Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Neurosci Lett ; 833: 137832, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38796094

RESUMO

Axonal regeneration is restricted in adults and causes irreversible motor dysfunction following spinal cord injury (SCI). In contrast, neonates have prominent regenerative potential and can restore their neural function. Although the distinct cellular responses in neonates have been studied, how they contribute to neural recovery remains unclear. To assess whether the secreted molecules in neonatal SCI can enhance neural regeneration, we re-analyzed the previously performed single-nucleus RNA-seq (snRNA-seq) and focused on Asporin and Cd109, the highly expressed genes in the injured neonatal spinal cord. In the present study, we showed that both these molecules were expressed in the injured spinal cords of adults and neonates. We treated the cortical neurons with recombinant Asporin or CD109 to observe their direct effects on neurons in vitro. We demonstrated that these molecules enhance neurite outgrowth in neurons. However, these molecules did not enhance re-growth of severed axons. Our results suggest that Asporin and CD109 influence neurites at the lesion site, rather than promoting axon regeneration, to restore neural function in neonates after SCI.


Assuntos
Axônios , Proteínas da Matriz Extracelular , Regeneração Nervosa , Traumatismos da Medula Espinal , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Axônios/metabolismo , Células Cultivadas , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Neuritos/metabolismo , Neuritos/efeitos dos fármacos , Crescimento Neuronal/fisiologia , Neurônios/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Camundongos
2.
Res Sq ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562713

RESUMO

Cluster of differentiation 109 (CD109) is a glycosylphosphatidylinositol (GPI) anchored cell surface protein, expressed on epithelial and endothelial cells, CD4+ and CD8+ T-cells, and premature lymphocytes. CD109 interacts with different cell surface receptors and thereby modulates intracellular signaling pathways, which ultimately changes cellular functions. One well-studied example is the interaction of CD109 with the TGFß/TGFß-receptor complex at the cell surface. CD109 silences intracellular SMAD2/3 signaling and targets TGFß/TGFß-receptor to the endosomal/lysosomal compartment. In recent years, CD109 emerged as a tumor marker for different tumor entities and expression of CD109 could be linked to adverse outcome in patients. In this study, we show that silencing of CD109 in human non-small cell lung cancer (NSCLC) cells, returns these cells to an epithelial like growth phenotype. On the transcriptional level, we describe changes in cell-cell contact and epithelial-mesenchymal transition associated gene clusters. At the cell surface, we identify desmoglein-2 (DSG2) as a new interaction partner of CD109 and demonstrate CD109 dependent targeting of DSG2 to the apical cell surface, where it forms desmosomes between apical and basal cell poles. Both, CD109 and DSG2 are genetic risk factors, linked to reduced overall survival in lung adenocarcinoma patients (subtype of NSCLC). In this study, we show the expression of both proteins in the same tumor and suggest a new CD109-DSG2 axis in NSCLC patients that could present a targetable therapeutic option in the future.

3.
FEBS J ; 291(14): 3169-3190, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38587194

RESUMO

The glycosylphosphatidylinositol (GPI)-anchored protein cluster of differentiation 109 (CD109) is expressed on many human cell types and modulates the transforming growth factor ß (TGF-ß) signaling network. CD109 belongs to the alpha-macroglobulin family of proteins, known for their protease-triggered conformational changes. However, the effect of proteolysis on CD109 and its conformation are unknown. Here, we investigated the interactions of CD109 with proteases. We found that a diverse selection of proteases cleaved peptide bonds within the predicted bait region of CD109, inducing a conformational change that activated the thiol ester of CD109. We show CD109 was able to conjugate proteases with this thiol ester and decrease their activity toward protein substrates, demonstrating that CD109 is a protease inhibitor. We additionally found that CD109 has a unique mechanism whereby its GPI-anchored macroglobulin 8 (MG8) domain dissociates during its conformational change, allowing proteases to release CD109 from the cell surface by a precise mechanism and not unspecific shedding. We conclude that proteolysis of the CD109 bait region affects both its structure and location, and that interactions between CD109 and proteases may be important to understanding its functions, for example, as a TGF-ß co-receptor.


Assuntos
Antígenos CD , Membrana Celular , Proteínas Ligadas por GPI , Proteólise , Humanos , Antígenos CD/metabolismo , Antígenos CD/química , Antígenos CD/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Membrana Celular/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Conformação Proteica , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/química , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/química , Ésteres/metabolismo , Ésteres/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Células HEK293 , Transdução de Sinais , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/química
4.
Int Immunopharmacol ; 130: 111793, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38442581

RESUMO

BACKGROUND: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common inflammatory disorder with a high rate of recurrence. This study aimed to explore biomarkers for identifying patients with recurrent CRSwNP (rCRSwNP). METHODS: We recruited two independent cohorts. In the discovery cohort, rCRSwNP patients and non-recurrent CRSwNP (non-rCRSwNP) patients were recruited, and the serum proteomic profile was characterized. The top 5 upregulated and downregulated proteins were confirmed in the validation cohort by ELISA, WB, and qRT-PCR, and their predictive values for postoperative recurrence were assessed. In vitro, human nasal epithelial cells (HNEpCs) were employed to assess the ability of candidate proteins to induce epithelial-mesenchymal transition (EMT). RESULTS: Serum proteomics identified 53 different proteins, including 30 increased and 23 decreased, between the rCRSwNP and non-rCRSwNP groups. ELISA results revealed that serum levels of CD163 and TGF-ß1 were elevated, CD109 and PRDX2 were decreased in the rCRSwNP group compared to the non-rCRSwNP group, and serum CD163, TGF-ß1, and CD109 levels were proved to be associated with the risk of postoperative recurrence. In addition, qRT-PCR and WB revealed that tissue CD163, TGF-ß1, and CD109 expressions in rCRSwNP patients were enhanced compared to those non-rCRSwNP patients. Kaplan-Meier analysis showed that increased CD163 and TGF-ß1 expression and decreased CD109 expression are associated with the risk of recurrence in CRSwNP patients. Receiver operating characteristic curves showed that TGF-ß1 and CD109 had superior diagnostic performances for rCRSwNP. In vitro experiments showed that TGF-ß1 promoted EMT in HNEpCs, and overexpression of CD109 reversed this effect. Functional recovery experiments confirmed that CD109 could attenuate EMT in HNEpCs by inhibiting the TGF-ß1/Smad signaling pathway, attenuating EMT in epithelial cells. CONCLUSION: Our data suggested that TGF-ß1 and CD109 might serve as promising predictors of rCRSwNP. The TGF-ß1/Smad pathway was implicated in fostering EMT in epithelial cells, particularly those exhibiting low expression of CD109. Consequently, the absence of CD109 expression in epithelial cells could be a potential mechanism underlying rCRSwNP.


Assuntos
Antígenos CD , Proteínas Ligadas por GPI , Pólipos Nasais , Proteínas de Neoplasias , Rinossinusite , Humanos , Antígenos CD/sangue , Doença Crônica , Transição Epitelial-Mesenquimal , Proteínas Ligadas por GPI/sangue , Pólipos Nasais/sangue , Pólipos Nasais/cirurgia , Proteínas de Neoplasias/sangue , Proteômica , Rinossinusite/sangue , Rinossinusite/cirurgia , Fatores de Transcrição , Fator de Crescimento Transformador beta1/sangue , Recidiva , Masculino , Feminino , Adulto
5.
Tumour Virus Res ; 17: 200279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485055

RESUMO

Multiple cellular pathways are affected by HPV E6 and E7 oncoproteins, including endocytic and cellular trafficking. HPV-16 E7 can target the adaptor protein (AP) complex, which contains proteins important during endocytosis transport. To further investigate the role of HPV E7 during this process, we analysed the expression of cell surface proteins in NIKS cells expressing HPV-16 E7. We show that different cell surface proteins are regulated by HPV-16 E7 via interaction with AP2. We observed that the expression of MET and CD109 membrane protein seems to be upregulated in cells expressing E7. Moreover, the interaction of MET and CD109 with AP2 proteins is disrupted by HPV-16 E7. In addition, in the absence of HPV-16 E7, there is a downregulation of the cell membrane expression of MET and CD109 in HPV-positive cell lines. These results expand our knowledge of the functions of E7 and open new potential cellular pathways affected by this oncoprotein.


Assuntos
Antígenos CD , Papillomavirus Humano 16 , Proteínas E7 de Papillomavirus , Proteínas Proto-Oncogênicas c-met , Humanos , Proteínas E7 de Papillomavirus/metabolismo , Proteínas E7 de Papillomavirus/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 16/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Membrana Celular/metabolismo , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Endocitose , Proteínas Ligadas por GPI
6.
J Mol Cell Cardiol ; 186: 16-30, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935281

RESUMO

Epicardial-derived cells (EPDCs) are involved in the regulation of myocardial growth and coronary vascularization and are critically important for proper development of the atrioventricular (AV) valves. SOX9 is a transcription factor expressed in a variety of epithelial and mesenchymal cells in the developing heart, including EPDCs. To determine the role of SOX9 in epicardial development, an epicardial-specific Sox9 knockout mouse model was generated. Deleting Sox9 from the epicardial cell lineage impairs the ability of EPDCs to invade both the ventricular myocardium and the developing AV valves. After birth, the mitral valves of these mice become myxomatous with associated abnormalities in extracellular matrix organization. This phenotype is reminiscent of that seen in humans with myxomatous mitral valve disease (MVD). An RNA-seq analysis was conducted in an effort to identify genes associated with this myxomatous degeneration. From this experiment, Cd109 was identified as a gene associated with myxomatous valve pathogenesis in this model. Cd109 has never been described in the context of heart development or valve disease. This study highlights the importance of SOX9 in the regulation of epicardial cell invasion-emphasizing the importance of EPDCs in regulating AV valve development and homeostasis-and reports a novel expression profile of Cd109, a gene with previously unknown relevance in heart development.


Assuntos
Doenças das Valvas Cardíacas , Valva Mitral , Humanos , Camundongos , Animais , Valva Mitral/metabolismo , Doenças das Valvas Cardíacas/patologia , Ventrículos do Coração/metabolismo , Miocárdio/metabolismo , Camundongos Knockout , Fatores de Transcrição/metabolismo
7.
J Otolaryngol Head Neck Surg ; 52(1): 79, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087297

RESUMO

OBJECTIVE: Our research group in the early stage identified CD109 as the target of aptamer S3 in nasopharyngeal carcinoma (NPC). This study was to use S3 to connect DNA tetrahedron (DT) and load doxorubicin (Dox) onto DT to develop a targeted delivery system, and explore whether S3-DT-Dox can achieve targeted therapy for NPC. METHODS: Aptamer S3-conjugated DT was synthesized and loaded with Dox. The effects of S3-DT-Dox on NPC cells were investigated with laser confocal microscopy, flow cytometry, and MTS assays. A nude mouse tumor model was established from NPC 5-8F cells, and the in vivo anti-tumor activity of S3-DT-Dox was examined by using fluorescent probe labeling and hematoxylin-eosin staining. RESULTS: The synthesized S3-DT had high purity and stability. S3-DT specifically recognized 5-8F cells and NPC tissues in vitro. When the ratio of S3-DT to Dox was 1:20, S3-DT had the best Dox loading efficiency. The drug release rate reached the maximum (0.402 ± 0.029) at 48 h after S3-DT-Dox was prepared and mixed with PBS. S3-DT did not affect Dox toxicity to 5-8F cells, but reduced Dox toxicity to non-target cells. Meanwhile, S3-DT-Dox was able to specifically target the transplanted tumors and inhibit their growth in nude mice, with minor damage to normal tissues. CONCLUSION: Our study highlights the ability and safety of S3-DT-Dox to target NPC cells and inhibit the development NPC.


Assuntos
Doxorrubicina , Neoplasias Nasofaríngeas , Animais , Camundongos , Carcinoma Nasofaríngeo/tratamento farmacológico , Camundongos Nus , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , DNA , Neoplasias Nasofaríngeas/tratamento farmacológico
8.
Environ Toxicol ; 38(12): 2857-2866, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37661780

RESUMO

Drug resistance is a considerable obstacle to gastric cancer (GC) treatment. The current work aimed to elucidate the functional mechanism of CD109 in 5-fluorouracil (5-FU) resistance in GC. In this study, we demonstrated that CD109 was extremely heightened in 5-FU-resistant GC cells. CD109 deficiency lessened the IC50 value, impaired cell viability and metastatic capability, and induced cell apoptosis after 5-FU treatment in cells. In addition, we found that PAX5 bound p300 increased the enrichment of H3K27ac at the promoter region of the CD109 gene, which resulted in the upregulation of CD109 in GC. Moreover, we also revealed that CD109 triggered 5-FU resistance via activating the JNK/MAPK signaling. Blockage of JNK/MAPK signaling using JNK inhibitor, SP600125, abolished CD109 upregulation-induced changes of IC50 values, cell viability, metastasis and apoptosis in NCI-N87/5-FU and SNU-1/5-FU cells. Importantly, CD109 silencing enhanced the therapeutic efficacy of 5-FU, leading to reduced tumor growth in vivo. In conclusion, our results unveiled that H3K27 acetylation activated-CD109 enhanced 5-FU resistance of GC cells via modulating the JNK/MAPK signaling pathway, which might provide an attractive therapeutic target for GC.


Assuntos
Fluoruracila , Neoplasias Gástricas , Humanos , Fluoruracila/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Acetilação , Linhagem Celular Tumoral , Apoptose , Sistema de Sinalização das MAP Quinases , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Proteínas de Neoplasias , Antígenos CD/genética , Antígenos CD/metabolismo , Proteínas Ligadas por GPI/metabolismo
9.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373457

RESUMO

Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy owing to relapse caused by resistance to chemotherapy. We previously reported that cluster of differentiation 109 (CD109) expression is positively correlated with poor prognosis and chemoresistance in patients with EOC. To further explore the role of CD109 in EOC, we explored the signaling mechanism of CD109-induced drug resistance. We found that CD109 expression was upregulated in doxorubicin-resistant EOC cells (A2780-R) compared with that in their parental cells. In EOC cells (A2780 and A2780-R), the expression level of CD109 was positively correlated with the expression level of ATP-binding cassette (ABC) transporters, such as ABCB1 and ABCG2, and paclitaxel (PTX) resistance. Using a xenograft mouse model, it was confirmed that PTX administration in xenografts of CD109-silenced A2780-R cells significantly attenuated in vivo tumor growth. The treatment of CD109-overexpressed A2780 cells with cryptotanshinone (CPT), a signal transducer and activator of transcription 3 (STAT3) inhibitor, inhibited the CD109 overexpression-induced activation of STAT3 and neurogenic locus notch homolog protein 1 (NOTCH1), suggesting a STAT3-NOTCH1 signaling axis. The combined treatment of CD109-overexpressed A2780 cells with CPT and N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT), a NOTCH inhibitor, markedly abrogated PTX resistance. These results suggest that CD109 plays a key role in the acquisition of drug resistance by activating the STAT3-NOTCH1 signaling axis in patients with EOC.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Paclitaxel/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias/metabolismo , Antígenos CD/uso terapêutico , Proteínas Ligadas por GPI/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
10.
Pathol Res Pract ; 245: 154443, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37030166

RESUMO

Osteosarcoma, the most common primary malignant bone tumor, is defined by the formation of neoplastic osteoid and/or bone. This sarcoma is a highly heterogeneous disease with a wide range of patient outcomes. CD109 is a glycosylphosphatidylinositol-anchored glycoprotein that is highly expressed in various types of malignant tumors. We previously reported that CD109 is expressed in osteoblasts and osteoclasts in normal human tissues and plays a role in bone metabolism in vivo. While CD109 has been shown to promote various carcinomas through the downregulation of TGF-ß signaling, the role and mechanism of CD109 in sarcomas remain largely unknown. In this study, we investigated the molecular function of CD109 in sarcomas using osteosarcoma cell lines and tissue. Semi-quantitative immunohistochemical analysis using human osteosarcoma tissue revealed a significantly worse prognosis in the CD109-high group compared with the CD109-low group. We found no association between CD109 expression and TGF-ß signaling in osteosarcoma cells. However, enhancement of SMAD1/5/9 phosphorylation was observed in CD109 knockdown cells under bone morphogenetic protein-2 (BMP-2) stimulation. We also performed immunohistochemical analysis for phospho-SMAD1/5/9 using human osteosarcoma tissue and found a negative correlation between CD109 expression and SMAD1/5/9 phosphorylation. In vitro wound healing assay showed that osteosarcoma cell migration was significantly attenuated in CD109-knockdown cells compared with control cells in the presence of BMP. These results suggest that CD109 is a poor prognostic factor in osteosarcoma and affects tumor cell migration via BMP signaling.


Assuntos
Antígenos CD , Neoplasias Ósseas , Proteínas de Neoplasias , Osteossarcoma , Humanos , Antígenos CD/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas de Neoplasias/metabolismo , Processos Neoplásicos , Fator de Crescimento Transformador beta/metabolismo
11.
Cytoskeleton (Hoboken) ; 80(5-6): 123-132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36929132

RESUMO

CD109 antigen on the endothelial cell surface plays an important role in vascular pathology. The aim of the work was to investigate the effect of the immobilization of CD109 antigen with specific antibodies on nanomechanical properties of human umbilical endothelial cells (HUVECs) using atomic force microscopy in quantitative nanomechanical property mapping mode (PeakForce QNM). Anti-CD109 antibodies induced significant stiffening of the cell surface Me(LQ; UQ): in 1.45(1.07;2.29) times with respect to control cells for fixed cells and in 4.9(3.6;5.9) times with respect to control cells for living cells, and changes in the spatial distribution of cell surface mechanical properties. The changes in the HUVEC's mechanical properties were accompanied by the activation of the TGF-/Smad2/3 signaling pathway and reorganization of the vimentin and actin cytoskeletal elements. Our findings show that blocking CD109 antigen using anti-CD109 antibodies leads in HUVECs to the processes similar to that occur after cell TGF-ß-signaling activation. Therefore, we suggest that CD109 antigen may be involved in regulating the mechanical behavior of endothelial cells.


Assuntos
Células Endoteliais , Transdução de Sinais , Humanos , Actinas/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Microscopia de Força Atômica/métodos , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
12.
Eur Heart J Open ; 3(2): oead010, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36909248

RESUMO

Aims: αv integrins are implicated in fibrosis in a number of organs through their ability to activate TGF-ß. However their role in vascular fibrosis and collagen accumulation is only partially understood. Here we have used αv conditional knockout mice and cell lines to determine how αv contributes to vascular smooth muscle cell (VSMC) function in vascular fibrosis and the role of TGF-ß in that process. Methods and results: Angiotensin II (Ang II) treatment causes upregulation of αv and ß3 expression in the vessel wall, associated with increased collagen deposition. We found that deletion of αv integrin subunit from VSMCs (αv SMKO) protected mice against angiotensin II-induced collagen production and assembly. Transcriptomic analysis of the vessel wall in αv SMKO mice and controls identified a significant reduction in expression of fibrosis and related genes in αv SMKO mice. In contrast, αv SMKO mice showed prolonged expression of CD109, which is known to affect TGF-ß signalling. Using cultured mouse and human VSMCs, we showed that overexpression of CD109 phenocopied knockdown of αv integrin, attenuating collagen expression, TGF-ß activation, and Smad2/3 signalling in response to angiotensin II or TGF-ß stimulation. CD109 and TGF-ß receptor were internalized in early endosomes. Conclusion: We identify a role for VSMC αv integrin in vascular fibrosis and show that αv acts in concert with CD109 to regulate TGF-ß signalling.

13.
Am J Respir Cell Mol Biol ; 68(2): 201-212, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36215676

RESUMO

Asthma is a chronic airway inflammatory disease characterized by airway hyperreactivity (AHR) and eosinophilic airway inflammation. Dendritic cells (DCs) are essential for the development of asthma via presenting allergens, causing T-helper cell type 2 (Th2) skewing and eosinophil inflammation. Recent studies have revealed that CD109, a glycosylphosphatidylinositol-anchored glycoprotein, is involved in the pathogenesis of inflammatory diseases such as rheumatoid arthritis and psoriasis. However, no study has addressed the role of CD109 in asthma. This study sought to address the role of CD109 on DCs in the development of AHR and allergic inflammation. CD109-deficient mice (CD109-/-) were sensitized with house dust mite or ovalbumin and compared with wild-type mice for induction of AHR and allergic inflammation. CD109-deficient mice had reduced AHR and eosinophilic inflammation together with lower Th2 cytokine expression compared with wild-type mice. Interestingly, CD109 expression was induced in lung conventional DC2s (cDC2s), but not lung cDC1s, upon allergic challenge. Lung cDC2s from CD109-/- mice had a poor ability to induce cytokine production in ex vivo DC-T cell cocultures with high expression of RUNX3 (runt-related transcription factor 3), resulting in suppression of Th2 differentiation. Adoptive transfer of bone marrow-derived CD109-/- DCs loaded with house dust mite failed to develop AHR and eosinophilic inflammation. Finally, administration of monoclonal anti-CD109 antibody reduced airway eosinophils and significantly decreased AHR. Our results suggest the involvement of CD109 in asthma pathogenesis. CD109 is a novel therapeutic target for asthma.


Assuntos
Asma , Eosinofilia , Camundongos , Animais , Camundongos Knockout , Asma/metabolismo , Pyroglyphidae , Eosinofilia/metabolismo , Alérgenos , Citocinas/metabolismo , Células Th2 , Inflamação/metabolismo , Células Dendríticas , Modelos Animais de Doenças
14.
Cancers (Basel) ; 14(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35954339

RESUMO

(1) Background: Squamous cell carcinoma (SCC) is one of the leading causes of cancer-related deaths worldwide. CD109 is overexpressed in many cancers including SCC. Although a pro-tumorigenic role for CD109 has been shown in non-SCC cancers, and in one type of SCC, the mechanisms and signaling pathways reported are discrepant. (2) Methods: The CD109-EGFR interaction and CD109-mediated regulation of EGFR expression, signaling, and stemness were studied using microarray, immunoblot, immunoprecipitation, qPCR, immunofluorescence, and/or spheroid formation assays. The role of CD109 in tumor progression and metastasis was studied using xenograft tumor growth and metastatic models. (3) Results: We establish the in vivo tumorigenicity of CD109 in vulvar SCC cells and demonstrate that CD109 is an essential regulator of EGFR expression at the mRNA and protein levels and of EGFR/AKT signaling in vulvar and hypopharyngeal SCC cells. Furthermore, we show that the mechanism involves EGFR-CD109 heteromerization and colocalization, leading to the stabilization of EGFR levels. Additionally, we demonstrate that the maintenance of epithelial morphology and in vitro tumorigenicity of SCC cells require CD109 localization to the cell surface. (4) Conclusions: Our study identifies an essential role for CD109 in vulvar SCC progression. We demonstrate that CD109 regulates SCC cellular stemness and epithelial morphology via a cell-surface CD109-EGFR interaction, stabilization of EGFR levels and EGFR/AKT signaling.

15.
Proteomics Clin Appl ; 16(4): e2200001, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35385222

RESUMO

PURPOSE: Gestational diabetes mellitus (GDM) is a common disease that can give rise to adverse obstetric outcomes. For successful early intervention, more studies on novel predictive biomarkers for GDM are required. EXPERIMENTAL DESIGN: The protein expression profiles of placental tissue from patients with GDM and normal pregnant women were investigated using data-independent acquisition proteomics with five biological replicates. Early pregnancy maternal plasma samples from the GDM (n = 79) and control (n = 81) groups were used for further validation of candidate biomarkers. RESULTS: We identified 37 differentially expressed proteins between the two groups. CD109 antigen (CD109) and endosialin (CD248) were identified as hub proteins. In the validation experiments, CD109 expression was lower in the early pregnancy maternal plasma of patients with GDM compared with that in normal pregnant women, and CD248 expression was higher in the GDM group. The area under the curve of CD109, CD248, and their combination as indicators in early pregnancy maternal plasma was 0.681, 0.609, and 0.695, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: The present study is the first to obtain preliminary evidence that CD109 and CD248 can predict GDM during early pregnancy, as well as providing proteome-level insights into this disease's pathological mechanisms.


Assuntos
Antígenos CD , Diabetes Gestacional , Proteínas de Neoplasias , Antígenos de Neoplasias , Biomarcadores/metabolismo , Diabetes Gestacional/metabolismo , Feminino , Proteínas Ligadas por GPI , Humanos , Placenta/metabolismo , Gravidez , Proteoma , Proteômica
16.
Anticancer Res ; 42(4): 2061-2070, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35347029

RESUMO

BACKGROUND/AIM: Up-regulation of CD109 occurs in malignant tumours, although its role is unknown. Here we aimed to evaluate the significance of CD109 expression in oropharyngeal squamous cell carcinoma (OPSCC). PATIENTS AND METHODS: Immunohistochemical analysis was performed to assess CD109 expression in 169 patients with OPSCC. We assessed the effects of small interfering RNA (siRNA)-mediated inhibition of CD109 expression on the proliferation and invasiveness of the human papillomavirus 16-positive (HPV16+) head and neck SCC cell line UM-SCC-47. RESULTS: Expression of CD109 was associated with higher tumour differentiation in p16+ OPSCC (p=0.0036), and the CD109+ subgroup experienced significantly shorter progression-free survival (p=0.03). UM-SCC-47 cells with siRNA-mediated inhibition of CD109 expression showed reduced invasiveness (p=0.07). CONCLUSION: CD109 expression is associated with poor prognosis of HPV16+ OPSCCs.


Assuntos
Antígenos CD , Proteínas Ligadas por GPI , Neoplasias de Cabeça e Pescoço , Proteínas de Neoplasias , Carcinoma de Células Escamosas de Cabeça e Pescoço , Antígenos CD/genética , Proteínas Ligadas por GPI/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/virologia , Papillomavirus Humano 16 , Humanos , Pescoço/patologia , Proteínas de Neoplasias/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia
17.
Virchows Arch ; 480(4): 819-829, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34762199

RESUMO

CD109 is a glycosylphosphatidylinositol-anchored glycoprotein, whose expression is upregulated in some types of malignant tumors. High levels of CD109 in tumor cells have been reported to correlate with poor prognosis; however, significance of CD109 stromal expression in human malignancy has not been elucidated. In this study, we investigated the tumorigenic properties of CD109 in pancreatic ductal adenocarcinoma (PDAC). Immunohistochemical analysis of 92 PDAC surgical specimens revealed that positive CD109 expression in tumor cells was significantly associated with poor prognosis (disease-free survival, p = 0.003; overall survival, p = 0.002), and was an independent prognostic factor (disease-free survival, p = 0.0173; overall survival, p = 0.0104) in PDAC. Furthermore, CD109 expression was detected in the stroma surrounding tumor cells, similar to that of α-smooth muscle actin, a histological marker of cancer-associated fibroblasts. The stromal CD109 expression significantly correlated with tumor progression in PDAC (TNM stage, p = 0.033; N factor, p = 0.024; lymphatic invasion, p = 0.028). In addition, combined assessment of CD109 in tumor cells and stroma could identify the better prognosis group of patients from the entire patient population. In MIA PaCa-2 PDAC cell line, we demonstrated the involvement of CD109 in tumor cell motility, but not in PANC-1. Taken together, CD109 not only in the tumor cells but also in the stroma is involved in the progression and prognosis of PDAC, and may serve as a useful prognostic marker in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Antígenos CD/genética , Biomarcadores Tumorais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Intervalo Livre de Doença , Proteínas Ligadas por GPI/genética , Humanos , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
18.
Biochim Biophys Acta Mol Cell Res ; 1869(1): 119136, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626678

RESUMO

The metalloproteinase meprin ß plays an important role during collagen I deposition in the skin, mucus detachment in the small intestine and also regulates the abundance of different cell surface proteins such as the interleukin-6 receptor (IL-6R), the triggering receptor expressed on myeloid cells 2 (TREM2), the cluster of differentiation 99 (CD99), the amyloid precursor protein (APP) and the cluster of differentiation 109 (CD109). With that, regulatory mechanisms that control meprin ß activity and regulate its release from the cell surface to enable access to distant substrates are increasingly important. Here, we will summarize factors that alternate meprin ß activity and thereby regulate its proteolytic activity on the cell surface or in the supernatant. We will also discuss cleavage of the IL-6R and TREM2 on the cell surface and compare it to CD109. CD109, as a substrate of meprin ß, is cleaved within the protein core, thereby releasing defined fragments from the cell surface. At last, we will also summarize the role of proteases in general and meprin ß in particular in substrate release on extracellular vesicles.


Assuntos
Metaloendopeptidases/metabolismo , Transdução de Sinais , Animais , Vesículas Extracelulares/metabolismo , Humanos , Metaloendopeptidases/química , Proteólise
19.
J Inherit Metab Dis ; 45(3): 481-492, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34918784

RESUMO

Classic galactosemia (CG) is a rare disorder of autosomal recessive inheritance. It is caused predominantly by point mutations as well as deletions in the gene encoding the enzyme galactose-1-phosphate uridyltransferase (GALT). The majority of the more than 350 mutations identified in the GALT gene cause a significant reduction in GALT enzyme activity resulting in the toxic buildup of galactose metabolites that in turn is associated with cellular stress and injury. Consequently, developing a therapeutic strategy that reverses both the oxidative and ER stress in CG cells may be helpful in combating this disease. Recombinant adeno-associated virus (AAV)-mediated gene therapy to restore GALT activity offers the potential to address the unmet medical needs of galactosemia patients. Here, utilizing fibroblasts derived from CG patients we demonstrated that AAV-mediated augmentation of GALT protein and activity resulted in the prevention of ER and oxidative stress. We also demonstrate that these CG patient fibroblasts exhibit reduced CD109 and TGFßRII protein levels and that these effectors of cellular homeostasis could be restored following AAV-mediated expression of GALT. Finally, we show initial in vivo proof-of-concept restoration of galactose metabolism in a GALT knockout mouse model following treatment with AAV-GALT.


Assuntos
Galactosemias , UTP-Hexose-1-Fosfato Uridililtransferase , Animais , Fibroblastos/metabolismo , Galactose/metabolismo , Galactosemias/genética , Galactosemias/terapia , Humanos , Camundongos , Camundongos Knockout , UTP-Hexose-1-Fosfato Uridililtransferase/genética , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo
20.
J Proteome Res ; 21(1): 101-117, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34919406

RESUMO

The purpose of this study was to identify proteins that regulate vascular remodeling in an ROP mouse model. Pups were subjected to fluctuating oxygen levels and retinas sampled during vessel regression (PN12) or neovascularization (PN17) for comparative SWATH-MS proteomics using liquid chromatography-tandem mass spectrometry (LC-MS/MS). We developed a human retinal endothelial cell (HREC) ROP correlate to validate the expression of retina neovascular-specific markers. A total of 5191 proteins were identified in OIR retinas with 498 significantly regulated in elevated oxygen and 345 after a return to normoxia. A total of 122 proteins were uniquely regulated during vessel regression and 69 during neovascularization (FC ≥ 1.5; p ≤ 0.05), with several validated by western blot analyses. Expressions of 56/69 neovascular-specific proteins were confirmed in hypoxic HRECs with 23 regulated in the same direction as OIR neovascular retinas. These proteins control angiogenesis-related processes including matrix remodeling, cell migration, adhesion, and proliferation. RNAi and transfection overexpression studies confirmed that VASP and ECH1, showing the highest levels in hypoxic HRECs, promoted human umbilical vein (HUVEC) and HREC cell proliferation, while SNX1 and CD109, showing the lowest levels, inhibited their proliferation. These proteins are potential biomarkers and exploitable intervention tools for vascular-related disorders. The proteomics data set generated has been deposited to the ProteomeXchange/iProX Consortium with the Identifier:PXD029208.


Assuntos
Retinopatia da Prematuridade , Animais , Animais Recém-Nascidos , Cromatografia Líquida , Modelos Animais de Doenças , Humanos , Recém-Nascido , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , Proteômica , Retina , Retinopatia da Prematuridade/metabolismo , Espectrometria de Massas em Tandem , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA