the impact of three common bisphenols and two phthalate esters on mucosal-associated invariant T (MAIT) cells in vitro, a frequent immune cell type in the intestinal mucosae and peripheral blood of humans. All compounds were non-cytotoxic at the chosen concentrations. MAIT cell activation was only slightly affected as seen by flow cytometric analysis. Phthalate esters did not affect MAIT cell gene expression, while bisphenol-exposure induced significant changes. Transcriptional changes occurred in â¼ 25 % of genes for BPA, â¼ 22 % for BPF and â¼ 8 % for BPS. All bisphenols down-modulated expression of CCND2, CCL20, GZMB and IRF4, indicating an effect on MAIT cell effector function. Further, BPA and BPF showed a high overlap in modulated genes involved in cellular stress response, activation signaling and effector function suggesting that BPF may not be safe substitute for BPA.
RESUMO
Hair loss, or alopecia, is associated with several psychosocial and medical comorbidities, and it remains an economic burden to individuals and the society. Alopecia is attributable to varied mechanisms and features a multifactorial predisposition, and the available conventional medical interventions have several limitations. Thus, several therapeutic strategies for alopecia in regenerative medicine are currently being explored, with increasing evidence suggesting that mesenchymal stem cell (MSC) implantation, MSC-derived secretome treatment, and blood-derived platelet-rich plasma therapies are potential treatment options. In this review, we searched the Cochrane Library, MEDLINE (PubMed), EMBASE, and Scopus using various combinations of terms, such as "stem cell," "alopecia," "hair loss," "Androgenetic alopecia," "male-pattern hair loss," "female-pattern hair loss," "regenerative hair growth," "cell therapy," "mesenchymal stem cells," "MSC-derived extracellular vesicles," "MSC-derived exosomes," and "platelet-rich plasma" and summarized the most promising regenerative treatments for alopecia. Moreover, further opportunities of improving efficacy and innovative strategies for promoting clinical application were discussed.
RESUMO
Excessive alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. While chronic, heavy alcohol consumption causes structural damage and/or disrupts normal organ function in virtually every tissue of the body, the liver sustains the greatest damage. This is primarily because the liver is the first to see alcohol absorbed from the gastrointestinal tract via the portal circulation and second, because the liver is the principal site of ethanol metabolism. Alcohol-induced damage remains one of the most prevalent disorders of the liver and a leading cause of death or transplantation from liver disease. Despite extensive research on the pathophysiology of this disease, there are still no targeted therapies available. Given the multifactorial mechanisms for alcohol-associated liver disease pathogenesis, it is conceivable that a multitherapeutic regimen is needed to treat different stages in the spectrum of this disease.
RESUMO
Background: The immune system functions to protect the host from a broad array of infectious diseases. Here, we evaluated the in vitro immunomodulatory effects of green coffee extract (GCE), and conducted a double-blinded, randomized and placebo-controlled trial among apparently healthy individuals. Methods: We determined the levels and functions of inflammatory and immune markers viz., phospho-NF-κB p65 ser536, chemotaxis, phagocytosis, TH1/TH2 cytokines and IgG production. We also evaluated several immunological markers such as total leukocyte counts, differential leukocyte counts, NK cell activity, CD4/CD8 ratio, serum immunoglobulin, C-reactive protein (CRP) and pro-inflammatory cytokines (IL-6 and TNF-α). Results and conclusion: GCE significantly inhibited LPS-induced NF-κB p65 ser536 phosphorylation, MCP-1-induced chemotaxis and significantly enhanced phagocytosis and IgG production. In addition, GCE modulated PMA/PHA-induced TH1/TH2 cytokine production. Clinical investigations suggested that the expression of CD56 and CD16 was markedly augmented on NK cells following GCE treatment. GCE significantly enhanced IgA production before and after influenza vaccination. Similarly, IL-6, TNF-α and CRP levels were significantly inhibited by GCE. Together, GCE confers several salubrious immunomodulatory effects at different levels attributing to optimal functioning of immune responses in the host. Taxonomy: Cell biology, Clinical study, Clinical Trial.
RESUMO
Diabetes mellitus (DM) is one of the most serious threats in the 21th century throughout the human population that needs to be addressed cautiously. Nowadays, stem cell injection is considered among the most promising protocols for DM therapy; owing to its marked tissues and organs repair capability. Therefore, our 4 weeks study was undertaken to elucidate the probable beneficial effects of two types of adult mesenchymal stem cells (MSCs) on metabolism disturbance and some tissue function defects in diabetic rats. Animals were classified into 4 groups; the control group, the diabetic group, the diabetic group received a single dose of adipose tissue-derived MSCs and the diabetic group received a single dose of bone marrow-derived MSCs. Herein, both MSCs treated groups markedly reduced hyperglycemia resulting from diabetes induction via lowering serum glucose and rising insulin and C-peptide levels, compared to the diabetic group. Moreover, the increased lipid fractions levels were reverted back to near normal values as a consequence to MSCs injection compared to the diabetic untreated rats. Furthermore, both MSCs types were found to have hepato-renal protective effects indicated through the decreased serum levels of both liver and kidney functions markers in the treated diabetic rats. Taken together, our results highlighted the therapeutic benefits of both MSCs types in alleviating metabolic anomalies and hepato-renal diabetic complications.
RESUMO
Post-translational modification structure of food's proteins might be changed during processing, thereby affecting the nutritional characteristics of the food product. In this study, differences in protein N-glycosylation patterns between milk and yogurt were quantitatively compared based on glycopeptide enrichment, liquid chromatography separation, and tandem mass spectrometry analysis. A total of 181 N-glycosites were identified, among which 142 were quantified in milk and yogurt. Significant alterations in the abundance of 13 of these N-glycosites were evident after the fermentation of milk into yogurt. Overall, the N-glycosylation status of the majority of milk proteins remained relatively unchanged in yogurt, suggesting that their conformations, activities, and functions were maintained despite the fermentation process. Among the main milk proteins, N241 of cathepsin D and N358 of lactoperoxidase were markedly reduced after undergoing lactic acid fermentation to produce yogurt. Furthermore, a comparative analysis of current and previously reported N-glycoproteomic data revealed heterogeneity in the N-glycosylation of milk proteins. To sum up, a quantitative comparison of the N-glycoproteomes of milk and yogurt was presented here for the first time, providing evidence that the fermentation process of yogurt could cause changes in the N-glycosylation of certain milk proteins.
RESUMO
INTRODUCTION: Differentiation of hepatocytes and culture methods have been investigated in dogs as a tool to establish liver transplant and drug metabolism examination systems. However, mass culture techniques for canine hepatocytes (cHep) have not been investigated, and it is necessary to construct a suitable culture system. Recently, a protocol called Bud production has attracted attention, and a mixed culture of human and mouse hepatocytes, stem cells, and artificial blood vessels significantly improved the size and formation ratio of spheroids. The purpose of this study was to investigate and improve the in vitro culture of cHep by mixing canine adipose-derived mesenchymal stem cells (cASCs) and human umbilical vein endothelial cells (HUVECs). METHODS: Spheroid formation ratio and histological examination were evaluated among four culture methods, including cHep alone, two-mix (cHep + cASCs and cHep + HUVEC), and three-mix (cHep + HUVEC + cASCs), on days 0, 4, and 7. Expression levels of liver-related genes (ALB, AFP, α1-AT, CDH1, CYP2E1, CYP3A12, and TAT) were evaluated by quantitative real-time polymerase chain reaction (RT-PCR). Protein expression of albumin, vimentin, and von Willebrand Factor (vWF) was investigated to confirm the location of the hepatocytes. RESULTS: The ratio of spheroid formation was 60.2% in the three-mix culture and was significantly improved compared with cHep alone (5.9%) and two-mix; cHep + cASCs (36.2%) and cHep + HUVEC (26.4%) (P < 0.001). Histological evaluation revealed that the three-mix spheroids formed large canine hepatocyte spheroids (LcHS), and hepatocytes were distributed in the center of the spheroids. Quantitative gene expression analysis of LcHS showed that liver-related genes expression were maintained the same levels with that of a culture of cHep alone from days 4-7. CONCLUSION: These results revealed that the three-mix culture method using cHep, HUVECs, and cASCs was capable of promoting LcHS without impairing liver function in cHep, suggesting that LcHS could be used for the application of high-volume culture techniques in dogs.
RESUMO
Objective: There is a paucity of data on the inflammatory response that takes place in the pericardial space after cardiac surgery. This study provides a comprehensive assessment of the local postoperative inflammatory response. Methods: Forty-three patients underwent cardiotomy, where native pericardial fluid was aspirated and compared with postoperative pericardial effluent collected at 4, 24, and 48 hours' postcardiopulmonary bypass. Flow cytometry was used to define the levels and proportions of specific immune cells. Samples were also probed for concentrations of inflammatory cytokines, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs). Results: Preoperatively, the pericardial space mainly contains macrophages and T cells. However, the postsurgical pericardial space was populated predominately by neutrophils, which constituted almost 80% of immune cells present, and peaked at 24 hours. When surgical approaches were compared, minimally invasive surgery was associated with fewer neutrophils in the pericardial space at 4 hours' postsurgery. Analysis of the intrapericardial concentrations of inflammatory mediators showed interleukin-6, MMP-9, and TIMP-1 to be highest postsurgery. Over time, MMP-9 concentrations decreased significantly, whereas TIMP-1 levels increased, resulting in a significant reduction of the ratio of MMP:TIMP after surgery, suggesting that active inflammatory processes may influence extracellular matrix remodeling. Conclusions: These results show that cardiac surgery elicits profound alterations in the immune cell profile in the pericardial space. Defining the cellular and molecular mediators that drive pericardial-specific postoperative inflammatory processes may allow for targeted therapies to reduce immune-mediated complications.
RESUMO
High-yield dairy cows need high energy feed during periods of increased milk production. The transitional feeding to high energy feed increases the risk of developing a variety of metabolic disorders. Here, five Holstein cows were fed a four-stage feeding protocol (3 weeks for each stage) ranging from 54.9 to 73.7% total digestive nutrients (TDN). The purpose of the study was to investigate the effect of lactic acid bacteria on high-energy-fed cows associated with transitional feeding, and to evaluate the effects of probiotics on intestinal bacterial changes and inflammatory responses. Three feed transition periods were established for five cows, and Lactobacillus plantarum RGU-LP1 (LP1) was fed as a probiotic during the high-energy feeding period. The number of lymphocyte subsets such as CD3-, CD4-, and CD8 positive cells decreased in response to the high energy feed. Lipopolysaccharide (LPS)-induced cytokine (IL-1ß and IL-2) gene expression in peripheral blood mononuclear cells (PBMCs) was shown to increase in those animals receiving the high energy feed. However, supplementation with LP1 resulted in an increase in the number of lymphocyte subsets and the expression of IL-1ß and IL-2 were returned to the level at low energy diet. These results suggest that high energy diets induce inflammatory cytokine responses following LPS stimulation, and that the addition of LP1 mitigates these results by regulating the LPS-induced inflammatory reaction. Therefore, the functional lactic acid bacteria LP1 is expected to regulate inflammation resulting from high energy feeding, and this probiotic could be applied to support inflammatory regulation in high-yield dairy cows.
RESUMO
Asthma is a complicated lung disease, which has increased morbidity and mortality rates in worldwide. There is an overlap between asthma pathophysiology and mitochondrial dysfunction and MSCs may have regulatory effect on mitochondrial dysfunction and treats asthma. Therefore, immune-modulatory effect of MSCs and mitochondrial signaling pathways in asthma was studied. After culturing of MSCs and producing asthma animal model, the mice were treated with MSCs via IV via IT. BALf's eosinophil Counting, The levels of IL-4, -5, -13, -25, -33, INF-γ, Cys-LT, LTB4, LTC4, mitochondria genes expression of COX-1, COX-2, ND1, Nrf2, Cytb were measured and lung histopathological study were done. BALf's eosinophils, the levels of IL-4, -5, -13, -25, -33, LTB4, LTC4, Cys-LT, the mitochondria genes expression (COX-1, COX-2, Cytb and ND-1), perivascular and peribronchial inflammation, mucus hyper-production and hyperplasia of the goblet cell in pathological study were significantly decreased in MSCs-treated asthma mice and reverse trend was found about Nrf-2 gene expression, IFN-γ level and ratio of the INF-γ/IL-4. MSC therapy can control inflammation, immune-inflammatory factors in asthma and mitochondrial related genes, and prevent asthma immune-pathology.
RESUMO
According Global Cancer Statistics 2020 GLOBOCAN estimates female breast cancer was found as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), and the fourth leading cause (6.9%) of cancer death among women worldwide. Identification of new diagnostic marker sharply characterize the tumor feature is intensive need. The present work was performed to investigate the involvement of the INF-γ + 874 T/A gene polymorphism in different breast cancer prognostic factors. Polymorphism detection analysis was performed on 163 subjects from breast cancer patients, 79 with inflamed cells of breast patients and 144 controls. The gene polymorphism was detected using the amplification refractory mutation system- polymerase chain reaction method (ARMS-PCR). The distribution of INF-γ T + 874A gene polymorphism shows strong significant association between INF-γ + 874 T/A genotypes TT in BC patients (ORTT: 6.41 [95% CI = 2.72-15.1] P < 0.0001) as well as strong significant association regarding T allele (ORT: 1.99 [95% CI = 1.43-2.76] P < 0.0001) when compared to the healthy control. In ICB group the strong association was noted with INF-γ + 874 T/A genotypes AT genotype (ORAT: 2.28 [95% CI = 1.22-4.29] P = 0.007). From the different histological BC hormonal markers the human epidermal growth factor receptor 2 (HER2) was showing significant association in INF-γ + 874 T/A genotypes TT (P = 0.03) and recessive model (TT versus AA + AT P = 0.03). Concerning different BC prognostic models, the poor prognostic one of luminal B, (ER+ve PR+ve Her2+ve) show significant association in the host INF-γ + 874 T/A genotype (TT, P = 0.03) and recessive model (TT versus AA + AT P = 0.02) when compared to the good prognostic hormonal status luminal A model, (ER+ve PR+ve Her2-ve). It seems that this is the first study that interested in correlate the INF-γ + 874 T/A gene polymorphisms in Egyptian BC patients. T allele, TT genotype and recessive model of the INF-γ + 874 T/A gene variants were documented as risk factors for BC pathogenesis. It may be used as practical biomarker to guide the BC carcinogenesis and risk process.
RESUMO
It is well known that sleep promotes immune functions. In line with this, a variety of studies in animal models and humans have shown that sleep restriction following an antigen challenge dampens the immune response on several levels which leads to e.g. worsening of disease outcome and reduction of vaccination efficiency, respectively. However, the inverse scenario with sleep restriction preceding an antigen challenge is only investigated in a few animal models where it has been shown to reduce antigen uptake and presentation as well as pathogen clearance and survival rates. Here, we use injection of sheep red blood cells to investigate the yet unknown effect on a T cell-dependent B cell response in a well-established mouse model. We found that 6 âh of sleep restriction prior to the antigen challenge does not impact the T cell reaction including the T cell receptor repertoire but dampens the development of germinal centers which correlates with reduced antigen-specific antibody titer indicating an impaired B cell response. These changes concerned a functionally more relevant level than those found in the same experimental model with the inverse scenario when sleep restriction followed the antigen challenge. Taken together, our findings showed that the outcome of the T cell-dependent B cell response is indeed impacted by sleep restriction prior to the antigen challenge which highlights the clinical significance of this scenario and the need for further investigations in humans, for example concerning the effect of sleep restriction preceding a vaccination.
RESUMO
Acute distress immediately following an 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) scan is an exceedingly rare event. We report a case whose condition was suddenly deteriorated in the nuclear medicine laboratory, and whose diagnosis was confirmed by FDG-PET/CT. A 67-year-old woman with left renal cell carcinoma (RCC) suddenly complained of dyspnea and tachycardia just after undergoing FDG-PET/CT. PET/CT images showed increased FDG uptakes in the left renal vein, inferior vena cava, right atrium, and bilateral hila. She was diagnosed with a massive tumor embolism from the inferior vena cava to both pulmonary arteries, and urgently underwent tumor embolectomy. FDG-PET/CT was helpful for diagnosing the tumor embolism and differentiating it from bland thromboembolism in this patient with RCC.