Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 533
Filtrar
1.
Diabetol Int ; 15(3): 414-420, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39101157

RESUMO

Immune cell function is impaired in hyperglycemic patients with diabetes but thought to improve with normalization of blood glucose levels. In this study, we hypothesized that this improvement might involve changes in T cell function. We compared the peripheral T cell markers between the people with and without type 2 diabetes (T2D) admitted to our hospital for glycemic control, and then in patients with T2D before and after the improvement of hyperglycemia by inpatient treatment. Expression of programmed death 1 (PD-1) and T-cell immunoglobulin and mucin domain 3 (TIM-3), co-suppressive molecules, CD26 and CD28 on CD4-positive and/or CD8-positive T cells, the Th1/Th2 ratio, and the number of regulatory T cells (Tregs) were not significantly different between the people with and without T2D. Although an average of 10.6 days of inpatient treatment with improved hyperglycemia did not affect expression of PD-1 and TIM-3 in T cells, the Th1/Th2 ratio, or Tregs, it significantly reduced expression of CD26 and CD28 on CD4-positive T cells. CD26 and CD28 on CD4-positive T cells may be associated with the altered immune function after rapid improvement of hyperglycemia but that the other T-cell markers investigated here may not be. Supplementary Information: The online version contains supplementary material available at 10.1007/s13340-024-00697-7.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39104316

RESUMO

Chronic obstructive pulmonary disease (COPD) is regarded as an accelerated-age disease in which chronic inflammation, maladaptive immune responses and senescence cell burden coexist. Accordingly, cellular senescence has emerged as a potential mechanism involved in COPD pathophysiology. In this study, 25 stable COPD patients underwent a daily physical activity promotion program for six months. We reported that increase of physical activity was related to a reduction of the senescent cell burden in COPD patients' circulating lymphocytes. Senescent T-lymphocytes population, characterized by absence of surface expression of CD28, was reduced after physical activity intervention and the reduction was associated to the increase of physical activity level. In addition, the mRNA expression of cyclin-dependent kinases inhibitors, a hallmark of cell senescence, was reduced and, in accordance, the proliferative capacity of lymphocytes was improved post-intervention. Moreover, we observed an increase in functionality in T-cells from patients after intervention, including improved markers of activation, enhanced cytotoxicity and altered cytokines secretions in response to viral challenge. Lastly, physical activity intervention reduced the potential of lymphocytes' secretome to induce senescence in human primary fibroblasts. In conclusion, our study provides, for the first time, evidence of the potential of physical activity intervention in COPD patients to reduce the senescent burden in circulating immune cells.

3.
Nat Prod Bioprospect ; 14(1): 48, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158647

RESUMO

Recently the FDA conducted a risk investigation and labeled the Boxed Warning for all BCMA- and CD19-directed CAR-T cell therapy, so does it mean that the public must take risk of secondary cancer to receive cell therapy? Here, without lentivirus and professional antigen presenting cell application, a novel tumor-specific T-cell therapy was successfully developed only by co-culturing MHC+ cancer cells and Naïve-T cells under the CD28 co-stimulatory signals. These tumor-specific T-cells could be separated through cell size and abundantly produced from peripheral blood, and would spontaneously attack target cells that carrying the same tumor antigen while avoiding others in vitro test. Moreover, it markedly decreased 90% tumor nodules companying with greatly improving overall survival (76 days vs 30 days) after twice infusion back to mice. This work maximally avoided the risks of secondary cancer and non-specific killing, and might open a revolutionary beginning of natural tumor-specific T-cell therapy.

4.
BMC Cancer ; 24(1): 1037, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174908

RESUMO

CD19-targeted chimeric antigen receptors (CAR) T cells are one of the most remarkable cellular therapies for managing B cell malignancies. However, long-term disease-free survival is still a challenge to overcome. Here, we evaluated the influence of different hinge, transmembrane (TM), and costimulatory CAR domains, as well as manufacturing conditions, cellular product type, doses, patient's age, and tumor types on the clinical outcomes of patients with B cell cancers treated with CD19 CAR T cells. The primary outcome was defined as the best complete response (BCR), and the secondary outcomes were the best objective response (BOR) and 12-month overall survival (OS). The covariates considered were the type of hinge, TM, and costimulatory domains in the CAR, CAR T cell manufacturing conditions, cell population transduced with the CAR, the number of CAR T cell infusions, amount of CAR T cells injected/Kg, CD19 CAR type (name), tumor type, and age. Fifty-six studies (3493 patients) were included in the systematic review and 46 (3421 patients) in the meta-analysis. The overall BCR rate was 56%, with 60% OS and 75% BOR. Younger patients displayed remarkably higher BCR prevalence without differences in OS. The presence of CD28 in the CAR's hinge, TM, and costimulatory domains improved all outcomes evaluated. Doses from one to 4.9 million cells/kg resulted in better clinical outcomes. Our data also suggest that regardless of whether patients have had high objective responses, they might have survival benefits from CD19 CAR T therapy. This meta-analysis is a critical hypothesis-generating instrument, capturing effects in the CD19 CAR T cells literature lacking randomized clinical trials and large observational studies.


Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Fatores Etários , Antígenos CD19/imunologia , Imunoterapia Adotiva/métodos , Leucemia de Células B/terapia , Leucemia de Células B/imunologia , Leucemia de Células B/mortalidade , Linfoma de Células B/imunologia , Linfoma de Células B/terapia , Linfoma de Células B/mortalidade , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Resultado do Tratamento
5.
Cell Rep ; 43(7): 114445, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38968073

RESUMO

Pro-survival metabolic adaptations to stress in tumorigenesis remain less well defined. We find that multiple myeloma (MM) is unexpectedly dependent on beta-oxidation of long-chain fatty acids (FAs) for survival under both basal and stress conditions. However, under stress conditions, a second pro-survival signal is required to sustain FA oxidation (FAO). We previously found that CD28 is expressed on MM cells and transduces a significant pro-survival/chemotherapy resistance signal. We now find that CD28 signaling regulates autophagy/lipophagy that involves activation of the Ca2+→AMPK→ULK1 axis and regulates the translation of ATG5 through HuR, resulting in sustained lipophagy, increased FAO, and enhanced MM survival. Conversely, blocking autophagy/lipophagy sensitizes MM to chemotherapy in vivo. Our findings link a pro-survival signal to FA availability needed to sustain the FAO required for cancer cell survival under stress conditions and identify lipophagy as a therapeutic target to overcome treatment resistance in MM.


Assuntos
Autofagia , Sobrevivência Celular , Mieloma Múltiplo , Transdução de Sinais , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Humanos , Autofagia/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Camundongos , Ácidos Graxos/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética
6.
J Nutr ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019165

RESUMO

BACKGROUND: OBJECTIVES: Evidence shows that CD4+ T cells are altered in obesity and play a significant role in the systemic inflammation in adults with the disease. Because the profile of these cells is poorly understood in the pediatric population, this study aims to investigate the profile of CD4+ T lymphocytes and the plasma levels of cytokines in this population. METHODS: Using flow cytometry, we compared the expression profile of lymphocyte markers, master transcription factors, cytokines, and molecules involved in the regulation of the immune response in CD4+ T cells from children and adolescents with obesity (OB group, n = 20) with those with eutrophy group (EU group, n = 16). Plasma levels of cytokines in both groups were determined by CBA. RESULTS: The OB group presents a lower frequency of CD3+ T cells, as well as a decreased frequency of CD4+ T cells expressing CD28, IL-4, and FOXP3, but an increased frequency of CD4+IL-17A+ cells compared with the EU group. The frequency of CD28 is increased in Th2 and Treg cells in the OB group, whereas CTLA-4 is decreased in all subpopulations compared with the EU group. Furthermore, Th2, Th17, and Treg profiles can differentiate the EU and OB groups. IL-10 plasma levels are reduced in the OB group and negatively correlated with adiposity and inflammatory parameters. CONCLUSIONS: CD4+ T cells have an altered pattern of expression in children and adolescents with obesity, contributing to the inflammatory state and clinical characteristics of these patients.

7.
Hum Immunol ; 85(5): 111082, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39084099

RESUMO

Graft-versus-host disease (GVHD) is a potentially serious complication ofallogeneic hematopoietic stem cell transplantation (HSCT). Graft-contaminating T cells (donor T cells) arecrucial for the development ofGVHD since they are able to react against the recipient's antigens. In this study we aim toevaluatethepotentialassociation between the IVS3 + 17 T/C gene variation in the CD28 molecule, a T cells costimulatory factor, and the GVHD occurrence in a Tunisian group of recipients of allo-HSCTs. Results show that there is an association between the presence of this polymorphism and the occurrence of grades II-IV acute GVHD (OR: 2.470, I.C: 1.027-5.938, p = 0.043). As for the chronic GVHD, it seems that the studied gene variation has no impact on the occurrence of this complication, which appeared likely to be affected by the HSCT graft source (PBSC: peripheral blood stem cells) (OR: 5.141, I.C: 1.590-16.620, p = 0.006). Based on these data, we believe that the CD28 IVS3 + 17 T/C polymorphism is a significant factor in the pathogenesis of acute GVHD.

8.
Cell Rep Med ; 5(7): 101640, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38959885

RESUMO

CD8+ T cells must persist and function in diverse tumor microenvironments to exert their effects. Thus, understanding common underlying expression programs could better inform the next generation of immunotherapies. We apply a generalizable matrix factorization algorithm that recovers both shared and context-specific expression programs from diverse datasets to a single-cell RNA sequencing (scRNA-seq) compendium of 33,161 CD8+ T cells from 132 patients with seven human cancers. Our meta-single-cell analyses uncover a pan-cancer T cell dysfunction program that predicts clinical non-response to checkpoint blockade in melanoma and highlights CXCR6 as a pan-cancer marker of chronically activated T cells. Cxcr6 is trans-activated by AP-1 and repressed by TCF1. Using mouse models, we show that Cxcr6 deletion in CD8+ T cells increases apoptosis of PD1+TIM3+ cells, dampens CD28 signaling, and compromises tumor growth control. Our study uncovers a TCF1:CXCR6 axis that counterbalances PD1-mediated suppression of CD8+ cell responses and is essential for effective anti-tumor immunity.


Assuntos
Antígenos CD28 , Linfócitos T CD8-Positivos , Fator 1-alfa Nuclear de Hepatócito , Receptores CXCR6 , Animais , Humanos , Camundongos , Antígenos CD28/metabolismo , Antígenos CD28/genética , Antígenos CD28/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/patologia , Receptores CXCR6/metabolismo , Receptores CXCR6/genética , Transdução de Sinais , Análise de Célula Única/métodos , Microambiente Tumoral/imunologia
9.
Mol Ther Oncol ; 32(3): 200837, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39050989

RESUMO

CD19 chimeric antigen receptor T (CD19CAR-T) cells have achieved promising outcomes in relapsed/refractory B cell malignancies. However, recurrences occur due to the loss of CAR-T cell persistence. We developed dual T/B cell co-stimulatory molecules (CD28 and CD40) in CAR-T cells to enhance intense tumoricidal activity and persistence. CD19.28.40z CAR-T cells promoted pNF-κB and pRelB downstream signaling while diminishing NFAT signaling upon antigen exposure. CD19.28.40z CAR-T cells demonstrated greater proliferation, which translated into effective anti-tumor cytotoxicity in long-term co-culture assay. Repetitive weekly antigen stimulation unveiled continuous CAR-T cell expansion while preserving central memory T cell subset and lower expression of exhaustion phenotypes. The intrinsic genes underlying CD19.28.40z CAR-T cell responses were compared with conventional CARs and demonstrated the up-regulated genes associated with T cell proliferation and memory as well as down-regulated genes related to apoptosis, exhaustion, and glycolysis pathway. Enrichment of genes toward T cell stemness, particularly SELL, IL-7r, TCF7, and KLF2, was observed. Effective and continuing anti-tumor cytotoxicity in vivo was exhibited in both B cell lymphoblastic leukemia and B cell non-Hodgkin lymphoma xenograft models while demonstrating persistent T cell memory signatures. The functional enhancement of CD37.28.40z CAR-T cell activities against CD37+ tumor cells was further validated. The modification of dual T/B cell signaling molecules remarkably maximized the efficacy of CAR-T cell therapy.

10.
IUBMB Life ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046102

RESUMO

The utilization of anti-CD3/CD28 magnetic beads for T cell expansion in vitro has been investigated for adoptive cell transfer therapy. However, the impact of the CD3/CD28 antibody ratio on T cell differentiation and function remains incompletely elucidated. This study seeks to address this knowledge gap. To begin with, CD3 antibodies with a relatively low avidity for Jurkat cells (Kd = 13.55 nM) and CD28 antibodies with a relatively high avidity (Kd = 5.79 nM) were prepared. Afterwards, anti-CD3/CD28 antibodies with different mass ratios were attached to magnetic beads to examine the impacts of different antibody ratios on T cell capture, and proliferation. The research demonstrated that the most significant expansion of T cells was stimulated by the anti-CD3/CD28 magnetic beads with a mass ratio of 2:1 for CD3 antibodies and CD28 antibodies. Moreover, CD25 and PD1 expression of expanded T cells increased and then decreased, with lower CD25 and PD1 expression in the later stages of expansion indicating that T cells were not depleted. These T cells, which are massively expanded in vitro and have excellent expansion potential, can be infused back into the patient to treat tumor patients. This study shows that altering the ratio of anti-CD3/CD28 antibodies can control the strength of T cell stimulation, thereby leading to the improvement of T cell activation. This discovery can be utilized as a guide for the creation of other T cell stimulation approaches, which is beneficial for the further development of tumor immunotherapy technology.

11.
Oncoimmunology ; 13(1): 2367777, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887372

RESUMO

T lymphocytes expressing CD57 and lacking costimulatory receptors CD27/CD28 have been reported to accumulate with aging, chronic infection, and cancer. These cells are described as senescent, with inability to proliferate but enhanced cytolytic and cytokine-producing capacity. However, robust functional studies on these cells taken directly from cancer patients are lacking. We isolated these T cells and their CD27/28+ counterparts from blood and tumor samples of 50 patients with previously untreated head and neck cancer. Functional studies confirmed that these cells have enhanced ability to degranulate and produce IFN-γ. They also retain the ability to proliferate, thus are not senescent. These data suggest that CD27/28-CD57+ CD8+ T cells are a subset of highly differentiated, CD45RA+ effector memory (TEMRA) cells with retained proliferative capacity. Patients with > 34% of these cells among CD8+ T cells in the blood had a higher rate of locoregional disease relapse, suggesting these cells may have prognostic significance.


Assuntos
Antígenos CD28 , Antígenos CD57 , Linfócitos T CD8-Positivos , Senescência Celular , Neoplasias de Cabeça e Pescoço , Humanos , Antígenos CD28/metabolismo , Antígenos CD57/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Senescência Celular/imunologia , Interferon gama/metabolismo , Adulto , Proliferação de Células , Idoso de 80 Anos ou mais
12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 896-905, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38926986

RESUMO

OBJECTIVE: To investigate the effect of CD8+ CD28- T cells on acute graft-versus-host disease(aGVHD) after haploidentical hematopoietic stem cell transplantation(haplo-HSCT). METHODS: The relationship between absolute count of CD8+ CD28- T cells and aGVHD in 60 patients with malignant hematological diseases was retrospectively analyzed after haplo-HSCT, and the differences in the incidence rate of chronic graft-versus host disease(cGVHD), infection and prognosis between different CD8+ CD28- T absolute cells count groups were compared. RESULTS: aGVHD occurred in 40 of 60 patients after haplo-HSCT, with an incidence rate of 66.67%. The median occurrence time of aGVHD was 32.5(20-100) days. At 30 days after the transplantation, the absolute count of CD8+ CD28- T cells of aGVHD group was significantly lower than that of non-aGVHD group (P =0.03). Thus the absolute count of CD8+ CD28- T cells at 30 days after transplantation can be used to predict the occurrence of aGVHD to some extent. At 30 days after transplantation, the incidence rate of aGVHD in the low cell count group (CD8+ CD28- T cells absolute count < 0.06/µl) was significantly higher than that in the high cell count group (CD8+ CD28- T cells absolute count ≥0.06/µl,P =0.011). Multivariate Cox regression analysis further confirmed that the absolute count of CD8+ CD28-T cells at 30 days after transplantation was an independent risk factor for aGVHD, and the risk of aGVHD in the low cell count group was 2.222 times higher than that in the high cell count group (P =0.015). The incidence of cGVHD, fungal infection, EBV infection and CMV infection were not significantly different between the two groups with different CD8+ CD28- T cells absolute count. The overall survival, non-recurrent mortality and relapse rates were not significantly different between different CD8+ CD28- T cells absolute count groups. CONCLUSION: Patients with delayed CD8+ CD28- T cells reconstitution after haplo-HSCT are more likely to develop aGVHD, and the absolute count of CD8+ CD28- T cells can be used to predict the incidence of aGVHD to some extent. The absolute count of CD8+ CD28- T cells after haplo-HSCT was not associated with cGVHD, fungal infection, EBV infection, and CMV infection, and was also not significantly associated with the prognosis after transplantation.


Assuntos
Antígenos CD28 , Linfócitos T CD8-Positivos , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Estudos Retrospectivos , Prognóstico , Transplante Haploidêntico , Doença Aguda , Masculino , Feminino , Adulto
13.
Oncoimmunology ; 13(1): 2371051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915783

RESUMO

Improving cancer immunotherapy efficacy hinges on identifying key T-cell populations critical for tumor control and response to Immune Checkpoint Blockade (ICB). We have recently reported that while the co-expression of PD-1 and CD28 is associated with impaired functionality in peripheral blood, it significantly enhances T-cell fitness in the tumor site of non-small cell lung cancer (NSCLC) patients. To uncover the underlying mechanisms, we explored the role of CD26, a key player in T-cell activation through its interaction with adenosine deaminase (ADA), a crucial intra/extracellular enzyme able to neutralize local adenosine (ADO). We found that an autocrine ADA/CD26 axis enhances CD8+PD-1+CD28+ T-cell function, particularly within an immunosuppressive environment marked by CD39 expression. Then, we interrogated the TCGA and OAK datasets to gain insight into the prognostic/predictive potential of our findings. We identified a signature predicting overall survival (OS) in LUAD patients and response to atezolizumab in advanced LUAD cases. These findings suggest promising avenues for therapeutic intervention targeting the ADA/CD26 axis.


Assuntos
Adenosina Desaminase , Antígenos CD28 , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas , Dipeptidil Peptidase 4 , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Receptor de Morte Celular Programada 1 , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígenos CD28/metabolismo , Prognóstico , Receptor de Morte Celular Programada 1/metabolismo , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/genética , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Feminino , Masculino , Apirase/metabolismo
14.
Epigenetics ; 19(1): 2367385, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38899429

RESUMO

This research investigates the intricate dynamics of DNA methylation in the hours following CD8+ T cell activation, during a critical yet understudied temporal window. DNA methylation is an epigenetic modification central to regulation of gene expression and directing immune responses. Our investigation spanned 96-h post-activation and unveils a nuanced tapestry of global and site-specific methylation changes. We identified 15,626 significant differentially methylated CpGs spread across the genome, with the most significant changes occurring within the genes ADAM10, ICA1, and LAPTM5. While many changes had modest effect sizes, approximately 120 CpGs exhibited a log2FC above 1.5, with cell activation and proliferation pathways the most affected. Relatively few of the differentially methylated CpGs occurred along adjacent gene regions. The exceptions were seven differentially methylated gene regions, with the Human T cell Receptor Alpha Joining Genes demonstrating consistent methylation change over a 3kb window. We also investigated whether an inflammatory environment could alter DNA methylation during activation, with proliferating cells exposed to the oxidant glycine chloramine. No substantial differential methylation was observed in this context. The temporal perspective of early activation adds depth to the evolving field of epigenetic immunology, offering insights with implications for therapeutic innovation and expanding our understanding of epigenetic modulation in immune function.


Assuntos
Linfócitos T CD8-Positivos , Proliferação de Células , Metilação de DNA , Ativação Linfocitária , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Humanos , Ilhas de CpG , Epigênese Genética , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteínas de Membrana/genética
15.
Brain Res Bull ; 214: 110987, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830487

RESUMO

In modern war or daily life, blast-induced traumatic brain injury (bTBI) is a growing health concern. Our previous studies demonstrated that inflammation was one of the main features of bTBI, and CD28-activated T cells play a central role in inflammation. However, the mechanism of CD28 in bTBI remains to be elucidated. In this study, traumatic brain injury model induced by chest blast exposure in male mice was established, and the mechanism of CD28 in bTBI was studied by elisa, immunofluorescence staining, flow cytometry analysis and western blot. After exposure to chest shock wave, the inflammatory factors IL-4, IL-6 and HMGB1 in serum were increased, and CD3+ T cells, CD4+ and CD8+ T cell subsets in the lung were activated. In addition, chest blast exposure resulted in impaired spatial learning and memory ability, disruption of the blood-brain barrier (BBB), and the expression of Tau, p-tau, S100ß and choline acetyltransferase were increased. The results indicated that genetic knockdown of CD28 could inhibit inflammatory cell infiltration, as well as the activation of CD3+ T cells, CD4+ and CD8+ T cell subsets in the lung, improve spatial learning and memory ability, and ameliorate BBB disruption and hippocampal neuron damage. Moreover, genetic knockdown of CD28 could reduce the expression of p-PI3K, p-AKT and NF-κB. In conclusion, chest blast exposure could lead to bTBI, and attenuate bTBI via the PI3K/AKT/NF-κB signaling pathway in male mice. This study provides new targets for the prevention and treatment of veterans with bTBI.


Assuntos
Traumatismos por Explosões , Lesões Encefálicas Traumáticas , Antígenos CD28 , Camundongos Endogâmicos C57BL , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Masculino , Lesões Encefálicas Traumáticas/metabolismo , Antígenos CD28/metabolismo , Transdução de Sinais/fisiologia , Traumatismos por Explosões/complicações , Traumatismos por Explosões/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças , Barreira Hematoencefálica/metabolismo , Traumatismos Torácicos/complicações
16.
Sci Rep ; 14(1): 10987, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745101

RESUMO

The length of 3' untranslated regions (3'UTR) is highly regulated during many transitions in cell state, including T cell activation, through the process of alternative polyadenylation (APA). However, the regulatory mechanisms and functional consequences of APA remain largely unexplored. Here we present a detailed analysis of the temporal and condition-specific regulation of APA following activation of primary human CD4+ T cells. We find that global APA changes are regulated temporally and CD28 costimulatory signals enhance a subset of these changes. Most APA changes upon T cell activation involve 3'UTR shortening, although a set of genes enriched for function in the mTOR pathway exhibit 3'UTR lengthening. While upregulation of the core polyadenylation machinery likely induces 3'UTR shortening following prolonged T cell stimulation; a significant program of APA changes occur prior to cellular proliferation or upregulation of the APA machinery. Motif analysis suggests that at least a subset of these early changes in APA are driven by upregulation of RBM3, an RNA-binding protein which competes with the APA machinery for binding. Together this work expands our understanding of the impact and mechanisms of APA in response to T cell activation and suggests new mechanisms by which APA may be regulated.


Assuntos
Regiões 3' não Traduzidas , Ativação Linfocitária , Poliadenilação , Humanos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Regulação da Expressão Gênica , Transdução de Sinais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Antígenos CD28/metabolismo , Antígenos CD28/genética , Linfócitos T/metabolismo , Linfócitos T/imunologia
17.
J Microbiol ; 62(7): 555-568, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38700775

RESUMO

This study aimed to develop synthetic Claudin18.2 (CLDN18.2) chimeric antigen receptor (CAR)-T (CAR-T) cells as a treatment for advanced gastric cancer using lentiviral vector genetic engineering technology that targets the CLDN18.2 antigen and simultaneously overcomes the immunosuppressive environment caused by programmed cell death protein 1 (PD-1). Synthetic CAR T cells are a promising approach in cancer immunotherapy but face many challenges in solid tumors. One of the major problems is immunosuppression caused by PD-1. CLDN18.2, a gastric-specific membrane protein, is considered a potential therapeutic target for gastric and other cancers. In our study, CLDN18.2 CAR was a second-generation CAR with inducible T-cell costimulatory (CD278), and CLDN18.2-PD1/CD28 CAR was a third-generation CAR, wherein the synthetic PD1/CD28 chimeric-switch receptor (CSR) was added to the second-generation CAR. In vitro, we detected the secretion levels of different cytokines and the killing ability of CAR-T cells. We found that the secretion of cytokines such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) secreted by three types of CAR-T cells was increased, and the killing ability against CLDN18.2-positive GC cells was enhanced. In vivo, we established a xenograft GC model and observed the antitumor effects and off-target toxicity of CAR-T cells. These results support that synthetic anti-CLDN18.2 CAR-T cells have antitumor effect and anti-CLDN18.2-PD1/CD28 CAR could provide a promising design strategy to improve the efficacy of CAR-T cells in advanced gastric cancer.


Assuntos
Antígenos CD28 , Claudinas , Engenharia Genética , Vetores Genéticos , Imunoterapia Adotiva , Receptor de Morte Celular Programada 1 , Receptores de Antígenos Quiméricos , Linfócitos T , Animais , Humanos , Camundongos , Antígenos CD28/genética , Antígenos CD28/imunologia , Linhagem Celular Tumoral , Claudinas/genética , Claudinas/metabolismo , Citocinas/metabolismo , Vetores Genéticos/genética , Imunoterapia Adotiva/métodos , Interferon gama/metabolismo , Lentivirus/genética , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Neoplasias Gástricas/terapia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/genética , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Biomed Pharmacother ; 175: 116800, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788547

RESUMO

The limited expansion ability and functional inactivation of T cells within the solid tumor microenvironment are major problems faced during in the application of using tumor-infiltrating lymphocytes (TILs) in vivo. We sought to determine whether TILs carrying a PD-1-CD28-enhanced receptor and CD19 CAR could overcome this limitation and mediate tumor regression. First, anti-tumor effects of PD-1-CD28-enhanced receptor or CD19 CAR modified NY-ESO-1-TCR-T cells to mimic the TILs function (hereafter "PD-1-CD28-TCR-T" or "CD19 CAR-TCR-T" cells, respectively) were tested using the NY-ESO-1 over-expressed tumor cell line in vitro and in a tumor-bearing model. Furthermore, the safety and anti-tumor ability of S-TILs (TILs modified through transduction with a plasmid encoding the PD-1-CD28-T2A-CD19 CAR) were evaluated in vivo. PD-1-CD28-TCR-T cells showed a formidable anti-tumor ability that was not subject to PD-1/PD-L1 signaling in vivo. CD19 CAR-TCR-T cells stimulated with CD19+ B cells exhibited powerful expansion and anti-tumor abilities both in vitro and in vivo. Three patients with refractory solid tumors received S-TILs infusion. No treatment-related mortality was observed, and none of the patients experienced serious side effects. One patient with melanoma achieved a partial response, and two patients with colon or kidney cancer achieved long-term stable disease following S-TILs therapy. To the best of our knowledge, this is the first study describing the safety and efficacy of the adoptive transfer of autologous S-TILs to control disease in patients with advanced cancers, suggesting that S-TILs may be a promising alternative therapy for cancer.


Assuntos
Antígenos CD19 , Antígenos CD28 , Imunoterapia Adotiva , Linfócitos do Interstício Tumoral , Receptor de Morte Celular Programada 1 , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Humanos , Animais , Receptor de Morte Celular Programada 1/metabolismo , Antígenos CD28/metabolismo , Antígenos CD28/imunologia , Imunoterapia Adotiva/métodos , Antígenos CD19/imunologia , Linhagem Celular Tumoral , Feminino , Neoplasias/imunologia , Neoplasias/terapia , Masculino , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Pessoa de Meia-Idade , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Idoso
19.
J Ovarian Res ; 17(1): 75, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575997

RESUMO

Umbilical cord-derived mesenchymal stem cell (UCMSC) transplantation has been deeply explored for premature ovarian insufficiency (POI) disease. However, the associated mechanism remains to be researched. To explore whether and how the microRNA 21 (miR-21) functions in POI mice with UCMSCs transplantation, the autoimmune-induced POI mice model was built up, transplanted with or without UCMSCs transfect with the LV-hsa-miR-21-5p/LV-hsa-miR-21-5p-inhibition, with the transfection efficiency analyzed by QRT-PCR. Mice hormone secretion and the anti-Zona pellucida antibody (AZPAb) levels were analyzed, the ovarian morphological changes and folliculogenesis were observed, and the ovarian apoptosis cells were detected to evaluate ovarian function. The expression and localization of the PTEN/Akt/FOXO3a signal pathway-related cytokines were analyzed in mice ovaries.Additionally, the spleen levels of CD8 + CD28-T cells were tested and qualified with its significant secretory factor, interleukin 10 (IL-10). We found that with the LV-hsa-miR-21-5p-inhibition-UCMSCs transplantation, the mice ovarian function can be hardly recovered than mice with LV-NC-UCMSCs transplantation, and the PTEN/Akt/FOXO3a signal pathway was activated. The expression levels of the CD8 + CD28-T cells were decreased, with the decreased levels of the IL-10 expression. In contrast, in mice with the LV-hsa-miR-21-5p-UCMSCs transplantation, the injured ovarian function can be reversed, and the PTEN/AKT/FOXO3a signal pathway was detected activated, with the increased levels of the CD8 + CD28-T cells, and the increased serum levels of IL-10. In conclusion, miR-21 improves the ovarian function recovery of POI mice with UCMSCs transplantation, and the mechanisms may be through suppressing the PTEN/AKT/FOXO3a signal pathway and up-regulating the circulating of the CD8 + CD28-T cells.


Assuntos
Menopausa Precoce , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , MicroRNAs , Insuficiência Ovariana Primária , Animais , Feminino , Camundongos , Antígenos CD28 , Interleucina-10/genética , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/induzido quimicamente , Proteínas Proto-Oncogênicas c-akt
20.
bioRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38562904

RESUMO

Recent FDA approvals of chimeric antigen receptor (CAR) T cell therapy for multiple myeloma (MM) have reshaped the therapeutic landscape for this incurable cancer. In pivotal clinical trials B cell maturation antigen (BCMA) targeted, 4-1BB co-stimulated (BBζ) CAR T cells dramatically outperformed standard-of-care chemotherapy, yet most patients experienced MM relapse within two years of therapy, underscoring the need to improve CAR T cell efficacy in MM. We set out to determine if inhibition of MM bone marrow microenvironment (BME) survival signaling could increase sensitivity to CAR T cells. In contrast to expectations, blocking the CD28 MM survival signal with abatacept (CTLA4-Ig) accelerated disease relapse following CAR T therapy in preclinical models, potentially due to blocking CD28 signaling in CAR T cells. Knockout studies confirmed that endogenous CD28 expressed on BBζ CAR T cells drove in vivo anti-MM activity. Mechanistically, CD28 reprogrammed mitochondrial metabolism to maintain redox balance and CAR T cell proliferation in the MM BME. Transient CD28 inhibition with abatacept restrained rapid BBζ CAR T cell expansion and limited inflammatory cytokines in the MM BME without significantly affecting long-term survival of treated mice. Overall, data directly demonstrate a need for CD28 signaling for sustained in vivo function of CAR T cells and indicate that transient CD28 blockade could reduce cytokine release and associated toxicities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA