Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
1.
Cancer Cell ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39393354

RESUMO

Inhibition of CDK4/6 kinases has led to improved outcomes in breast cancer. Nevertheless, only a minority of patients experience long-term disease control. Using a large, clinically annotated cohort of patients with metastatic hormone receptor-positive (HR+) breast cancer, we identify TP53 loss (27.6%) and MDM2 amplification (6.4%) to be associated with lack of long-term disease control. Human breast cancer models reveal that p53 loss does not alter CDK4/6 activity or G1 blockade but instead promotes drug-insensitive p130 phosphorylation by CDK2. The persistence of phospho-p130 prevents DREAM complex assembly, enabling cell-cycle re-entry and tumor progression. Inhibitors of CDK2 can overcome p53 loss, leading to geroconversion and manifestation of senescence phenotypes. Complete inhibition of both CDK4/6 and CDK2 kinases appears to be necessary to facilitate long-term response across genomically diverse HR+ breast cancers.

2.
Cancer Cell Int ; 24(1): 330, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354491

RESUMO

OBJECTIVE: As colorectal cancer (CRC) remains one of the leading causes of cancer-related deaths, understanding novel therapeutic mechanisms is crucial. This research focuses on the role of extracellular vesicles (EVs) from bone marrow stromal cells (BMSCs) in delivering miR-766-3p to CRC cells, targeting the MYC/CDK2 signaling axis. METHODS: Differentially expressed genes between BMSCs-EVs and CRC were identified using the Gene Expression Omnibus database. miR-766-3p target genes were predicted via TargetScan and RNAInter, with protein interactions analyzed using the STRING database. The analysis included RT-qPCR and Western blot on samples from 52 CRC patients. Characterization of BMSCs-EVs was followed by their functional assessment on CRC cell lines and the normal colon cell line CCD-18CO, evaluating cellular uptake, proliferation, migration, invasion, and apoptosis. RESULTS: miR-766-3p was confirmed in BMSCs-EVs and found underexpressed in CRC. BMSCs-EVs transported miR-766-3p to CRC cells, inhibiting their proliferation, migration, and invasion while promoting apoptosis. miR-766-3p targeted MYC, leading to decreased CDK2 transcription. Overexpression of MYC in HCT-116 cells counteracted these effects. In vivo studies showed that BMSCs-EVs carrying miR-766-3p hindered tumor growth. CONCLUSION: The study demonstrates the efficacy of BMSCs-EVs in delivering miR-766-3p to CRC cells, leading to the suppression of the MYC/CDK2 signaling pathway and hindering cancer progression.

3.
Front Immunol ; 15: 1456083, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351221

RESUMO

Introduction: Heart failure (HF) and kidney failure (KF) are closely related conditions that often coexist, posing a complex clinical challenge. Understanding the shared mechanisms between these two conditions is crucial for developing effective therapies. Methods: This study employed transcriptomic analysis to unveil molecular signatures and novel biomarkers for both HF and KF. A total of 2869 shared differentially expressed genes (DEGs) were identified in patients with HF and KF compared to healthy controls. Functional enrichment analysis was performed to explore the common mechanisms underlying these conditions. A protein-protein interaction (PPI) network was constructed, and machine learning algorithms, including Random Forest (RF), Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Least Absolute Shrinkage and Selection Operator (LASSO), were used to identify key signature genes. These genes were further analyzed using Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA), with their diagnostic values validated in both training and validation sets. Molecular docking studies were conducted. Additionally, immune cell infiltration and correlation analyses were performed to assess the relationship between immune responses and the identified biomarkers. Results: The functional enrichment analysis indicated that the common mechanisms are associated with cellular homeostasis, cell communication, cellular replication, inflammation, and extracellular matrix (ECM) production, with the PI3K-Akt signaling pathway being notably enriched. The PPI network revealed two key protein clusters related to the cell cycle and inflammation. CDK2 and CCND1 were identified as signature genes for both HF and KF. Their diagnostic value was validated in both training and validation sets. Additionally, docking studies with CDK2 and CCND1 were performed to evaluate potential drug candidates. Immune cell infiltration and correlation analyses highlighted the immune microenvironment, and that CDK2 and CCND1 are associated with immune responses in HF and KF. Discussion: This study identifies CDK2 and CCND1 as novel biomarkers linking cell cycle regulation and inflammation in heart and kidney failure. These findings offer new insights into the molecular mechanisms of HF and KF and present potential targets for diagnosis and therapy.


Assuntos
Biomarcadores , Perfilação da Expressão Gênica , Insuficiência Cardíaca , Mapas de Interação de Proteínas , Insuficiência Renal , Transcriptoma , Humanos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/imunologia , Insuficiência Renal/genética , Insuficiência Renal/imunologia , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Biologia Computacional/métodos , Redes Reguladoras de Genes , Ciclina D1/genética , Ciclina D1/metabolismo , Masculino , Aprendizado de Máquina
4.
Future Oncol ; : 1-17, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39469865

RESUMO

Drug resistance remains a major obstacle in cancer treatment, leading to treatment failures and high mortality rates. Despite advancements in therapies, overcoming resistance requires a deeper understanding of its mechanisms. This review highlights CDK2's pivotal role in both intrinsic and acquired resistance, and its potential as a therapeutic target. Cyclin E upregulation, which partners with CDK2, is linked to poor prognosis and resistance across various cancers. Specifically, amplifications of CCNE1/CCNE2 are associated with resistance to targeted therapies, immunotherapy, endocrine therapies and chemo/radiotherapy. Given CDK2's involvement in resistance mechanisms, investigating its role presents promising opportunities for developing novel strategies to combat resistance and improve treatment outcomes.


[Box: see text].

5.
BMC Chem ; 18(1): 208, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39449145

RESUMO

New Series of N-Manniche bases 3,4 (a-c) and 5,6 (a-b) were synthesized through the reaction of benzaldehyde and amine with 3-methyl-4-(aryldiazenyl)-1H-pyrazol-5-ol derivatives 2(a-c), they were fully characterized by FT-IR, (1H, 13C) NMR data in addition to their mass spectra. The Structural Activity Relationship of the target compounds were examined for their cytotoxicity. Some newly synthesized compounds showed promising antiproliferation properties when tested against HepG2 cancer cells. Compounds 4a, 5a, and 6b showed potent cytotoxicity against HepG2 with IC50 values of 4.4, 3.46 and 2.52 µM compared to Sorafenib (IC50 = 2.051 µM) and Roscovitine (IC50 = 4.18 µM). Furthermore, they were safe against the THLE2 cells with higher IC50 values. Compound 6b exhibited promising dual VEGFR2/CDK-2 inhibition activities; it had an IC50 value of 0.2 µM with VEGFR2 inhibition of 93.2%, and it had an IC50 value of 0.458 µM with CDK-2 inhibition of 88.7%. In comparison to the untreated control group (0.95%), compounds 5a (38.32%) and 6b (42.9%) considerably increased the cell population in total apoptosis. In addition, compounds 5a and 6b arrested the cell population at G0-G1 and S phases, respectively. Molecular docking experiments confirmed the virtual binding mechanism of the most active drugs, which were found to have good binding affinities with both receptor active sites.

6.
Drug Dev Res ; 85(7): e70009, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39467111

RESUMO

Due to the limited effeteness and safety concerns associated with current cancer treatments, there is a pressing need to develop novel therapeutic agents. 4-(3,4-Dimethoxyphenyl)-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridine (3) was synthesized and Initially screened on 59 cancer cell lines showed promising anticancer activity, so, it was chosen for a 5-dose experiment by the NCI/USA. The GI50 values ranged from 1.04 to 8.02 µM on the entire nine panels (57 cell lines), with a GI50 of 2.70 µM for (MG-MID) panel, indicating an encouraging action. To further explore the molecular attributes of compound 3, we optimized its structure using DFT with the B3LYP/6-31 + + G(d,p) basis set. We have considered vibrational analysis, bond lengths and angles, FMOs, and MEP for the structure. Additionally, pharmacokinetic assessments were conducted using various in-silico platforms to evaluate the compound safety. A molecular modeling study created a kinase profile on 44 different kinases. This allowed us to study our compound's binding affinity to these kinases and compare it to the co-crystallized one. Our findings revealed compound 3 exhibited better binding for half of the tested kinases, suggesting its potential as a multi-kinase inhibitor. To further validate our computational results, we tested compound 3 for its inhibitory effects on CDK2 and PIM1. Compound 3 exhibited an IC50 of 0.30 µM for CDK2 inhibition, making it five times less active than Roscovitine, which has an IC50 of 0.06 µM. However, compound 3 demonstrated slightly better inhibition of PIM1 compared to Staurosporine. These findings suggest that compound 3 is a promising anticancer agent with the potential for further development into a highly active compound.


Assuntos
Antineoplásicos , Quinase 2 Dependente de Ciclina , Proteínas Proto-Oncogênicas c-pim-1 , Pirazóis , Piridinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese química
7.
Folia Biol (Praha) ; 70(2): 104-112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39231318

RESUMO

Circular RNAs (circRNAs) have played an essential role in cancer development. This study aimed to illustrate the impact and potential mechanism of circRACGAP1 action in NSCLC development. The expression patterns of circRACGAP1, miR-1296, and CDK2 in NSCLC tissues and cell lines were analysed by RT-qPCR. The function of circRACGAP1 in NSCLC cell proliferation and apoptosis was investigated using the CCK-8 assay, flow cytometry, TUNEL staining, and Western blot. The interaction among circRACGAP1, miR-1296, and CDK2 was clarified by dual-luciferase reporter assay while the correlation was confirmed by the Pearson correlation coefficient. The expression of circRACGAP1 and CDK2 was up-regulated in NSCLC tissues, while the expression of miR-1296 was down-regulated. Cell function studies further revealed that circRACGAP1 could promote NSCLC cell proliferation, accelerate the cell cycle process, up-regulate B-cell lymphoma 2 (Bcl2) expression, and down-regulate Bcl2-associated X (Bax) expression. miR-1296 was identified as a downstream target to reverse circRACGAP1-mediated cell proliferation. miR-1296 directly targeted the 3'-UTR of CDK2 to regulate proliferation and apoptosis of NSCLC cells. Additionally, the dual-luciferase reporter assay and Pearson correlation coefficient analysis proved that circRACGAP1 acted in NSCLC cells by negatively regulating miR-1296 expression and positively regulating CDK2 expression. In summary, our study revealed that circRACGAP1 promoted NSCLC cell proliferation by regulating the miR-1296/CDK2 pathway, providing potential diagnostic and therapeutic targets for NSCLC.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Quinase 2 Dependente de Ciclina , Neoplasias Pulmonares , MicroRNAs , RNA Circular , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 2 Dependente de Ciclina/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , RNA Circular/genética , RNA Circular/metabolismo , Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo
8.
BMC Chem ; 18(1): 169, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39272187

RESUMO

In the current study, molecular hybridization between the oxindole core and benzothiazole system through an acetohydrazide moiety was accomplished for the design of a new series of oxindole-benzothiazole hybrids 9a-r targeting CDK2 for cancer therapy. The afforded hybrids displayed promising growth inhibitory activity on NCI cancer cell lines at 10 µM. Compound 9o displayed mean GI% = 55.91%. Based on the potent activity of 9o, it was further assessed for its cytotoxic activity at five dose level and it demonstrated GI50 reaching 2.02 µM. Analysis of the cell cycle of the prostate cancer cell line DU145 after treatment with 9o confirmed its ability to arrest its cell cycle at the G1 phase. Moreover, 9o proved its ability to potentiate the apoptosis and necrosis of the same cell line. Furthermore, the oxindole-benzothiazole hybrids 9b, 9f and 9o showed IC50 = 0.70, 0.20 and 0.21 µM, respectively on CDK2. Besides, molecular docking simulation of the synthesized oxindole-benzothiazole hybrid 9o proved the expected binding mode which involves the accommodation of the oxindole moiety in the ATP binding pocket where it is involved in hydrogen bonding and hydrophobic interactions with the essential amino acids in the hinge region while the benzothiazole moiety is oriented toward the solvent region. Investigation of the physicochemical properties of the hybrids 9a-r highlights their acceptable ADME properties that can be somewhat developed for the discovery of new anticancer agents.

9.
Front Chem ; 12: 1440196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39233923

RESUMO

Cyclin-dependent kinase 2 (CDK2) has been recognized as one of the crucial factors in cell cycle regulation and has been proposed as a potential target for cancer therapies, particularly for colorectal cancer (CRC). Due to the increased incidence rate of CRC and challenges associated with existing treatment options, there is a need for efficient and selective anti-cancer compounds. The current work aims to explore the ability of novel kaempferol derivatives as CDK2 inhibitors by performing conceptual pharmacophore modeling, molecular docking, and molecular dynamic analysis. Kaempferol and its derivatives were obtained from PubChem, and the optimized 3D structures of the compounds were generated using Maestro Ligprep. Subsequently, a pharmacophore model was developed to identify compounds with high fitness values, resulting in the selection of several kaempferol derivatives for further study. We evaluated the ADMET properties of these compounds to assess their therapeutic potential. Molecular docking was conducted using Maestro and BIOVIA Discovery Studio version 4.0 to predict the binding affinities of the compounds to CDK2. The top candidates were subjected to MM-GBSA analysis to predict their binding free energies. Molecular dynamics simulations using GROMACS were performed to assess the thermodynamic stability of the ligand-protein complexes. The results revealed several kaempferol derivatives with high predicted binding affinities to CDK2 and favorable ADMET properties. Specifically, compounds 5281642, 5318980, and 14427423 demonstrated binding free energies of -30.26, -38.66, and -34.2 kcal/mol, respectively. Molecular dynamics simulations indicated that these ligand-protein complexes remained stable throughout the simulation period, with RMSD values remaining below 2 Å. In conclusion, the identified kaempferol derivatives show potential as CDK2 inhibitors based on computational predictions and demonstrate stability in molecular dynamics simulations, suggesting their future application in CRC treatment by targeting CDK2. These computational findings encourage further experimental validation and development of kaempferol derivatives as anti-cancer agents.

10.
Curr Med Chem ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39219431

RESUMO

CDK2 plays a pivotal role in controlling the progression of the cell cycle and is a target for anticancer drugs. The last 30 years of structural studies focused on CDK2 provided the basis for understanding its inhibition and furnished the data to develop machine-learning models to study intermolecular interactions. This review addresses the application of computational models to estimate the inhibition of CDK2. It focuses on machine-learning models developed to predict binding affinity against CDK2 using the program SAnDReS. A search of previously published articles on PubMed showed machine-learning models built to evaluate CDK2 inhibition. BindingDB information for CDK2 furnished the data to generate updated machine-learning models to predict the inhibition of this enzyme. The application of SAnDReS to model CDK2-inhibitor interactions showed that this approach can build machine-learning models with superior predictive performance compared with classical and deep-learning scoring functions. Also, the innovative DOME analysis of the predictive performance of machine learning and universal scoring function indicates that this method is adequate to select computational models to address protein-ligand interactions. The available structural and functional data about CDK2 is a rich source of information to build machine-learning models to predict the inhibition of this protein target. SAnDReS can build superior models to predict pKi and outperform universal scoring functions, including one developed using deep learning.

11.
J Cell Sci ; 137(19)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39258309

RESUMO

Non-excitable cells express sodium voltage-gated channel alpha subunit 1 gene and protein (known as SCN1A and NaV1.1, respectively); however, the functions of NaV1.1 are unclear. In this study, we investigated the role of SCN1A and NaV1.1 in human mesenchymal stem cells (MSCs). We found that SCN1A was expressed in MSCs, and abundant expression of NaV1.1 was observed in the endoplasmic reticulum; however, this expression was not found to be related to Na+ currents. SCN1A-silencing reduced MSC proliferation and delayed the cell cycle in the S phase. SCN1A silencing also suppressed the protein levels of CDK2 and AKT (herein referring to total AKT), despite similar mRNA expression, and inhibited AKT phosphorylation in MSCs. A cycloheximide-chase assay showed that SCN1A-silencing induced CDK2 but not AKT protein degradation in MSCs. A proteolysis inhibition assay using epoxomicin, bafilomycin A1 and NH4Cl revealed that both the ubiquitin-proteasome system and the autophagy and endo-lysosome system were irrelevant to CDK2 and AKT protein reduction in SCN1A-silenced MSCs. The AKT inhibitor LY294002 did not affect the degradation and nuclear localization of CDK2 in MSCs. Likewise, the AKT activator SC79 did not attenuate the SCN1A-silencing effects on CDK2 in MSCs. These results suggest that NaV1.1 contributes to the cell cycle of MSCs by regulating the post-translational control of AKT and CDK2.


Assuntos
Ciclo Celular , Quinase 2 Dependente de Ciclina , Células-Tronco Mesenquimais , Canal de Sódio Disparado por Voltagem NAV1.1 , Proteínas Proto-Oncogênicas c-akt , Dente Decíduo , Quinase 2 Dependente de Ciclina/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Dente Decíduo/citologia , Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Lisossomos/metabolismo , Proteólise , Transporte Ativo do Núcleo Celular , Humanos
12.
Thorac Cancer ; 15(27): 1929-1945, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39113208

RESUMO

BACKGROUND: The aim of the present study was to investigate the function of novel circular RNA hsa_circ_0036683 (circ-36683) in non-small cell lung cancer (NSCLC). METHODS: RNA sequencing was used to screen out differentially expressed miRNAs. Expression levels of miR-4664-3p and circ-36683 were evaluated in lung carcinoma cells and tissues by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The effects of miR-4664-3p and circ-36683 on proliferation and migration were assessed using cell counting kit-8 (CCK-8), wound healing and transwell migration assays and xenograft experiments. The targeting relationship of circ-36683/miR-4664-3p/CDK2AP2 was assessed by luciferase reporter assays, western blot, qRT-PCR and argonaute2-RNA immunoprecipitation (AGO2 RIP). Co-immunoprecipitation (Co-IP), 5-ethynyl-2'-deoxyuridine (EdU) staining and CCK-8 were used to validate the indispensable role of CDK2AP2 in suppressing cell proliferation as a result of CDK2AP1 overexpression. RESULTS: By RNA sequencing, miR-4664-3p was screened out as an abnormally elevated miRNA in NSCLC tissues. Transfection of miR-4664-3p could promote cell proliferation, migration and xenograft tumor growth. As a target of miR-4664-3p, CDK2AP2 expression was downregulated by miR-4664-3p transfection and CDK2AP2 overexpression could abolish the proliferation promotion resulting from miR-4664-3p elevation. Circ-36683, derived from back splicing of ABHD2 pre-mRNA, was attenuated in NSCLC tissue and identified as a sponge of miR-4664-3p. The functional study revealed that circ-36683 overexpression suppressed cell proliferation, migration and resulted in G0/G1 phase arrest. More importantly, the antioncogenic function of circ-36683 was largely dependent on the miR-4664-3p/CDK2AP2 axis, through which circ-36683 could upregulate the expression of p53/p21/p27 and downregulate the expression of CDK2/cyclin E1. CONCLUSION: The present study revealed the antioncogenic role of circ-36683 in suppressing cell proliferation and migration and highlighted that targeting the circ-36683/miR-4664-3p/CDK2AP2 axis is a promising strategy for the intervention of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Proliferação de Células , Neoplasias Pulmonares , MicroRNAs , RNA Circular , Animais , Feminino , Humanos , Masculino , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Future Med Chem ; 16(17): 1749-1759, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101595

RESUMO

Background: Quercetin being antioxidant and antiproliferative agent acts by inhibiting CDK2, with an increase in cancer prevalence there is a need to profile quercetin derivatives as CDK2 inhibitors.Materials & method: Schiff bases of quercetin were synthesized as cytotoxic agents against the MCF7 cell line. FTIR, 1H-NMR and 13C-NMR, CHNS/O analysis were employed along with in vivo and in silico activities.Results & conclusion: 2q, 4q, 8q and 9q derivatives have maximum cytotoxic effect with IC50 values 39.7 ± 0.7, 36.65 ± 0.25, 35.49 ± 0.21 and 36.99 ± 0.45, respectively. Molecular docking also confirmed these results 8q has the highest binding potential of -9.165 KJ/mole making it a potent inhibitor of CDK2. These derivatives can be used as lead compounds as potent CDK2 inhibitors.


[Box: see text].


Assuntos
Antineoplásicos , Neoplasias da Mama , Proliferação de Células , Quinase 2 Dependente de Ciclina , Simulação de Acoplamento Molecular , Quercetina , Humanos , Quercetina/farmacologia , Quercetina/química , Quercetina/síntese química , Células MCF-7 , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Feminino , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Bases de Schiff/química , Bases de Schiff/farmacologia , Bases de Schiff/síntese química
14.
Expert Opin Drug Discov ; 19(9): 1125-1148, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38994606

RESUMO

INTRODUCTION: Abundant evidence suggests that the overexpression of CDK2-cyclin A/E complex disrupts normal cell cycle regulation, leading to uncontrolled proliferation of cancer cells. Thus, CDK2 has become a promising therapeutic target for cancer treatment. In recent years, insights into the structures of the CDK2 catalytic site and allosteric pockets have provided notable opportunities for developing more effective clinical candidates of CDK2 inhibitors. AREA COVERED: This article reviews the latest CDK2 inhibitors that have entered clinical trials and discusses the design and discovery of the most promising new preclinical CDK2 inhibitors in recent years. Additionally, it summarizes the development of allosteric CDK2 inhibitors and CDK2-targeting PROTACs. The review encompasses strategies for inhibitor and PROTAC design, structure-activity relationships, as well as in vitro and in vivo biological assessments. EXPERT OPINION: Despite considerable effort, no CDK2 inhibitor has yet received FDA approval for marketing due to poor selectivity and observed toxicity in clinical settings. Future research must prioritize the optimization of the selectivity, potency, and pharmacokinetics of CDK2 inhibitors and PROTACs. Moreover, exploring combination therapies incorporating CDK2 inhibitors with other targeted agents, or the design of multi-target inhibitors, presents significant promise for advancing cancer treatment strategies.


Assuntos
Antineoplásicos , Quinase 2 Dependente de Ciclina , Desenho de Fármacos , Neoplasias , Inibidores de Proteínas Quinases , Humanos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Animais , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Desenvolvimento de Medicamentos , Descoberta de Drogas/métodos , Terapia de Alvo Molecular , Regulação Alostérica/efeitos dos fármacos , Quimera de Direcionamento de Proteólise
15.
Bioorg Chem ; 150: 107566, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38896936

RESUMO

In the current study, novel pyrazolo[3,4-d]pyrimidine derivatives 5a-h were designed and synthesized as targeted anti-cancer agents through dual CDK2/GSK-3ß inhibition. The designed compounds demonstrated moderate to potent activity on the evaluated cancer cell lines (MCF-7 and T-47D). Compounds 5c and 5 g showed the most promising cytotoxic activity against the tested cell lines surpassing that of the used reference standard; staurosporine. On the other hand, both compounds showed good safety and tolerability on normal fibroblast cell line (MCR5). The final compounds 5c and 5 g showed a promising dual CDK2/GSK-3ß inhibitory activity with IC50 of 0.244 and 0.128 µM, respectively, against CDK2, and IC50 of 0.317 and 0.160 µM, respectively, against GSK-3ß. Investigating the effect of compounds 5c and 5 g on CDK2 and GSK-3ß downstream cascades showed that they reduced the relative cellular content of phosphorylated RB1 and ß-catenin compared to that in the untreated MCF-7 cells. Moreover, compounds 5c and 5 g showed a reasonable selective inhibition against the target kinases CDK2/GSK-3ß in comparison to a set of seven off-target kinases. Furthermore, the most potent compound 5 g caused cell cycle arrest at the S phase in MCF-7 cells preventing the cells' progression to G2/M phase inducing cell apoptosis. Molecular docking studies showed that the final pyrazolo[3,4-d]pyrimidine derivatives have analogous binding modes in the target kinases interacting with the hinge region key amino acids. Molecular dynamics simulations confirmed the predicted binding mode by molecular docking. Moreover, in silico predictions indicated their favorable physicochemical and pharmacokinetic properties in addition to their promising cytotoxic activity.


Assuntos
Antineoplásicos , Proliferação de Células , Quinase 2 Dependente de Ciclina , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glicogênio Sintase Quinase 3 beta , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases , Pirazóis , Pirimidinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos
16.
Heliyon ; 10(9): e29850, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707385

RESUMO

A series of ethyl 2-amino-7-methyl-5-oxo-4-phenyl-4,5-dihydropyrano[4,3-b]pyran-3-carboxylate derivatives (4a-j) bearing different substitutions on the C4-phenyl ring was synthesized. The anti-proliferative activity of all the synthesized compounds was assessed against two human cancer-cell lines, including SW-480 and MCF-7, by using MTT method. Derivatives 4g, 4i, and 4j, possessing 4-NO2, 4-Cl, and 3,4,5-(OCH3)3 substitutions, were found to be the most potent compounds against both cell lines. The obtained IC50 values for 4g, 4i, and 4j were 34.6, 35.9, and 38.6 µM against SW-480 cells and 42.6, 34.2, and 26.6 µM against MCF-7 cells, respectively. Evaluation of the free radical scavenging potential of the compounds against DPPH radicals showed the highest result for compound 4j with an EC50 value of 580 µM. Molecular docking studies revealed the compounds were well accommodated within the binding site of cyclin-dependent kinase-2 (CDK2) with binding energies comparable to those of DTQ (the co-crystallized inhibitor) and BMS-265246 (a well-known CDK2 inhibitor). Molecular dynamics simulation studies confirmed the interactions and stability of the 4g-CDK2 complex. All derivatives, except 4g, were predicted to comply with the drug-likeness rules. Compound 4j may be proposed as an anti-cancer lead candidate for further studies due to the promising findings from in-silico pharmacokinetic studies, such as high GI absorption, not being a P-gp substrate, and being a P-gp inhibitor. Density functional theory (DFT) analysis was performed at the B3LYP/6-311++G (d,p) level of theory to examine the reactivity or stability descriptors of 4d, 4g, 4i, and 4j derivatives. The highest value of energy gap between HOMO and LUMO and thermochemical parameters were obtained for 4i and 4j.

17.
Pharmaceuticals (Basel) ; 17(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38794229

RESUMO

Protein kinases regulate cellular activities and make up over 60% of oncoproteins and proto-oncoproteins. Among these kinases, FLT3 is a member of class III receptor tyrosine kinase family which is abundantly expressed in individuals with acute leukemia. Our previous oxindole-based hit has a particular affinity toward FLT3 (IC50 = 2.49 µM) and has demonstrated selectivity towards FLT3 ITD-mutated MV4-11 AML cells, with an IC50 of 4.3 µM. By utilizing the scaffold of the previous hit, sixteen new compounds were synthesized and screened against NCI-60 human cancer cell lines. This leads to the discovery of a potent antiproliferative compound, namely 5l, with an average GI50 value against leukemia and colon cancer subpanels equalling 3.39 and 5.97 µM, respectively. Screening against a specific set of 10 kinases that are associated with carcinogenesis indicates that compound 5l has a potent FLT3 inhibition (IC50 = 36.21 ± 1.07 nM). Remarkably, compound 5l was three times more effective as a CDK2 inhibitor (IC50 = 8.17 ± 0.32 nM) compared to sunitinib (IC50 = 27.90 ± 1.80 nM). Compound 5l was further analyzed by means of docking and molecular dynamics simulation for CDK2 and FLT3 active sites which provided a rational for the observed strong inhibition of kinases. These results suggest a novel structural scaffold candidate that simultaneously inhibits CDK2 and FLT3 and gives encouragement for further development as a potential therapeutic for leukemia and colon cancer.

18.
Bioorg Chem ; 147: 107413, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696844

RESUMO

Cyclin-dependent kinase 2 (CDK2) is a vital protein for controlling cell cycle progression that is critically associated with various malignancies and its inhibition could offer a convenient therapeutic approach in designing anticancer remedies. Consequently, this study aimed to design and synthesize new CDK2 inhibitors featuring roscovitine as a template model. The purine ring of roscovitine was bioisosterically replaced with the pyrazolo[3,4-d]pyrimidine scaffold, in addition to some modifications in the side chains. A preliminary molecular docking study for the target chemotypes in the CDK2 binding domain revealed their ability to accomplish similar binding patterns and interactions to that of the lead compound roscovitine. Afterwards, synthesis of the new derivatives was accomplished. Then, the initial anticancer screening at a single dose by the NCI revealed that compounds 7a, 9c, 11c, 17a and 17b achieved the highest GI% values reaching up to 150 % indicating their remarkable activity. These derivatives were subsequently selected to undertake five-dose testing, where compounds 7a, 9c, 11c and 17a unveiled the most pronounced activity against almost the full panel with GI50 ranges; 1.41-28.2, 0.116-2.39, 0.578-60.6 and 1.75-42.4 µM, respectively and full panel GI50 (MG-MID); 8.24, 0.6, 2.46 and 6.84 µM, respectively. CDK2 inhibition assay presented compounds 7a and 9c as the most potent inhibitors with IC50 values of 0.262 and 0.281 µM, respectively which are nearly 2.4 folds higher than the reference ligand roscovitine (IC50 = 0.641 µM). Besides, flow cytometric analysis on the most susceptible and safe cell lines depicted that 7a caused cell cycle arrest at G1/S phase in renal cancer cell line (RXF393) while 9c led to cell growth arrest at S phase in breast cancer cell line (T-47D) along with pronounced apoptotic induction in the mentioned cell lines. These findings afforded new anticancer pyrazolo[3,4-d]pyrimidine, roscovitine analogs, acting via CDK2 inhibition.


Assuntos
Antineoplásicos , Proliferação de Células , Quinase 2 Dependente de Ciclina , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases , Pirazóis , Pirimidinas , Roscovitina , Humanos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Roscovitina/farmacologia , Roscovitina/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Linhagem Celular Tumoral , Purinas/farmacologia , Purinas/química , Purinas/síntese química
19.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732271

RESUMO

Cyclin-dependent kinase 2 (CDK2) is a key cell cycle regulator, with essential roles during G1/S transition. The clinicopathological significance of CDK2 in ductal carcinomas in situ (DCIS) and early-stage invasive breast cancers (BCs) remains largely unknown. Here, we evaluated CDK2's protein expression in 479 BC samples and 216 DCIS specimens. Analysis of CDK2 transcripts was completed in the METABRIC cohort (n = 1980) and TCGA cohort (n = 1090), respectively. A high nuclear CDK2 protein expression was significantly associated with aggressive phenotypes, including a high tumour grade, lymph vascular invasion, a poor Nottingham prognostic index (all p-values < 0.0001), and shorter survival (p = 0.006), especially in luminal BC (p = 0.009). In p53-mutant BC, high nuclear CDK2 remained linked with worse survival (p = 0.01). In DCIS, high nuclear/low cytoplasmic co-expression showed significant association with a high tumour grade (p = 0.043), triple-negative and HER2-enriched molecular subtypes (p = 0.01), Comedo necrosis (p = 0.024), negative ER status (p = 0.004), negative PR status (p < 0.0001), and a high proliferation index (p < 0.0001). Tumours with high CDK2 transcripts were more likely to have higher expressions of genes involved in the cell cycle, homologous recombination, and p53 signaling. We provide compelling evidence that high CDK2 is a feature of aggressive breast cancers. The clinical evaluation of CDK2 inhibitors in early-stage BC patients will have a clinical impact.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Quinase 2 Dependente de Ciclina , Humanos , Feminino , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 2 Dependente de Ciclina/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/metabolismo , Prognóstico , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Estadiamento de Neoplasias , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/mortalidade , Idoso , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
20.
Cell Signal ; 121: 111235, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38806109

RESUMO

In this study, we investigated the molecular mechanisms underlying the impact of extracellular vesicles (EVs) derived from bone marrow stromal cells (BMSCs) on colorectal cancer (CRC) development. The focus was on the role of MAGI2-AS3, delivered by BMSC-EVs, in regulating USP6NL DNA methylation-mediated MYC protein translation modification to promote CDK2 downregulation. Utilizing bioinformatics analysis, we identified significant enrichment of MAGI2-AS3 related to copper-induced cell death in CRC. In vitro experiments demonstrated the downregulation of MAGI2-AS3 in CRC cells, and BMSC-EVs were found to deliver MAGI2-AS3 to inhibit CRC cell proliferation, migration, and invasion. Further exploration revealed that MAGI2-AS3 suppressed MYC protein translation modification by regulating USP6NL DNA methylation, leading to CDK2 downregulation and prevention of colorectal cancer. Overexpression of MYC reversed the functional effects of BMSC-EVs-MAGI2-AS3. In vivo experiments validated the inhibitory impact of BMSC-EVs-MAGI2-AS3 on CRC tumorigenicity by promoting CDK2 downregulation through USP6NL DNA methylation-mediated MYC protein translation modification. Overall, BMSC-EVs-MAGI2-AS3 may serve as a potential intervention to prevent CRC occurrence by modulating key molecular pathways.


Assuntos
Neoplasias Colorretais , Vesículas Extracelulares , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Camundongos , Proliferação de Células , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células-Tronco Mesenquimais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Camundongos Nus , Metilação de DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Quinase 2 Dependente de Ciclina/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Camundongos Endogâmicos BALB C , Guanilato Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA