Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Cancer Res ; 13(5): 2387-2407, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38881943

RESUMO

Background: The nectin adhesion molecule CD112, an important component of tumor progression, belongs to the nectin family. However, a comprehensive evaluation of its clinical relevance and mechanism in various cancers is yet to be conducted. Methods: This investigation fully examined the relationship between prognosis and CD112 expression. We clarified the function of CD112 in tumor immunity by employing The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. This involved examining its connections to tumor mutation burden (TMB), DNA methylation, tumor immune invasion, mismatch repair (MMR), microsatellite instability (MSI), and common immune checkpoint inhibitors (ICIs). Additionally, the impact of CD112 knockdown on cell function was examined in colorectal cancer (CRC) cell lines. Results: In the current study, we found malignant tissues express high levels of CD112, which was related to TMB, MMR, MSI, and DNA methylation. Survival analysis indicated that patients with high CD112 expression had an unfavorable prognosis more frequently. In addition, CD112 expression was negatively associated with infiltration levels of CD4 positive (CD4+) T cells, CD8 positive (CD8+) T cells, and T cells. Western blotting and pathway enrichment analysis showed that CD112 is significantly linked to epithelial-to-mesenchymal transition (EMT). Additionally, CRC cells migrate and proliferate less when CD112 was knocked down. CD112 expression was found to be negatively associated with anti-programmed cell death protein 1 (PD-1) and anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) treatment outcomes in patients. Conclusions: CD112 may act as a possible prognostic marker in immune therapy and may stimulate tumor growth by upregulating the EMT pathway.

2.
Cells ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474388

RESUMO

Dendritic cell (DC) migration from peripheral tissues via afferent lymphatic vessels to draining lymph nodes (dLNs) is important for the organism's immune regulation and immune protection. Several lymphatic endothelial cell (LEC)-expressed adhesion molecules have thus far been found to support transmigration and movement within the lymphatic vasculature. In this study, we investigated the contribution of CD112, an adhesion molecule that we recently found to be highly expressed in murine LECs, to this process. Performing in vitro assays in the murine system, we found that transmigration of bone marrow-derived dendritic cells (BM-DCs) across or adhesion to murine LEC monolayers was reduced when CD112 was absent on LECs, DCs, or both cell types, suggesting the involvement of homophilic CD112-CD112 interactions. While CD112 was highly expressed in murine dermal LECs, CD112 levels were low in endogenous murine dermal DCs and BM-DCs. This might explain why we observed no defect in the in vivo lymphatic migration of adoptively transferred BM-DCs or endogenous DCs from the skin to dLNs. Compared to murine DCs, human monocyte-derived DCs expressed higher CD112 levels, and their migration across human CD112-expressing LECs was significantly reduced upon CD112 blockade. CD112 expression was also readily detected in endogenous human dermal DCs and LECs by flow cytometry and immunofluorescence. Upon incubating human skin punch biopsies in the presence of CD112-blocking antibodies, DC emigration from the tissue into the culture medium was significantly reduced, indicating impaired lymphatic migration. Overall, our data reveal a contribution of CD112 to human DC migration.


Assuntos
Células de Langerhans , Vasos Linfáticos , Nectinas , Animais , Humanos , Camundongos , Movimento Celular/fisiologia , Endotélio Linfático , Células de Langerhans/fisiologia , Nectinas/metabolismo
3.
Asian Pac J Cancer Prev ; 24(6): 2171-2176, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37378949

RESUMO

OBJECTIVE: BATF, as a transcription factor, and CD112, as a receptor for TIGIT, are involved in T-cell exhaustion. We investigated BATF and CD112 gene expression in the peripheral blood mononuclear cells from CLL patients and healthy subjects. METHODS: In a case-control study, 33 patients with CLL and 20 sex- and age-matched healthy individual were enrolled. Diagnosis and classification of patients was done according to immunophenotyping via flow cytometry and RAI staging system, respectively. Relative mRNA expression of BATF and CD112 was measured using qRT-PCR. RESULT: Our results showed that the expression of BATF and CD112 in CLL samples were significantly decreased in comparison those of the healthy controls (P = 0.0236 and P = 0.0002, respectively). CONCLUSION: These findings suggest the role of BATF and CD112 not only as a role in T cell exhaustion, but in effector differentiation program in CLL, which warrants further studies in future.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Estudos de Casos e Controles , Regulação da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucócitos Mononucleares/metabolismo , Reação em Cadeia da Polimerase , Nectinas/metabolismo
4.
Mod Pathol ; 36(4): 100089, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36788088

RESUMO

Focal T lymphocyte aggregates commonly occur in colorectal cancer; however, their biological significance is unknown. To study focal aggregates of T lymphocytes, a deep learning-based framework for automated identification of T cell accumulations (T cell nests) was developed using CD8, PD-1, CD112R, and Ki67 multiplex fluorescence immunohistochemistry. To evaluate the clinical significance of these parameters, a cohort of 523 colorectal cancers with clinical follow-up data was analyzed. Spatial analysis of locally enriched CD8+ T cell density and cell-to-cell contacts identified T cell nests in the tumor microenvironment of colorectal cancer. CD112R and PD-1 expressions on CD8+ T cells located in T cell nests were found to be elevated compared with those on CD8+ T cells in all other tumor compartments (P < .001 each). Although the highest mean CD112R expression on CD8+ T cells was observed at the invasive margin, the PD-1 expression on CD8+ T cells was elevated in the center of the tumor (P < .001 each). Across all tissue compartments, proliferating CD8+ T cells showed higher relative CD112R and PD-1 expressions than those shown by non-proliferating CD8+ T cells (P < .001 each). Integration of all available spatial and immune checkpoint expression parameters revealed a superior predictive performance for overall survival (area under the curve, 0.65; 95% CI, 0.60-0.70) compared with the commonly used CD8+ tumor-infiltrating lymphocyte density (area under the curve, 0.57; 95% CI, 0.53-0.61; P < .001). Cytotoxic T cells with elevated CD112R and PD-1 expression levels are orchestrated in T cell nests of colorectal cancer and predict favorable patient outcomes, and the spatial nonredundancy underlies fundamental differences between both inhibitory immune checkpoints that provide a rationale for dual anti-CD112R/PD-1 immune checkpoint therapy.


Assuntos
Neoplasias Colorretais , Linfócitos T Citotóxicos , Humanos , Linfócitos T CD8-Positivos , Neoplasias Colorretais/patologia , Linfócitos do Interstício Tumoral , Prognóstico , Receptor de Morte Celular Programada 1/genética , Linfócitos T Citotóxicos/patologia , Microambiente Tumoral , Regulação para Cima
5.
Cancers (Basel) ; 15(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36672396

RESUMO

Hepatocellular carcinoma (HCC) is a frequent and deadly cancer in need of new treatments. Immunotherapy has shown promising results in several solid tumors. The TIGIT/DNAM-1 axis gathers targets for new immune checkpoint inhibitors (ICIs). Here, we aimed at highlighting the potential of this axis as a new therapeutic option for HCC. For this, we built a large transcriptomic database of 683 HCC samples, clinically annotated, and 319 normal liver tissues. We interrogated this database for the transcriptomic expression of each member of the TIGIT/DNAM-1 axis and tested their prognostic value for survival. We then focused on the most discriminant one for these criteria, i.e., PVRIG, and analyzed the clinical characteristics, the disease-free and overall survivals, and biological pathways associated with PVRIG High tumors. Among all members of the TIGIT/DNAM-1 axis, PVRIG expression was higher in tumors than in normal liver, was heterogeneous across tumors, and was the only member with independent prognostic value for better survival. PVRIG High tumors were characterized by a higher lymphocytic infiltrate and enriched for signatures associated with tertiary lymphoid structures and better anti-tumor immune response. These results suggest that patients with PVRIG High tumors might be good candidates for immune therapy involving ICIs, notably ICIs targeting the TIGIT/DNAM-1 axis. Further functional and clinical validation is urgently required.

6.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142692

RESUMO

Background: The importance of immune checkpoint molecules is well known in tumor and transplantation immunology; however, much less information is available regarding human pregnancy. Despite the significant amount of information about the TIGIT and CD226 immune checkpoint receptors in immune therapies, very little research has been conducted to study the possible role of these surface molecules and their ligands (CD112 and CD155) during the three trimesters of pregnancy. Methods: From peripheral blood, immune cell subpopulations were studied, and the surface expression of immune checkpoint molecules was analyzed by flow cytometry. Soluble immune checkpoint molecule levels were measured by ELISA. Results: Notable changes were observed regarding the percentage of monocyte subpopulation and the expression of CD226 receptor by CD4+ T and NKT cells. Elevated granzyme B content by the intermediate and non-classical monocytes was assessed as pregnancy proceeded. Furthermore, we revealed an important relationship between the CD226 surface expression by NKT cells and the serum CD226 level in the third trimester of pregnancy. Conclusions: Our results confirm the importance of immune checkpoint molecules in immunoregulation during pregnancy. CD226 seems to be a significant regulator, especially in the case of CD4+ T and NKT cells, contributing to the maternal immune tolerance in the late phase of pregnancy.


Assuntos
Antígenos de Diferenciação de Linfócitos T , Células T Matadoras Naturais , Antígenos de Diferenciação de Linfócitos T/metabolismo , Feminino , Granzimas , Humanos , Proteínas de Checkpoint Imunológico , Células T Matadoras Naturais/metabolismo , Gravidez , Receptores Imunológicos/metabolismo , Receptores Virais/metabolismo
7.
Viruses ; 14(1)2022 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-35062364

RESUMO

Human herpesvirus 6B (HHV-6B) is a T-lymphotropic virus and the etiological agent of exanthem subitum. HHV-6B is present in a latent or persistent form after primary infection and is produced in the salivary glands or transmitted to this organ. Infected individuals continue to secrete the virus in their saliva, which is thus considered a source for virus transmission. HHV-6B primarily propagates in T cells because its entry receptor, CD134, is mainly expressed by activated T cells. The virus then spreads to the host's organs, including the salivary glands, nervous system, and liver. However, CD134 expression is not detected in these organs. Therefore, HHV-6B may be entering cells via a currently unidentified cell surface molecule, but the mechanisms for this have not yet been investigated. In this study, we investigated a CD134-independent virus entry mechanism in the parotid-derived cell line HSY. First, we confirmed viral infection in CD134-membrane unanchored HSY cells. We then determined that nectin cell adhesion molecule 2 (nectin-2) mediated virus entry and that HHV-6B-insensitive T-cells transduced with nectin-2 were transformed into virus-permissive cells. We also found that virus entry was significantly reduced in nectin-2 knockout parotid-derived cells. Furthermore, we showed that HHV-6B glycoprotein B (gB) interacted with the nectin-2 V-set domain. The results suggest that nectin-2 acts as an HHV-6B entry-mediated protein.


Assuntos
Herpesvirus Humano 6/metabolismo , Nectinas/genética , Nectinas/metabolismo , Proteínas do Envelope Viral/metabolismo , Ligação Viral , Internalização do Vírus , Linhagem Celular , Técnicas de Inativação de Genes , Herpesvirus Humano 6/classificação , Herpesvirus Humano 6/genética , Humanos
8.
Oncol Lett ; 23(2): 51, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34992684

RESUMO

Acute myeloid leukemia (AML) relapse is considered to be related to escape from antitumor immunity. Changes in the expression of immune checkpoints, including B7 homolog (H)1 and B7-H2, have been reported to contribute to AML progression. Binding of T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) among other immune checkpoints on natural killer (NK) and T cells to CD155/CD112 in tumors is supposed to be inhibitory; however, the mechanism by which changes in CD155 and CD112 expression affect tumor immunity remains unclear. When the increased expression of CD155 and CD112 activates Raf-MEK-ERK pathway and Raf-MEK-ERK pathway is one of the targets of FMS-like tyrosine kinase 3 (FLT3) inhibition. The present study investigated the alterations in CD155 and CD112 expression under FLT3 inhibition (quizartinib and gilteritinib) and studied its effect on NK and T cell cytotoxicity. CD155 and CD112 expression was analyzed using flow cytometry and reverse transcription-quantitative PCR in AML cell lines with or without FLT3 mutation using FLT3 inhibitors. CD155 and CD112 expression was specifically downregulated by FLT3 inhibition in FLT3-mutated cell lines. Direct cytotoxicity and antibody-dependent cellular cytotoxicity against these cells by NK cells were enhanced. However, the cytotoxicity of γδ T cells with low TIGIT expression compared with NK cells was not enhanced in direct cytotoxicity assay using luciferase luminescence. The analysis of clinical trials from The Cancer Genome Atlas (TCGA) revealed that high CD155 and CD112 expression is associated with poor overall survival. The enhanced cytotoxicity of NK cells against CD155- and CD112-downregulated cells following FLT3 inhibition indicated CD155 and CD112 as possible targets of immunotherapy for AML using FLT3 inhibitors.

9.
Biomedicines ; 9(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34829838

RESUMO

Early-onset preeclampsia is a common obstetrical disease with a potential genetic background and is characterized by the predominance of Th1 immune response. However, although many studies investigated the immunological environment in preeclamptic patients, no information is available about the potential role of the TIGIT/CD226/CD112/CD155 immune checkpoint pathway. A total of 37 pregnant women diagnosed with early-onset preeclampsia and 36 control women with appropriately matched gestational age were enrolled in this study. From venous blood, mononuclear cells were isolated and stored in the freezer. Using multicolor flow cytometry T-, NK cell and monocyte subpopulations were determined. After characterization of the immune cell subsets, TIGIT, CD226, CD112, and CD155 surface expression and intracellular granzyme B content were determined by flow cytometer. Significantly decreased CD226 expression and increased CD112 and CD155 surface expression were detected in almost all investigated T-cell, NK cell, and monocyte subpopulations in women diagnosed with preeclampsia compared to the healthy group. Furthermore, reduced TIGIT and granzyme B expression were measured only in preeclamptic CD8+ T cells compared to healthy pregnant women. A decreased level of the activatory receptor CD226 in effector lymphocytes accompanied with an elevated surface presence of the CD112 and CD155 ligands in monocytes could promote the TIGIT/CD112 and/or TIGIT/CD155 ligation, which mediates inhibitory signals. We assume that the inhibition of the immune response via this immune checkpoint pathway might contribute to compensate for the Th1 predominance during early-onset preeclampsia.

10.
Transpl Immunol ; 69: 101474, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34582968

RESUMO

INTRODUCTION: End stage renal disease (ESRD) is the irreversible deterioration of renal function requiring renal replacement therapy by dialysis or transplant. Human leucocyte antigens (HLA) have been well examined however research still is required into the non-HLA antibodies. Antibody mediated rejection (AMR) can be seen in the absence of HLA antibodies on biopsies of patients who have received identical transplants; anti-endothelial cell antibodies may explain this. Investigation into endothelial cell antigens on donor and recipient endothelium may elucidate and stratify the degree of risk of any given transplant and may guide towards the best matched donor. METHODS: Protein array analysis was carried out on 8 patient pairs using nitro-cellulose membranes and biotinylated detection antibodies. The fluorescence emitted was captured by X-Ray film and results were recorded with ImageJ software. A fold increase of more than 2 was considered to be positive. RESULTS: 11 proteins identified had a fold increase of increase ≥2 and were present in ≥2 patient pairs which may point to potential clinical utility. Nectin2/CD112 may be measured in order analyse graft survival time in transplant recipients. Prognosticating renal failure has clinical importance and potential markers that have been identified to aid which include MEPE, CRELD2, and TIMP-4. Novel pharmacological therapies for specific biomarkers identified in this study include JAM-A, E-Selectin, CD147, Galectin-3, JAM-C, PAR-1, and TNFR2. CONCLUSION: Protein analysis showed differences in expression of antigens between patients with and without Chronic Kidney Disease (CKD). This information could be used at the matching stage of renal transplantation and also in the treatment of rejection episodes. The results highlight biomarkers that potentially prognosticate and pharmacological therapies that may ameliorate kidney disease and rejection in ESRD and transplant recipients.


Assuntos
Transplante de Rim , Rejeição de Enxerto , Sobrevivência de Enxerto , Antígenos HLA , Humanos , Rim/fisiologia , Diálise Renal , Transplantados
11.
J Exp Clin Cancer Res ; 40(1): 285, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507594

RESUMO

The recent discovery of immune checkpoint inhibitors is a significant milestone in cancer immunotherapy research. However, some patients with primary or adaptive drug resistance might not benefit from the overall therapeutic potential of immunotherapy in oncology. Thus, it is becoming increasingly critical for oncologists to explore the availability of new immune checkpoint inhibitors. An emerging co-inhibitory receptor, CD112R (also called PVRIG), is most commonly expressed on natural killer (NK) and T cells. It binds to its ligand (CD112 or PVRL2/nectin-2) and inhibits the strength with which T cells and NK cells respond to cancer. Therefore, CD112R is being presented as a new immune checkpoint inhibitor with high potential in cancer immunotherapy. CD112 is easily detectable on antigen-presenting or tumor cells, and its high level of expression has been linked with tumor progression and poor outcomes in most cancer patients. This review explores the molecular and functional relationship between CD112R, TIGIT, CD96, and CD226 in T cell responses. In addition, this review comprehensively discusses the recent developments of CD112R/CD112 immune checkpoints in cancer immunotherapy and prognosis.


Assuntos
Imunoterapia/métodos , Neoplasias/metabolismo , Neoplasias/terapia , Receptores de Superfície Celular/metabolismo , Animais , Humanos , Camundongos , Neoplasias/genética , Prognóstico , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia
12.
J Hematol Oncol ; 14(1): 100, 2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174928

RESUMO

BACKGROUND: Although checkpoint-based immunotherapy has shown exciting results in the treatment of tumors, around 70% of patients have experienced unresponsiveness. PVRIG is a recently identified immune checkpoint receptor and blockade of which could reverse T cell exhaustion to treat murine tumor; however, its therapeutic potential via NK cells in mice and human remains seldom reported. METHODS: In this study, we used patient paraffin-embedded colon adenocarcinoma sections, various murine tumor models (MC38 colon cancer, MCA205 fibrosarcoma and LLC lung cancer), and human NK cell- or PBMC-reconstituted xenograft models (SW620 colon cancer) to investigate the effect of PVRIG on tumor progression. RESULTS: We found that PVRIG was highly expressed on tumor-infiltrating NK cells with exhausted phenotype. Furthermore, either PVRIG deficiency, early blockade or late blockade of PVRIG slowed tumor growth and prolonged survival of tumor-bearing mice by inhibiting exhaustion of NK cells as well as CD8+ T cells. Combined blockade of PVRIG and PD-L1 showed better effect in controlling tumor growth than using either one alone. Depletion of NK or/and CD8+ T cells in vivo showed that both cell types contributed to the anti-tumor efficacy of PVRIG blockade. By using Rag1-/- mice, we demonstrated that PVRIG blockade could provide therapeutic effect in the absence of adaptive immunity. Further, blockade of human PVRIG with monoclonal antibody enhanced human NK cell function and inhibited human tumor growth in NK cell- or PBMC-reconstituted xenograft mice. CONCLUSIONS: Our results reveal the importance of NK cells and provide novel knowledge for clinical application of PVRIG-targeted drugs in future.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Receptores de Superfície Celular/antagonistas & inibidores , Animais , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Receptores de Superfície Celular/imunologia
13.
Semin Immunol ; 49: 101436, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-33288379

RESUMO

T cells play a critical role in promoting tumor regression in both experimental models and humans. Yet, T cells that are chronically exposed to tumor antigen during cancer progression can become dysfunctional/exhausted and fail to induce tumor destruction. Such tumor-induced T cell dysfunction may occur via multiple mechanisms. In particular, immune checkpoint inhibitory receptors that are upregulated by tumor-infiltrating lymphocytes in many cancers limit T cell survival and function. Overcoming this inhibitory receptor-mediated T cell dysfunction has been a central focus of recent developments in cancer immunotherapy. Immunotherapies targeting inhibitory receptor pathways such as programmed cell death 1 (PD-1)/programmed death ligand 1 and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), alone or in combination, confer significant clinical benefits in multiple tumor types. However, many patients with cancer do not respond to immune checkpoint blockade, and dual PD-1/CTLA-4 blockade may cause serious adverse events, which limits its indications. Targeting novel non-redundant inhibitory receptor pathways contributing to tumor-induced T cell dysfunction in the tumor microenvironment may prove efficacious and non-toxic. This review presents preclinical and clinical findings supporting the roles of two key pathways-T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) and T cell immunoreceptor with Ig and ITIM domain (TIGIT)/CD226/CD96/CD112R-in cancer immunotherapy.


Assuntos
Receptores Coestimuladores e Inibidores de Linfócitos T/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Biomarcadores Tumorais , Humanos , Proteínas de Checkpoint Imunológico/metabolismo , Imunoterapia , Ativação Linfocitária , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Terapia de Alvo Molecular , Neoplasias/patologia , Neoplasias/terapia , Transdução de Sinais , Subpopulações de Linfócitos T/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
14.
Cancers (Basel) ; 11(6)2019 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-31234588

RESUMO

Natural killer (NK) cells are lymphocytes of the innate immune response characterized by their role in the destruction of tumor cells. Activation of NK cells depend on a fine balance between activating and inhibitory signals mediated by different receptors. In recent years, a family of paired receptors that interact with ligands of the Nectin/Nectin-like (Necl) family has attracted great interest. Two of these ligands, Necl-5 (usually termed CD155 or PVR) and Nectin-2 (CD112), frequently expressed on different types of tumor cells, are recognized by a group of receptors expressed on T and NK cells that exert opposite functions after interacting with their ligands. These receptors include DNAM-1 (CD226), TIGIT, TACTILE (CD96) and the recently described PVRIG. Whereas activation through DNAM-1 after recognition of CD155 or CD112 enhances NK cell-mediated cytotoxicity against a wide range of tumor cells, TIGIT recognition of these ligands exerts an inhibitory effect on NK cells by diminishing IFN-γ production, as well as NK cell-mediated cytotoxicity. PVRIG has also been identified as an inhibitory receptor that recognizes CD112 but not CD155. However, little is known about the role of TACTILE as modulator of immune responses in humans. TACTILE control of tumor growth and metastases has been reported in murine models, and it has been suggested that it negatively regulates the anti-tumor functions mediated by DNAM-1. In NK cells from patients with solid cancer and leukemia, it has been observed a decreased expression of DNAM-1 that may shift the balance in favor to the inhibitory receptors TIGIT or PVRIG, further contributing to the diminished NK cell-mediated cytotoxic capacity observed in these patients. Analysis of DNAM-1, TIGIT, TACTILE and PVRIG on human NK cells from solid cancer or leukemia patients will clarify the role of these receptors in cancer surveillance. Overall, it can be speculated that in cancer patients the TIGIT/PVRIG pathways are upregulated and represent novel targets for checkpoint blockade immunotherapy.

15.
Cancer Immunol Immunother ; 66(10): 1367-1375, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28623459

RESUMO

Trastuzumab is the first-line drug to treat breast cancer with high Her2 expression. However, many cancers failed to respond, largely due to their resistance to NK cell-triggered antibody-dependent cellular cytotoxicity (ADCC). Poliovirus receptor (PVR)-like molecules are known to be important for lymphocyte functions. We found that all PVR-like receptors are expressed on human NK cells, and only TIGIT is preferentially expressed on the CD16+ NK cell subset. Disrupting the interactions of PVR-like receptors with their ligands on cancer cells regulates NK cell activity. More importantly, TIGIT is upregulated upon NK cell activation via ADCC. Blockade of TIGIT or CD112R, separately or together, enhances trastuzumab-triggered antitumor response by human NK cells. Thus, our findings suggest that PVR-like receptors regulate NK cell functions and can be targeted for improving trastuzumab therapy for breast cancer.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/imunologia , Células Matadoras Naturais/imunologia , Receptores de Superfície Celular/antagonistas & inibidores , Receptores Imunológicos/antagonistas & inibidores , Trastuzumab/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Receptores de Superfície Celular/imunologia , Receptores Imunológicos/imunologia , Transdução de Sinais
16.
Proc Natl Acad Sci U S A ; 111(45): 16118-23, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25352670

RESUMO

Natural killer (NK) cells are key players in the innate response to viruses, including herpesviruses. In particular, the variety of viral strategies to modulate the recognition of certain herpesviruses witnesses the importance of NK cells in the control of this group of viruses. Still, NK evasion strategies have remained largely elusive for the largest herpesvirus subfamily, the alphaherpesviruses. Here, we report that the gD glycoprotein of the alphaherpesviruses pseudorabies virus (PRV) and herpes simplex virus 2 (HSV-2) displays previously uncharacterized immune evasion properties toward NK cells. Expression of gD during infection or transfection led to degradation and consequent down-regulation of CD112, a ligand for the activating NK receptor DNAX accessory molecule 1 (DNAM-1). CD112 downregulation resulted in a reduced ability of DNAM-1 to bind to the surface of both virus-infected and gD-transfected cells. Consequently, expression of gD suppressed NK cell degranulation and NK cell-mediated lysis of PRV- or HSV-2-infected cells. These data identify an alphaherpesvirus evasion strategy from NK cells and point out that interactions between viral envelope proteins and host cell receptors can have biological consequences that stretch beyond virus entry.


Assuntos
Antígenos de Diferenciação de Linfócitos T/imunologia , Herpes Genital/imunologia , Herpesvirus Suídeo 1/imunologia , Herpesvirus Humano 2/imunologia , Imunidade Celular , Pseudorraiva/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Antígenos de Diferenciação de Linfócitos T/genética , Linhagem Celular , Feminino , Regulação Viral da Expressão Gênica/genética , Regulação Viral da Expressão Gênica/imunologia , Herpes Genital/genética , Herpesvirus Suídeo 1/genética , Herpesvirus Humano 2/genética , Humanos , Subunidade beta de Receptor de Interleucina-2 , Células Matadoras Naturais , Masculino , Pseudorraiva/genética , Transfecção , Proteínas do Envelope Viral/genética
17.
Hum Pathol ; 45(9): 1944-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25081539

RESUMO

CD112 as an important ligand of CD226 can stimulate the natural killer (NK) cell-mediated target cell lysis. Previous studies have reported that CD112 is involved in cancer initiation and progression. However, its expression and clinical significance in hepatocellular carcinoma (HCC) have never been investigated. In this study, we used immunohistochemistry to examine CD112 expression in cancer and pericancer tissues from 159 HCC cases. Western blot and immunofluorescence were used to detect CD112 expression in HCC cell lines. χ(2) Test was used to assess the association of CD112 expression with clinicopathological characteristics, whereas Kaplan-Meier survival function and Cox proportional hazards regression model were used to explore the association between CD112 expression and clinical outcome of patients with HCC. Overall, CD112 expression was significantly reduced in HCC tissues when compared with adjacent pericancer liver tissues (P < .001). Western blot and immunofluorescence analyses showed that most HCC cell lines had low CD112 expression level. Furthermore, low CD112 expression was significantly associated with high serum α-fetoprotein level (P = .004) in patients with HCC. Kaplan-Meier analysis showed that patients with low CD112 expression had poorer postsurgery overall survival than those with high CD112 expression (log-rank P = .045). In conclusion, our findings demonstrate that the down-regulation of CD112 may be an important mechanism through which HCC cells evade the natural killer cell-mediated immunosurveillance, and thus, CD112 may be a useful biomarker to assess the immunologic niche of HCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Subunidade beta de Receptor de Interleucina-2/metabolismo , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA