Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int Urol Nephrol ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39069601

RESUMO

BACKGROUND: Dendritic cells (DCs) have been speculated to be involved in the pathogenesis of glomerular diseases. However, the numbers and distribution of DC subsets in the kidneys of patients with crescentic glomerulonephritis (CrGN) have not been clearly elucidated. METHODS: A total of 26 patients with biopsy-proven CrGN were enrolled. Indirect immunofluorescence staining was used to quantify DC subsets in renal specimens. Double staining of HLA with CD11C, BDCA2 and CD209 respectively was performed to detect DC subsets. The correlation between DC subsets infiltrated in the kidney and clinical and pathological parameters was investigated. RESULTS: DC subsets were predominantly present in the kidney interstitium, particularly in the peri-glomerular area. The numbers of CD11C+DCs, BDCA2+DCs and CD209+DCs increased in the patients with CrGN and varied among different types of CrGN. Though significant correlation between DC subsets and the percentage of crescents had not been identified, a notable increase in the number of CD11C+DCs were observed with the chronic development of crescents. Furthermore, patients with severe tubulointerstitial injury exhibited significantly more infiltrations of CD11C+DCs, BDCA2+DCs and CD209+DCs. Moreover, the numbers of CD11C+DCs and BDCA2+DCs were found to correlate with the level of serum C3. CONCLUSIONS: Patients with CrGN showed increased kidney infiltration of DC subsets, primarily localized in the renal interstitium and peri-glomerular region. The correlation between DC subsets and fibrosis of crescent and severe tubulointerstitial injury implied a potential involvement of DCs in the development of CrGN.

2.
Exp Eye Res ; 240: 109782, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199260

RESUMO

Dry eye disease (DED) is caused by a loss of homeostasis of the tear film, which results in visual disturbance, ocular surface inflammation and damage, and neurosensory abnormalities. Although it is prevalent in 5-50% of the global population, there are limited clinical options for its treatment. This study explored the potential use of human intravenous immunoglobulin (IVIg) and its enriched fractions of sialylation, sialylated IVIg (sIVIg), as a treatment for DED. Fifteen female New Zealand white rabbits were topically instilled with 0.2% benzalkonium chloride (BAC) twice daily for five consecutive days to induce experimental dry eye. Saline, 0.4% IVIg, or 0.04% sIVIg eye drops were instilled twice daily for 20 consecutive days. Clinical evaluations, such as non-invasive tear break-up time (NIBUT) and corneal fluorescein staining (CFS), were conducted. mRNA levels of mucin 4, mucin 16, TNF-α, IL-1ß, MMP9, IL-10, TGF-ß, and CD209 in rabbit conjunctival tissues were examined using reverse transcription polymerase chain reaction (RT-PCR) or quantitative RT-PCR (qRT-PCR). The relationships between CD209 family members in rabbits and various mammalian species were analyzed using a phylogenetic tree. IVIg or sIVIg treatment resulted in clinical improvements in the rabbit DED model. The inflammatory cytokines, TNF-α and IL-1ß, were increased and mucin 4 and mucin 16, cell surface-associated mucins, were decreased in BAC-induced dry eye. Following IVIg or sIVIg treatment, inflammatory cytokines decreased, whereas the anti-inflammatory cytokine, IL-10, increased substantially. Moreover, a 10-fold lower sIVIg treatment dose resulted in prolonged IL-10 production, representing a significantly improved DED compared to IVIg. Furthermore, the expression of rabbit CD209 mRNA in the rabbit conjunctiva and its close relationship with primate homologs suggest that it may interact with IVIg or sIVIg to promote IL-10 expression, as previously described in humans. At a lower dosage, sIVIg showed a more efficient improvement in DED, making it a promising new candidate medication for DED.


Assuntos
Citocinas , Síndromes do Olho Seco , Coelhos , Humanos , Animais , Citocinas/genética , Citocinas/metabolismo , Imunoglobulinas Intravenosas/uso terapêutico , Imunoglobulinas Intravenosas/metabolismo , Interleucina-10/efeitos adversos , Interleucina-10/metabolismo , Mucina-4/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Antígeno Ca-125 , Filogenia , Síndromes do Olho Seco/metabolismo , Lágrimas/metabolismo , Compostos de Benzalcônio , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37008884

RESUMO

The new coronavirus infection (COVID-19) pandemic caused by SARS-CoV-2 has many times surpassed the epidemics caused by SARS-CoV and MERS-CoV. The reason for this was the presence of sites in the protein sequence of SARS-CoV-2 that provide interaction with a broader range of receptor proteins on the host cell surface. In this review, we consider both already known receptors common to SARS-CoV and SARS-CoV-2 and new receptors specific to SARS-CoV-2.

4.
Front Cardiovasc Med ; 10: 978918, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860279

RESUMO

Background: Heart Failure (HF) is the end-stage cardiovascular syndrome with poor prognosis. Proteomics holds great promise in the discovery of novel biomarkers and therapeutic targets for HF. The aim of this study is to investigate the causal effects of genetically predicted plasma proteome on HF using the Mendelian randomization (MR) approach. Methods: Summary-level data for the plasma proteome (3,301 healthy individuals) and HF (47,309 cases; 930,014 controls) were extracted from genome-wide association studies (GWASs) of European descent. MR associations were obtained using the inverse variance-weighted (IVW) method, sensitivity analyses, and multivariable MR analyses. Results: Using single-nucleotide polymorphisms as instrumental variables, 1-SD increase in MET level was associated with an approximately 10% decreased risk of HF (odds ratio [OR]: 0.92; 95% confidence interval [CI]: 0.89 to 0.95; p = 1.42 × 10-6), whereas increases in the levels of CD209 (OR: 1.04; 95% CI: 1.02-1.06; p = 6.67 × 10-6) and USP25 (OR: 1.06; 95% CI: 1.03-1.08; p = 7.83 × 10-6) were associated with an increased risk of HF. The causal associations were robust in sensitivity analyses, and no evidence of pleiotropy was observed. Conclusion: The study findings suggest that the hepatocyte growth factor/c-MET signaling pathway, dendritic cells-mediated immune processes, and ubiquitin-proteasome system pathway are involved in the pathogenesis of HF. Moreover, the identified proteins have potential to uncover novel therapies for cardiovascular diseases.

5.
Proc Natl Acad Sci U S A ; 120(13): e2211047120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943884

RESUMO

There is significant disease heterogeneity among mouse strains infected with the helminth Schistosoma mansoni. Here, we uncover a unique balance in two critical innate pathways governing the severity of disease. In the low-pathology setting, parasite egg-stimulated dendritic cells (DCs) induce robust interferon (IFN)ß production, which is dependent on the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) cytosolic DNA sensing pathway and results in a Th2 response with suppression of proinflammatory cytokine production and Th17 cell activation. IFNß induces signal transducer and activator of transcription (STAT)1, which suppresses CD209a, a C-type lectin receptor associated with severe disease. In contrast, in the high-pathology setting, enhanced DC expression of the pore-forming protein gasdermin D (Gsdmd) results in reduced expression of cGAS/STING, impaired IFNß, and enhanced pyroptosis. Our findings demonstrate that cGAS/STING signaling represents a unique mechanism inducing protective type I IFN, which is counteracted by Gsdmd.


Assuntos
Gasderminas , Interferon Tipo I , Camundongos , Animais , Proteínas de Membrana/metabolismo , Transdução de Sinais , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo , Imunidade Inata
6.
Fish Shellfish Immunol ; 136: 108718, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36990259

RESUMO

CD209 plays significant roles in pathogen recognition, innate and adaptive immunity, and cell-cell interactions. In the present study, a CD209 antigen-like protein E from Nile tilapia (Oreochromis niloticus) (designated as OnCD209E) was identified and characterized. OnCD209E contains an open reading frame (ORF) of 771 bp encoding a 257 amino acid protein, as well as the carbohydrate recognition domain (CRD). Multiple sequence analysis exhibits that the amino acid sequence of OnCD209E was relatively high homologous to that of partial fish, especially the highly conserved CRD, in which four conserved disulfide-bonded cysteine residues, WIGL conserved motif and two Ca2+/carbohydrate-binding sites (EPD and WFD motifs) were founded. Quantitative real-time PCR and Western Blot revealed that OnCD209E mRNA/protein is generally expressed in all tissues examined, but with wealth in head kidney and spleen tissues. The mRNA expression of OnCD209E was significantly increased in brain, head kidney, intestine, liver, and spleen tissues in response to the stimulation with polyinosinic-polycytidylic acid, Streptococcus agalactiae and Aeromonas hydrophila in vitro. Recombinant OnCD209E protein exhibited detectable bacterial binding and agglutination activity against different bacteria as well as inhibited the proliferation of tested bacteria. Subcellular localization analysis revealed that OnCD209E was mostly localized in the cell membrane. Moreover, overexpression of OnCD209E could activate nuclear factor-kappa B reporter genes in HEK-293T cells. Collectively, these results demonstrated that CD209E may potentially involve in immune response of Nile tilapia against bacterial infection.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Animais , Infecções Estreptocócicas/veterinária , Regulação da Expressão Gênica , Imunidade , Proteínas Recombinantes/genética , RNA Mensageiro , Proteínas de Peixes/química , Streptococcus agalactiae/fisiologia , Imunidade Inata/genética
7.
J Gastroenterol Hepatol ; 38(4): 625-633, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36740832

RESUMO

BACKGROUND: Helicobacter pylori, a gram-negative bacterium persisting on the gastric mucosa, is involved in the pathogenesis of a variety of gastric diseases. Leukocyte cell-derived chemotaxin 2 (LECT2) treatment increased the phagocytic capacity of lymphocytes and improved immune function in bacterial infection. Whether the immune cells infected with H. pylori are affected by LECT2 is unclear. METHODS: Bone marrow-derived dendritic cells (BMDCs) from wild-type C57BL/6 mice, CD209a knockout mice, or LECT2 knockout mice were exposed to H. pylori at a multiplicity of infection of 10 for 24 h. The maturity of DCs and the cytokines secreted by DCs were analyzed by flow cytometry, western blot, and real-time PCR. The signaling pathway underlying CD209a activation after LECT2 treatment were also detected. RESULTS: LECT2 treatment promoted H. pylori-induced BMDC maturation and produced a high level of anti-inflammatory cytokine (IL-10) but a low level of pro-inflammatory cytokine (IL-23p40). Moreover, LECT2-pretreated DCs shifted the development of pro-inflammatory Th1/Th17 cells to Treg cells. CD209a mediated LECT2-induced maturation and secretion of DC in H. pylori-primed BMDCs. LECT2 was further confirmed to induce the secretion of certain cytokines via CD209a-JNK/P38 MAPK pathway. CONCLUSION: This study reveals that LECT2 modulated the functions of H. pylori-primed DCs in a CD209a-dependent manner, which might hinder the clearance of H. pylori and contribute to its colonization.


Assuntos
Células Dendríticas , Infecções por Helicobacter , Helicobacter pylori , Peptídeos e Proteínas de Sinalização Intercelular , Receptores de Superfície Celular , Animais , Camundongos , Citocinas/metabolismo , Células Dendríticas/imunologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/metabolismo
8.
J Extracell Vesicles ; 11(12): e12290, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36463392

RESUMO

Extracellular vesicles (EVs) are promising carriers for the delivery of a variety of chemical and biological drugs. However, their efficacy is limited by the lack of cellular specificity. Available methods to improve the tissue specificity of EVs predominantly rely on surface display of proteins and peptides, largely overlooking the dense glycocalyx that constitutes the outermost layer of EVs. In the present study, we report a reconfigurable glycoengineering strategy that can endogenously display glycans of interest on EV surface. Briefly, EV producer cells are genetically engineered to co-express a glycosylation domain (GD) inserted into the large extracellular loop of CD63 (a well-studied EV scaffold protein) and fucosyltransferase VII (FUT7) or IX (FUT9), so that the engineered EVs display the glycan of interest. Through this strategy, we showcase surface display of two types of glycan ligands, sialyl Lewis X (sLeX) and Lewis X, on EVs and achieve high specificity towards activated endothelial cells and dendritic cells, respectively. Moreover, the endothelial cell-targeting properties of sLeX-EVs were combined with the intrinsic therapeutic effects of mesenchymal stem cells (MSCs), leading to enhanced attenuation of endothelial damage. In summary, this study presents a reconfigurable glycoengineering strategy to produce EVs with strong cellular specificity and highlights the glycocalyx as an exploitable trait for engineering EVs.


Assuntos
Vesículas Extracelulares , Glicocálix , Células Endoteliais , Transporte Proteico , Movimento Celular , Antígeno Sialil Lewis X
9.
Theriogenology ; 193: 77-86, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36156427

RESUMO

Adeno-associated viruses (AAV) are widely used in the field of genetically modified organism production. In this work, transduction of bovine embryos by AAV was selected as a potential approach to perform genetic modifications: we have used recombinant AAV to produce GFP-positive bovine embryos. Five different AAV serotypes were used to evaluate their ability to deliver genetic material into the bovine embryos. AAV9 serotype demonstrated minimal effectiveness (38,10%) as the genetic material transfer tool. Four other serotypes of AAVs (AAV1, AAV2, AAV6 and AAV-DJ) showed very close transduction efficiency (52,94-58,33%). CD209 is a C-type lectin receptor which is presented on the surface of macrophages and dendritic cells. CD209 recognizes a broad range of pathogens in a rather nonspecific manner. Production of CD209 knock-out is relevant for better understanding of infection mechanisms. Potentially, production of such knock-out may enable animals to become resistant to various infections. We have analyzed DNA samples from 22 blastocysts obtained after in vitro culture of zygotes subjected to recombinant AAV action. We have detected that 3 of 22 analyzed blastocysts contained mosaic CD209 frameshifts. Therefore, we have demonstrated proof of principle that application of AAV as a genome editing tool is an effective method for obtaining genetically modified cattle embryos.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Bovinos , Dependovirus/genética , Edição de Genes/veterinária , Lectinas Tipo C/genética
10.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806253

RESUMO

Glycyrrhizic acid (GA), a natural compound isolated from licorice (Glycyrrhiza glabra), has exhibited anti-inflammatory and anti-tumor effects in vitro. Dipotassium glycyrrhizinate (DPG), a dipotassium salt of GA, also has shown an anti-tumor effect on glioblastoma cell lines, U87MG and T98G. The study investigated the DPG effects in the melanoma cell line (SK-MEL-28). MTT assay demonstrated that the viability of the cells was significantly decreased in a time- and dose-dependent manner after DPG (IC50 = 36 mM; 24 h). DNA fragmentation suggested that DPG (IC50) induced cellular apoptosis, which was confirmed by a significant number of TUNEL-positive cells (p-value = 0.048) and by PARP-1 [0.55 vs. 1.02 arbitrary units (AUs), p-value = 0.001], BAX (1.91 vs. 1.05 AUs, p-value = 0.09), and BCL-2 (0.51 vs. 1.07 AUs, p-value = 0.0018) mRNA compared to control cells. The proliferation and wound-healing assays showed an anti-proliferative effect on DPG-IC50-treated cells, also indicating an inhibitory effect on cell migration (p-values < 0.001). Moreover, it was observed that DPG promoted a 100% reduction in melanospheres formation (p-value = 0.008). Our previous microRNAs (miRs) global analysis has revealed that DPG might increase miR-4443 and miR-3620 expression levels. Thus, qPCR showed that after DPG treatment, SK-MEL-28 cells presented significantly high miR-4443 (1.77 vs. 1.04 AUs, p-value = 0.02) and miR-3620 (2.30 vs. 1.00 AUs, p-value = 0.01) expression compared to control cells, which are predicted to target the NF-kB, CD209 and TNC genes, respectively. Both genes are responsible for cell attachment and migration, and qPCR revealed significantly decreased CD209 (1.01 vs. 0.54 AUs, p-value = 0.018) and TNC (1.00 vs. 0.31 AUs, p-value = 2.38 × 10−6) mRNA expression levels after DPG compared to untreated cells. Furthermore, the migration of SK-MEL-28 cells stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA) was attenuated by adding DPG by wound-healing assay (48 h: p-value = 0.004; 72 h: p-value = 7.0 × 10−4). In addition, the MMP-9 expression level was inhibited by DPG in melanoma cells stimulated by TPA and compared to TPA-treated cells (3.56 vs. 0.99 AUs, p-value = 0.0016) after 24 h of treatment. Our results suggested that DPG has an apoptotic, anti-proliferative, and anti-migratory effect on SK-MEL-28 cells. DPG was also able to inhibit cancer stem-like cells that may cause cerebral tumor formation.


Assuntos
Melanoma , MicroRNAs , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ácido Glicirrízico/farmacologia , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , RNA Mensageiro
11.
Front Genet ; 13: 883234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783255

RESUMO

Coronavirus disease 2019 (COVID-19), which is known to be caused by the virus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is characterized by pneumonia, cytokine storms, and lymphopenia. Patients with malignant tumors may be particularly vulnerable to SARS-CoV-2 infection and possibly more susceptible to severe complications due to immunosuppression. Recent studies have found that CD209 (DC-SIGN) might be a potential binding receptor for SARS-CoV-2 in addition to the well-known receptor ACE2. However, pan-cancer studies of CD209 remain unclear. In this study, we first comprehensively investigated the expression profiles of CD209 in malignancies in both pan-carcinomas and healthy tissues based on bioinformatic techniques. The CD209 expression declined dramatically in various cancer types infected by SARS-CoV-2. Remarkably, CD209 was linked with diverse immune checkpoint genes and infiltrating immune cells. These findings indicate that the elevation of CD209 among specific cancer patients may delineate a mechanism accounting for a higher vulnerability to infection by SARS-CoV-2, as well as giving rise to cytokine storms. Taken together, CD209 plays critical roles in both immunology and metabolism in various cancer types. Pharmacological inhibition of CD209 antigen (D-mannose), together with other anti-SARS-CoV-2 strategies, might provide beneficial therapeutic effects in specific cancer patients.

12.
3 Biotech ; 12(7): 146, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35698583

RESUMO

The interrelation of cancer and Alzheimer's disorder (AD)-associated molecular mechanisms, reported last decade, paved the path for drug discoveries. In this direction, while chemotherapy is well established for breast cancer (BC), the detection and targeted therapy for AD is not advanced due to a lack of recognized peripheral biomarkers. The present study aimed to find diagnostic and prognostic molecular signature markers common to both BC and AD for possible drug targeting and repurposing. For these disorders, two corresponding microarray datasets (GSE42568, GSE33000) were used for identifying the differentially expressed genes (DEGs), resulting in recognition of CD209 and MCM7 as the two common players. While the CD209 gene was upregulated in both disorders and has been studied vastly, the MCM7 gene showed a strikingly reverse pattern of expression level, downregulated in the case of BC while upregulated in the case of AD. Thus, the MCM7 gene was further analyzed for expression, predictions, and validations of its structure and protein-protein interaction (PPI) for the possible development of new treatment methods for AD. The study concluded with indicative drug repurposing studies to check the effect of existing clinically approved drugs for BC for rectifying the expression levels of the mutated MCM7 gene in AD. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03207-1.

13.
Fish Shellfish Immunol ; 126: 47-56, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35568142

RESUMO

CD209 is a type II transmembrane protein in the C-type lectin family, which is involved in the regulation of innate and adaptive immune system. Although it has been widely studied in mammals, but little has been reported about fish CD209 genes. In the present study, Megalobrama amblycephala CD209 (MaCD209) gene was cloned and characterized, its expression patterns, evolutionary characteristics, agglutinative and bacteriostatic activities were analyzed. These results showed that the open reading frame (ORF) of MaCD209 gene was 795 bp, encoding 264 aa, and the calculated molecular weight of the encoded protein was 29.7 kDa. MaCD209 was predicted to contain 2 N-glycosylation sites, 1 functional domain (C-LECT-DC-SIGN-like) and 1 transmembrane domain. Multiple sequence alignment showed that the amino acid sequence of MaCD209 was highly homologous with that of partial fishes, especially the highly conserved C-LECT-DC-SIGN-like domain and functional sites of CD209. Phylogenetic analysis showed that the CD209 genes from M. amblycephala and other cypriniformes fishes were clustered into one group, which was reliable and could be used for evolutionary analysis. Then, adaptive evolutionary analysis of teleost CD209 was conducted, and several positively selected sites were identified using site and branch-site models. Quantitative real-time PCR analysis showed that MaCD209 gene was highly expressed in the liver and heart. Moreover, the expression of MaCD209 was significantly induced upon Aeromonas hydrophila infection, with the peak levels at 4 h or 12 h post infection. The immunohistochemical analysis also revealed increased distribution of MaCD209 protein post bacterial infection. In addition, recombinant MaCD209 (rMaCD209) protein was prepared using a pET32a expression system, which showed excellent bacterial binding and agglutinative activities in a Ca2+-independent manner. However, rMaCD209 could only inhibit the proliferation of Escherichia coli rather than A. hydrophila. In conclusion, this study identified the MaCD209 gene, detected its expression and evolutionary characteristics, and evaluated the biological activities of rMaCD209 protein, which would provide a theoretical basis for understanding the evolution and functions of fish CD209 genes.


Assuntos
Cyprinidae , Cipriniformes , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila/fisiologia , Animais , Sequência de Bases , Clonagem Molecular , Cipriniformes/genética , Proteínas de Peixes/química , Mamíferos/genética , Mamíferos/metabolismo , Filogenia , Proteínas Recombinantes/genética
14.
Anim Biotechnol ; 33(4): 664-671, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32985930

RESUMO

This study aimed to explore the association of single nucleotide polymorphisms (SNPs) in CD209 gene with the occurrence of bovine paratuberculosis (PTB) disease caused by Mycobacterium avium subspecies paratuberculosis (MAP) in Indian cattle. A total of 213 animals were preliminarily selected on the basis of physical body condition score, which was then screened by a panel of diagnostic tests viz. Johnin, ELISA, fecal microscopy, and fecal culture, for the establishment of a case-control resource population. A total of four SNPs viz. rs208222804, rs211654540, rs208814257, and rs210748127 in CD209 gene were genotyped by PCR-RFLP. All SNPs, except rs210748127, were polymorphic in our population. Genotypic-phenotypic associations were assessed by the PROCLOGISTIC procedure of SAS 9.3. The SNP rs208814257 yielded three genotypes viz. CC, CG, and GG, which were significantly (p < 0.05) different in case as compared to the control population. The odds of CC and CG in comparison to GG genotype were 1.21 and 0.40, respectively. The CG genotype was significantly higher in control population, indicating that this genotype may provide resistance against PTB in our resource population. Upon validation in an independent, larger test population and following biological characterization, SNP rs208814257 can be incorporated in marker panel for selection of animals with greater resistance to MAP infection.


Assuntos
Doenças dos Bovinos , Moléculas de Adesão Celular , Lectinas Tipo C , Paratuberculose , Receptores de Superfície Celular , Animais , Estudos de Casos e Controles , Bovinos/genética , Doenças dos Bovinos/genética , Doenças dos Bovinos/microbiologia , Moléculas de Adesão Celular/genética , Predisposição Genética para Doença , Lectinas Tipo C/genética , Mycobacterium avium subsp. paratuberculosis , Paratuberculose/epidemiologia , Paratuberculose/genética , Polimorfismo de Nucleotídeo Único , Receptores de Superfície Celular/genética
15.
Fungal Biol Biotechnol ; 8(1): 22, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952645

RESUMO

BACKGROUND: Life-threatening invasive fungal infections are treated with antifungal drugs such as Amphotericin B (AmB) loaded liposomes. Our goal herein was to show that targeting liposomal AmB to fungal cells with the C-type lectin pathogen recognition receptor DC-SIGN improves antifungal activity. DC-SIGN binds variously crosslinked mannose-rich and fucosylated glycans and lipomannans that are expressed by helminth, protist, fungal, bacterial and viral pathogens including three of the most life-threatening fungi, Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans. Ligand recognition by human DC-SIGN is provided by a carbohydrate recognition domain (CRD) linked to the membrane transit and signaling sequences. Different combinations of the eight neck repeats (NR1 to NR8) expressed in different protein isoforms may alter the orientation of the CRD to enhance its binding to different glycans. RESULTS: We prepared two recombinant isoforms combining the CRD with NR1 and NR2 in isoform DCS12 and with NR7 and NR8 in isoform DCS78 and coupled them to a lipid carrier. These constructs were inserted into the membrane of pegylated AmB loaded liposomes AmB-LLs to produce DCS12-AmB-LLs and DCS78-AmB-LLs. Relative to AmB-LLs and Bovine Serum Albumin coated BSA-AmB-LLs, DCS12-AmB-LLs and DCS78-AmB-LLs bound more efficiently to the exopolysaccharide matrices produced by A. fumigatus, C. albicans and C. neoformans in vitro, with DCS12-AmB-LLs performing better than DCS78-AmB-LLs. DCS12-AmB-LLs inhibited and/or killed all three species in vitro significantly better than AmB-LLs or BSA-AmB-LLs. In mouse models of invasive candidiasis and pulmonary aspergillosis, one low dose of DCS12-AmB-LLs significantly reduced the fungal burden in the kidneys and lungs, respectively, several-fold relative to AmB-LLs. CONCLUSIONS: DC-SIGN's CRD specifically targeted antifungal liposomes to three highly evolutionarily diverse pathogenic fungi and enhanced the antifungal efficacy of liposomal AmB both in vitro and in vivo. Targeting significantly reduced the effective dose of antifungal drug, which may reduce drug toxicity, be effective in overcoming dose dependent drug resistance, and more effectively kill persister cells. In addition to fungi, DC-SIGN targeting of liposomal packaged anti-infectives have the potential to alter treatment paradigms for a wide variety of pathogens from different kingdoms including protozoans, helminths, bacteria, and viruses which express its cognate ligands.

16.
Infectio ; 25(4): 241-249, oct.-dic. 2021. tab, graf
Artigo em Inglês | LILACS, COLNAL | ID: biblio-1286717

RESUMO

Abstract Infection through the Hepatitis C virus does not have a vaccine and treatment with pegylated interferon and ribavirin can fail; which is why it may cause chronic infection and, consequently, could develop liver failure or hepatocellular carcinoma. It has been described that virus-cell recognition occurs between the E2 viral envelope protein and diverse cell receptors, with this interaction being critical in viral infection. which is why the study sought to identify inhibitory peptides of the interaction between viral E2 protein and the CD81 and CD209 receptors. Methodology: Through the RCSB protein database, crystals from the CD81 and CD209 receptors were selected, CD81/E2-HCV, CD209/E2-HCV complexes were carried out by SWISS-MODEL to generate inhibitory peptides of protein interaction through the Rosetta web server, this interaction was validated through ClusPro and finally, determined the theoretical physicochemical and cytotoxic properties of these peptides. Results: two peptides were obtained, without predicted toxicity, with a theoretical capacity of blocking the protein interaction between the E2 protein of the virus and CD81 and CD209.


Resumen La infección por el virus de la hepatitis C, no cuenta con vacuna y el tratamiento con interferón pegilado y ribavirina puede fallar; por lo que puede causar infec ción crónica y como consecuencia podría desarrollarse falla hepática o carcinoma hepatocelular. Se ha descrito que el reconocimiento virus-célula, se da entre la proteína de envoltura viral E2 y diversos receptores celulares, siendo esta interacción crítica en la infección viral. Razón por la cual este estudio buscó identificar péptidos inhibidores de la interacción entre la proteína E2 viral y los receptores CD81 y CD209. Metodología: A través de la base de datos de proteínas RCSB, se seleccionaron cristales de los receptores CD81 y CD209, se realizaron complejos CD81/E2-HCV, CD209/E2-HCV para generar péptidos inhibidores de interacción proteica a través del servidor web Rosetta, esta interacción fue validada a través de ClusPro y finalmente se evaluaron las propiedades fisicoquímicas y citotóxicas teóricas para estos péptidos. Resultados: se obtuvo dos péptidos, sin toxicidad predicha, con capacidad teórica de bloquear la interacción proteica entre la proteína E2 del virus y CD81 y CD209.


Assuntos
Humanos , Vírus de Hepatite , Peptídeos , Vacinas , Proteínas , Hepatite C , Falência Hepática , Hepacivirus , Infecções
17.
J Clin Lab Anal ; 35(5): e23751, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33792986

RESUMO

Single nucleotide polymorphisms (SNPs) in the promoter region of CD209 (cluster of differentiation 209) may influence expression levels, and higher expression of CD209 on immune cells correlate with severity of cartilage destruction in patients with rheumatoid arthritis (RA). Due to the lack of a comprehensive study, this study aimed to investigate the CD209 promoter variants and haplotypes in a Taiwanese population and the association with RA development. Deoxyribonucleic acid (DNA) of peripheral blood mononuclear cells from 126 RA patients and 124 healthy controls was purified, and the CD209 gene promoter was amplified by polymerase chain reaction and analyzed by Sanger sequencing. Results showed that a novel variant -96C>A polymorphism in CD209 promoter was identified in the Taiwanese population, and the frequency was significantly higher in RA patients than in controls (11.51% vs. 2.42%, P < .0001). The odds ratio (OR) for the development of RA was 5.88 (95% CI 2.35-14.74, P < .0001). Other known variants were also evaluated; for instance, -1180 T/T (rs7359874) was increased in RA patients, and the OR for the development of RA was 3.26, 95% CI 0.85-12.52, P = .07). Besides, the haplotype frequencies were calculated; -1180A-939C-871 T-336 T-139 T-96A and -1180 T-939 T-871C-336 T-139C-96A were increased in RA patients (P = .004 and 0.05, respectively). In summary, CD209-96A variant could be an important factor for the development of RA in the Taiwanese population.


Assuntos
Artrite Reumatoide/genética , Moléculas de Adesão Celular/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Lectinas Tipo C/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores de Superfície Celular/genética , Alelos , Sequência de Bases , Estudos de Casos e Controles , Feminino , Frequência do Gene , Haplótipos/genética , Humanos , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Taiwan
18.
J Med Microbiol ; 70(3)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33591245

RESUMO

Introduction. Shigella sonnei, the cause of bacillary dysentery, belongs to Gram-negative enteropathogenic bacteria. S. sonnei contains a 210 kb virulence plasmid that encodes an O-antigen gene cluster of LPSs. However, this virulence plasmid is frequently lost during replication. It is well-documented that after losing the O-antigen and becoming rough strains, the Gram-negative bacteria may express an LPS core on its surface. Previous studies have suggested that by using the LPS core, Gram-negative bacteria can interact with several C-type lectin receptors that are expressed on antigen-presenting cells (APCs).Hypothesis/Gap Statement. S. sonnei by losing the virulence plasmid may hijack APCs via the interactions of LPS-CD209/CD207.Aim. This study aimed to investigate if the S. sonnei rough strain, by losing the virulence plasmid, interacted with APCs that express C-type lectins of human CD207, human CD209a and mouse CD209b.Methodology. SDS-PAGE silver staining was used to examine the O-antigen expression of S. sonnei WT and its rough strain. Invasion assays and inhibition assays were used to examine the ability of S. sonnei WT and its rough strain to invade APCs and investigate whether CD209 and CD207 are receptors for phagocytosis of rough S. sonnei. Animal assays were used to observe the dissemination of S. sonnei.Results. S. sonnei did not express O-antigens after losing the virulence plasmid. The S. sonnei rough strain invades with APCs, including human dendritic cells (DCs) and mouse macrophages. CD209 and CD207 are receptors for phagocytosis of rough S. sonnei. Expression of the O-antigen reduces the ability of the S. sonnei rough strain to be disseminated to mesenteric lymph nodes and spleens.Conclusion. This work demonstrated that S. sonnei rough strains - by losing the virulence plasmid - invaded APCs through interactions with CD209 and CD207 receptors.


Assuntos
Antígenos CD/imunologia , Moléculas de Adesão Celular/imunologia , Disenteria Bacilar/microbiologia , Lectinas Tipo C/imunologia , Lectinas de Ligação a Manose/imunologia , Antígenos O , Plasmídeos , Receptores de Superfície Celular/imunologia , Shigella sonnei/patogenicidade , Virulência/genética , Animais , Células CHO , Cricetulus , Células Dendríticas/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/microbiologia , Camundongos , Antígenos O/genética , Antígenos O/metabolismo , Shigella sonnei/genética
19.
Biology (Basel) ; 10(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375175

RESUMO

C-type lectin CD209/DC-SIGN and CD209L/L-SIGN proteins are distinct cell adhesion and pathogen recognition receptors that mediate cellular interactions and recognize a wide range of pathogens, including viruses such as SARS, SARS-CoV-2, bacteria, fungi and parasites. Pathogens exploit CD209 family proteins to promote infection and evade the immune recognition system. CD209L and CD209 are widely expressed in SARS-CoV-2 target organs and can contribute to infection and pathogenesis. CD209 family receptors are highly susceptible to alternative splicing and genomic polymorphism, which may influence virus tropism and transmission in vivo. The carbohydrate recognition domain (CRD) and the neck/repeat region represent the key features of CD209 family proteins that are also central to facilitating cellular ligand interactions and pathogen recognition. While the neck/repeat region is involved in oligomeric dimerization, the CRD recognizes the mannose-containing structures present on specific glycoproteins such as those found on the SARS-CoV-2 spike protein. Considering the role of CD209L and related proteins in diverse pathogen recognition, this review article discusses the recent advances in the cellular and biochemical characterization of CD209 and CD209L and their roles in viral uptake, which has important implications in understanding the host-pathogen interaction, the viral pathobiology and driving vaccine development of SARS-CoV-2.

20.
Cells ; 9(7)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660065

RESUMO

The newly emergent novel coronavirus disease 2019 (COVID-19) outbreak, which is caused by SARS-CoV-2 virus, has posed a serious threat to global public health and caused worldwide social and economic breakdown. Angiotensin-converting enzyme 2 (ACE2) is expressed in human vascular endothelium, respiratory epithelium, and other cell types, and is thought to be a primary mechanism of SARS-CoV-2 entry and infection. In physiological condition, ACE2 via its carboxypeptidase activity generates angiotensin fragments (Ang 1-9 and Ang 1-7), and plays an essential role in the renin-angiotensin system (RAS), which is a critical regulator of cardiovascular homeostasis. SARS-CoV-2 via its surface spike glycoprotein interacts with ACE2 and invades the host cells. Once inside the host cells, SARS-CoV-2 induces acute respiratory distress syndrome (ARDS), stimulates immune response (i.e., cytokine storm) and vascular damage. SARS-CoV-2 induced endothelial cell injury could exacerbate endothelial dysfunction, which is a hallmark of aging, hypertension, and obesity, leading to further complications. The pathophysiology of endothelial dysfunction and injury offers insights into COVID-19 associated mortality. Here we reviewed the molecular basis of SARS-CoV-2 infection, the roles of ACE2, RAS signaling, and a possible link between the pre-existing endothelial dysfunction and SARS-CoV-2 induced endothelial injury in COVID-19 associated mortality. We also surveyed the roles of cell adhesion molecules (CAMs), including CD209L/L-SIGN and CD209/DC-SIGN in SARS-CoV-2 infection and other related viruses. Understanding the molecular mechanisms of infection, the vascular damage caused by SARS-CoV-2 and pathways involved in the regulation of endothelial dysfunction could lead to new therapeutic strategies against COVID-19.


Assuntos
Infecções por Coronavirus/patologia , Endotélio Vascular/metabolismo , Pneumonia Viral/patologia , Sistema Renina-Angiotensina , Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/isolamento & purificação , COVID-19 , Moléculas de Adesão Celular/metabolismo , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , SARS-CoV-2 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA